
Constructive Category Theory and
Applications to Equivariant Sheaves

DISSERTATION
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

vorgelegt von
Sebastian Posur

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2017



Gutachter

Prof. Dr. Mohamed Barakat, Universität Siegen
Prof. Dr. Frank-Olaf Schreyer, Universität des Saarlandes

Tag der mündlichen Prüfung: 21.06.2017

gedruckt auf alterungsbeständigem holz- und säurefreiem Papier



Preface

I would like to thank all the people who helped and supported me in the last years.

I express my deep gratitude to Mohamed Barakat for introducing me to the wonderful
field of constructive mathematics, for his invaluable advices and continuous encourage-
ment.

I am also very grateful for the inspiring comments I received from Frank-Olaf Schreyer
and his honest interest in my thesis.

Special thanks to my great colleague Sebastian Gutsche for the exciting time we had
creating and implementing our software project Cap.

I also express my thanks to all my friends and colleagues in Aachen and Siegen for the
pleasant working atmosphere we have in our departments and the mutual support.

Last, I would like to thank Tassja and our families for their unconditional support and
love.





Summary

In this thesis we create a purely categorical framework for cohomology computations of G-
equivariant coherent sheaves on projective space for a finite group G. For this, we develop
three different sub-frameworks: First, we construct a skeletal tensor category SRepk(G)
equivalent to the representation category Repk(G) of G. Second, we design, in the context
of an arbitrary abelian category, an algorithm for computing spectral sequences which is
suitable for a direct computer implementation, i.e., it only uses categorical constructions
provided by the axioms of an abelian category. Last, we describe how to internalize the
exterior algebra E and its modules in a tensor category.

Combining our three sub-frameworks yields an algorithm for computing spectral se-
quences within the category of E-modules internal to SRepk(G). Thanks to an equivariant
version of the famous BGG-correspondence, we can use such an algorithm for computing
cohomology groups of G-equivariant sheaves on projective space. Furthermore, this algo-
rithm allows us to compute a new invariant called spectral cohomology table which in this
thesis is proven to be stronger than the classical cohomology table.

Since our framework can be described in purely categorical language, a software project
in GAP facilitating the implementation of abstract categories and categorical algorithms was
born during the writing of this thesis: Cap (Categories, Algorithms, Programming). The
categorical framework along with all algorithms presented in this thesis is implemented in
Cap.





Zusammenfassung

In dieser Arbeit geben wir der Kohomologieberechnung G-äquivarianter Garben auf dem
projektiven Raum für endliche Gruppen G einen konstruktiven kategoriellen Rahmen.
Dazu gehen wir in drei Schritten vor: Wir konstruieren zuerst eine skeletale Tensorkate-
gorie SRepk(G), welche äquivalent zur Darstellungskategorie Repk(G) von G ist. Danach
entwerfen wir einen ausschließlich auf den Axiomen einer abelschen Kategorie beruhen-
den Algorithmus zur Berechnung von Spektralsequenzen. Im Anschluss behandeln wir die
äußere Algebra E und ihre Moduln intern in einer Tensorkategorie.

Die Kombination dieser drei Schritte ergibt einen Algorithmus zur Berechnung von
Spektralsequenzen innerhalb der Kategorie von E-Moduln intern in SRepk(G). Dank der
berühmten BGG-Korrespondenz kann dieser Algorithmus zur Bestimmung von Kohomolo-
giegruppen G-äquivarianter Garben auf dem projektiven Raum genutzt werden. Darüber
hinaus ermöglicht er die Berechnung von Spektral-Kohomologietabellen – eine neue Invari-
ante, welche stärker ist als klassische Kohomologietabellen, wie in dieser Arbeit gezeigt
wird.

Durch die konstruktive Anwendung rein kategorieller Konzepte entstand während des
Verfassens dieser Arbeit ein Software-Projekt in GAP zur Vereinfachung der Implementa-
tion abstrakter Kategorien und kategorieller Algorithmen: Cap (Categories, Algorithms,
Programming). Alle Ergebnisse und Algorithmen dieser Arbeit wurden in Cap realisiert
und implementiert.





Contents

Introduction 9

The Cap Project 11
1. Syntax 11
2. Semantics 13

Chapter 1. Constructive Category Theory 17
1. Preliminaries 18
1.1. Categories, Functors, Natural Transformations 19
1.2. Naturality 21
1.3. Images 26
1.4. Limits 28
2. Additive, Abelian, and Coproduct Categories 34
2.1. Additive Categories 34
2.2. Abelian Categories 37
2.3. Coproduct Categories 41
3. Constructing Tensor Categories 44
3.1. Bilinear Bifunctors 44
3.2. Monoidal Categories 47
3.3. Skeletal Tensor Categories 55
3.3.1. Representation Category of Finite Groups 55
3.3.2. Defining a Bifunctor 56
3.3.3. Defining an Associator 58
3.3.4. Defining a Braiding 61
3.3.5. Defining Unitors 63
3.3.6. Defining Duals 65
3.3.7. Skeletal Representation Category of Finite Groups 69
3.3.8. Graded Group Representations 69
3.3.9. Example: S3 70
3.3.10. Example: D8 and Q8 78
3.3.11. Example: Subgroup of Order 1000 of the Automorphism Group of the

Horrocks-Mumford Bundle 80

Chapter 2. Constructive Homological Algebra 83
1. Generalized Morphisms 85
1.1. Additive Relations 85

7



8 CONTENTS

1.2. Categorification of Additive Relations 87
1.3. Computation Rules for Generalized Morphisms 92
1.4. Data Structures for Generalized Morphisms 98
1.5. Epi-Mono Factorizations of Generalized Morphisms 105
1.6. Attributes and Properties of Generalized Morphisms 107
1.6.1. Canonical Objects in the Underlying Abelian Category 107
1.6.2. Honest Morphisms 110
1.7. Reasoning with the Canonical Objects 111
2. Diagram Chases and Spectral Sequences 115
2.1. Constructive Diagram Chases 115
2.2. Generalized Cochain Complexes 116
2.3. Spectral Sequence of a Filtered Complex 119
2.4. Computing Spectral Sequences 124

Chapter 3. Applications to Equivariant Sheaves 127
1. (Co)homological Invariants 129
1.1. Natural Filtrations 129
1.2. Spectral Betti Tables 131
2. Equivariant Modules over the Exterior Algebra 132
2.1. Actions and Coactions 132
2.2. Equivariant Modules 136
2.3. Internal Algebra 137
2.3.1. Exterior Algebra 137
2.3.2. Dual of Exterior Algebra 139
2.3.3. Internal Free Resolutions 140
2.3.4. Internal Cofree Resolutions 142
3. Computations with Equivariant Sheaves 143
3.1. BGG Correspondence 143
3.2. Equivariant Cohomology Tables 146
3.2.1. Equivariant BGG Correspondence 146
3.2.2. Equivariant Cohomology Table of the Horrocks-Mumford Bundle 147
3.3. Spectral Cohomology Tables 154
3.3.1. Definition 154
3.3.2. Spectral Cohomology Table of ΩP2

k
155

3.3.3. Hilbert Series of Unbounded Cochain Complexes 156
3.3.4. Spectral Cohomology Tables of Supernatural Sheaves 157
3.3.5. Spectral Cohomology Tables vs. Cohomology Tables 159
3.3.6. Spectral Cohomology Table of the Horrocks-Mumford Bundle 160

List of Figures 167

Bibliography 169

Index 171



Introduction

Constructive methods in mathematics are a powerful tool to enhance and deepen our
understanding of mathematical structures. They provide computational means for oth-
erwise inaccessible invariants and let us rethink and replace non-constructive with direct
approaches.

In this thesis we illustrate the power of constructive methods in mathematics by pur-
suing the following computational goal: Create a framework for cohomology computations
of G-equivariant coherent sheaves on projective space over a field k for a finite group G
and implement this framework in the computer algebra system GAP [GAP14].

Our approach relies on an equivariant version of the famous BGG-correspondence
[BGG78], which cleverly links cohomology computations with resolutions of Z-graded
modules over an exterior algebra E (see [EFS03]). A classical method in computer alge-
bra to implement a framework for such computations would begin with an implementation
of the ring in question, which in our case is the crossed product ring E o G, a ring that
equals the presumably very high dimensional vector space E ⊗k k[G] on the level of el-
ements. Such an implementation has to rely on performing effective arithmetics with E
and G. The next step would be the implementation of a solver for linear equations with
coefficients in E oG, since we ultimately aim at projective resolutions of modules. Such a
solver would have to deal with very high dimensional equations and for making it work sat-
isfactorily, it would have to exploit the special arithmetics of EoG in technical demanding
ways.

This thesis suggests following a new path in computer algebra laid out by category
theory. Invariants of mathematical objects, including cohomology groups of equivariant
sheaves, often admit purely categorical descriptions. This simple fact has a significant
computational implication: These invariants do not depend on a particular choice of data
structure for the mathematical object in question, but solely rely on its abstract categorical
context. Building on that, we want to approach our computational goal using the powerful
machinery of constructive category theory. We will focus on purely categorical construc-
tions like limits, tensor products, and duals, i.e., constructions working with objects and
morphisms, and ignore those set-theoretic constructions relying on elements and functions.
This paradigm shift, though, comes at a price. We give up easily axiomatizable algebraic
structures like rings and get heavily loaded categorical structures like tensor categories.
The upshot is a bigger variety in our choice of data structures, the design of algorithms
flexible in use, and the possibility to concretely employ far-reaching categorical concepts
like the internalization of modules, which ultimately lets us compute with E oG-modules

9



10 INTRODUCTION

without touching elements of E or G at all (see Subsection III.2.2 for categorical models
of E oG-modules).

We achieve our computational goal by describing, implementing, and in the end combin-
ing three different categorical sub-frameworks: In the first chapter we construct a skeletal
version SRepk(G) of the representation category Repk(G) of G regarded as a tensor cate-
gory over a splitting field k for G. The objects in this category are simply given by finite
lists of non-negative integers, so a set-theoretic concept such as “evaluate a representation
at a group element” cannot be applied. However, thanks to category theory we know that
for our computational objectives, only SRepk(G)’s tensor structure matters. Finding this
tensor structure is a computationally hard but feasible task that only has to be solved once
and for all. Once properly constructed, working within SRepk(G) becomes very easy.

In the second chapter we design, in the context of an arbitrary abelian category A,
an algorithm for computing spectral sequences, which is suitable for a direct computer
implementation, i.e., it only uses categorical constructions directly provided by the axioms
of A. For this, we develop a calculus for dealing and reasoning with additive relations in
A, which we will refer to as generalized morphisms.

In the third chapter we describe how to internalize the exterior algebra E and its
modules in a tensor category. The concept of an internal module allows us to abstract from
the idea that a module must have an underlying set of elements, and uses the structure of
tensor categories instead. Thus, we can smoothly apply the theory of internal modules to
our model SRepk(G).

The combination of our three categorical sub-frameworks yields an algorithm for com-
puting spectral sequences within the category of E-modules internal to SRepk(G). As
mentioned above, an equivariant version of the BGG-correspondence can use such an al-
gorithm for computing cohomology groups of G-equivariant sheaves on projective space.
Furthermore, this algorithm allows us to compute a new invariant called spectral cohomol-
ogy table which in this thesis is proven to be stronger than the classical cohomology table
(see Theorem III.3.20).

Since our framework can be described in purely categorical language, a software project
in GAP facilitating the implementation of abstract categories and categorical algorithms was
born during the writing of this thesis: Cap, which is an acronym for Categories, Algorithms,
Programming. This thesis contains a brief introductory chapter to the Cap project and
the categorical framework along with all algorithms presented in this thesis is implemented
in Cap.

Our highly general approach allows to reach further. The framework can be smoothly
extended to equivariant computations with modules over path algebras and may in the fu-
ture lead to the computation of equivariant cohomology of sheaves over varieties other than
projective space, exploiting derived equivalences induced by full exceptional collections.



The Cap Project

The Cap project is a collection of software packages for category theory implemented in
the computer algebra system GAP. Its development started in December 2013 by Sebastian
Gutsche and the author of this thesis, followed by major contributions to the core system
from Øystein Skartsæterhagen in 2015. So far, four Cap related software packages1 are
distributed via the current GAP release2, more packages still under development are available
at the GitHub pages3 of the Cap-authors.

The name Cap is an acronym for Categories, Algorithms, Programming. The core
system provides templates for categories possessing or equipped with extra structure, e.g.,
direct products, addition for morphisms, kernels and cokernels, tensor products, et cetera.
On the one hand, these templates can be used to create instances of categories, for example
the category of finite dimensional vector spaces over a computable field k or the category
of finitely presented modules over a computable ring R (see [BLH11] for a definition of
computable rings). On the other hand, these templates provide the syntax for implementing
generic categorical algorithms, such as the computation of specific differentials on a page
of a spectral sequence in the context of an arbitrary abelian category. In the following, we
will briefly explain the syntax and semantics of these templates. For a deeper discussion
of Cap and its functionalities we refer the reader to [Gut17].

1. Syntax

Cap supports lots of important notions of category theory, which we also call categorical
constructions. An example of such a categorical construction is the cokernel.

Definition. Let A be an additive category. Given objects A,B ∈ A and a morphism
φ ∈ HomA(A,B), a cokernel of φ consists of the following data:

1 These packages are:
• CAP (the core system)
• LinearAlgebraForCAP (an implementation of the category of finite dimensional vector spaces)
• ModulePresentationsForCAP (an implementation of the category of finitely presented modules)
• GeneralizedMorphismsForCAP (an implementation of additive relations in abelian categories,
see Chapter II)

2 Version 4.8.6, as of November 2016
3 GitHub pages of the Cap-authors:
• Sebastian Gutsche: https://github.com/sebasguts
• Sebastian Posur: https://github.com/sebastianpos

11

https://github.com/sebasguts
https://github.com/sebasguts
https://github.com/sebastianpos
https://github.com/sebastianpos


12 THE Cap PROJECT

(1) An object C ∈ A.
(2) A morphism π : B → C such that π ◦ φ = 0.
(3) A dependent function4 u mapping any pair (T, τ) consisting of an object T ∈ A

and a morphism τ : B → T such that τ ◦ φ = 0 to a morphism u(T, τ) : C → T
which has to be uniquely determined by the property τ = u(T, τ) ◦ π.

The category A has cokernels if it comes equipped with a dependent function mapping
any morphism φ ∈ HomA(A,B) for A,B ∈ A to a cokernel (C, π, u) of φ.

Cap provides the following three primitives accessing the three components of the triple
(C, π, u) for an additive category A having cokernels:

(1) CokernelObject :

HomA(A,B)→ ObjA : φ 7→ C.

(2) CokernelProjection :∏
φ∈HomA(A,B)

HomA (B,CokernelObject(φ)) : φ 7→ π.

(3) CokernelColift :∏
φ∈HomA(A,B)

τ∈{σ∈HomA(B,T )|σ◦φ=0}

HomA (CokernelObject(φ), T ) : (φ, τ) 7→ u(T, τ).

We also wrote down the dependent types of these primitives for given objects A,B, T ,
in order to highlight their interdependencies. For example, the dependent type of the
primitive CokernelProjection tells us that given a morphism φ : A → B, the output
CokernelProjection(φ) will be a morphism B → CokernelObject(φ), i.e., a morphism with
range depending on the primitive CokernelObject.

These three primitives suffice for building up other functionalities of the cokernel, e.g.,
its functoriality.

Example. Given a commutative diagram in A of the form

A B

A′ B′

D :=

α

α′
ν µ

the functoriality of the cokernel is given by the term

(†) CokernelFunctorial(D) := CokernelColift (α,CokernelProjection(α′) ◦ µ) .

4See Definition I.1.1



2. SEMANTICS 13

A B

A′ B′

CokernelObject(α)

CokernelObject(α′)

α

α′
ν µ

CokernelProjection(α)

CokernelProjection(α′)

CokernelFunctorial(D)

The primitives for categorical constructions provided by Cap are powerful enough
for a functorial implementation of a spectral sequence algorithm working in the context
of an arbitrary abelian category. Such an algorithm takes as arguments a morphism of
descending filtered cochain complexes F •A• → F •B• and a triple of integers (r, p, q) where
r ≥ 0. The output is the (p, q)-th differential on the r-th page of the associated spectral
sequence connected in a commutative diagram of the form

F •A•E
pq
r F •A•E

p+r,q−(r−1)
r

F •B•E
pq
r F •B•E

p+r,q−(r−1)
r

∂

∂

induced by the functoriality of spectral sequences. In this thesis we will demonstrate,
among other things, how an implementation of such a high-level categorical construction
can be realized with Cap’s primitives (see Chapter II).

2. Semantics

The purpose of Cap is to model categories. Classically, a set of objects ObjA and a
set of morphisms HomA(A,B) for all pairs A,B ∈ ObjA are part of the data defining a
(small) category A.

Cap models a slightly more general and computer-friendlier notion of a category: Ho-
momorphisms HomA(A,B) are not only sets but setoids, i.e., a set equipped with an
equivalence relation on it as an extra datum. The formal definition of this kind of category
looks as follows:

Definition. A Cap category A consists of the following data:
(1) A set ObjA of objects.
(2) For every pair A,B ∈ ObjA, a set HomA(A,B) of morphisms. If two morphisms

α, β ∈ HomA(A,B) are equal as elements of this set, we say they are equal.
(3) For every pair A,B ∈ ObjA, an equivalence relation ∼A,B on HomA(A,B). If

α ∼A,B β for two morphisms α, β ∈ HomA(A,B), we say they are congruent.
(4) For every A ∈ ObjA, an identity morphism idA ∈ HomA(A,A).
(5) For every triple A,B,C ∈ ObjA, a composition function

◦ : HomA(B,C)× HomA(A,B)→ HomA(A,C)



14 THE Cap PROJECT

compatible with the equivalence relation, i.e., if α, α′ ∈ HomA(A,B), β, β′ ∈
HomA(B,C), α ∼A,B α′ and β ∼B,C β′, then β ◦ α ∼A,C β′ ◦ α′.

(6) For all A,B ∈ ObjA, α ∈ HomA(A,B), we have
(idB ◦ α) ∼A,B α

and
α ∼A,B (α ◦ idA) .

(7) For all A,B,C,D ∈ ObjA, α ∈ HomA(A,B), β ∈ HomA(B,C), γ ∈ HomA(C,D),
we have

((γ ◦ β) ◦ α) ∼A,D (γ ◦ (β ◦ α))
Remark. In terms of higher category theory, a Cap category is a 2-category such that

the 2-morphism sets are either empty or a singleton, and such that its underlying object
class is a set. Using this point of view, we can derive the notion of a functor between Cap
categories: A Cap functor consists of an object and a morphism function such that the
usual axioms of a functor hold up to congruence.

Given a Cap category A, passing to the quotient sets HomA(A,B)/∼A,B gives rise to
a classical category A, because all constructions and axioms respect the congruence for
morphisms. It is usually the case that we actually want to compute with A, but that it is
easier to implement a Cap category A giving rise to A. We demonstrate this principle by
means of an example.

Example. Let R-fpmod be the category of finitely presented left R-modules for a
computable ring R. We are going to model R-fpmod by a Cap category R-fpres. We define
ObjR-fpres as the set of all matrices with entries in R. Note that each such matrix A ∈ Rm×n

can be interpreted as a homomorphism between free modules R1×m A−→ R1×n ∈ R-fpmod
presenting its cokernel. For A ∈ Rm×n, B ∈ Ro×p, we define HomR-fpmod(A,B) as the set of
matrices M ∈ Rn×p such that the following diagram can be completed to a commutative
diagram by inserting a matrix ν on the left:

R1×m R1×n

R1×o R1×p

A

B

∃ν M

Note that by the functoriality of the cokernel, such a diagram induces a morphism between
the modules presented by A and B independent of the choice of ν (since ν does not appear
in the Cap term (†) defining CokernelFunctorial). Conversely, every morphism in R-fpmod
between the cokernels can be lifted to such a diagram since row modules are projective.

In our definition of the homomorphism sets, two morphisms M,N ∈ HomR-fpres(A,B)
are equal if they are equal as matrices. We say M and N are congruent if and only if they
induce equal morphisms between the modules presented by A and B, which is the case if
and only if there exists a matrix rendering the diagram



2. SEMANTICS 15

R1×n

R1×o R1×pB

∃
M −N

commutative (this is a direct consequence of the comparison theorem [Wei94]).
Thus, we equipped the homomorphism sets HomR-fpres(A,B) with an equivalence re-

lation such that passing to the quotient yields a category R-fpres equivalent to R-fpmod.
We can see the advantage of the model R-fpres over R-fpres when we start defining the
function

CokernelObject : HomR-fpres(A,B)→ ObjR-fpres

for given A,B ∈ R-fpres. In the case of R-fpres, for M ∈ Rn×p, we can simply set

CokernelObject(M) :=
(
M
B

)
which yields a function since equal input yields equal output. The same mapping rule in
the context of R-fpres does not yield a function: For example, M1 = (0) and M2 = (2)
both represent the same module homomorphism in

0 Z1×1

Z1×1 Z1×1
(2)

Mi

for i = 1, 2, but

CokernelObject(M1) =
(

0
2

)
6=
(

2
2

)
= CokernelObject(M2)

on the level of matrices and thus on the level of objects in R-fpres. This issue can be fixed
by making (possibly unnatural) choices of representatives, but this can be very expensive
in an actual implementation.

We further define
CokernelProjection(M) := Ip

where Ip denotes the p× p identity matrix, and
CokernelColift(M,T ) := T

which are dependent functions of the correct types for our model R-fpres.
The following interpretation underlines the naturality of our model R-fpres: Not only

is CokernelObject a function in the context of R-fpres, but actually a functor between
Cap categories. This can be made precise as follows: HomR-fpres(A,B) equipped with its
equivalence relation can be seen as a category, where there is a morphism from M to N
if and only if M ∼ N . Furthermore, every category trivially can be turned into a Cap



16 THE Cap PROJECT

category, so HomR-fpres(A,B) is also a Cap category. The primitive CokernelObject can
now be regarded as a Cap functor

CokernelObject : HomR-fpres(A,B)→ R-fpres
whose action on morphisms CokernelObject(M ∼M ′) is given by

CokernelObject(M) CokernelObject(M ′).
CokernelColift(M,CokernelProjection(M ′))

It is well-defined since it respects composition and identities up to congruence and thus
defines a Cap functor.

Problems similar to the issues with the cokernel arise when we want to deal with other
categorical constructions, like kernels, pullbacks, or pushout, and the Cap category R-fpres
provides a natural solution for all them.



CHAPTER 1

Constructive Category Theory

This chapter covers basic notions of category theory with an emphasis on its construc-
tive aspects. We highlight data structures that are sometimes hidden in propositions, but
essential for a concrete implementation of categories in a computer algebra system. As
an example, let us take a look at the statement “Any additive functor F commutes with
direct sums”. It actually is a shortcut for a more detailed proposition (see Lemma I.2.10)
which claims the existence of a unique natural isomorphism σ : F (A⊕B) ∼−→ F (A)⊕F (B).
Such an isomorphism can safely be ignored in most cases when we do abstract theory, due
to coherence theorems. But when we work with concrete instances of categories, e.g., a
skeletal version of the category of k-vector spaces for a field k, the distributivity of ten-
sor products ⊗ and direct sums ⊕ can have non-trivial representations (see Computation
I.3.16), and treating σ as the identity simply yields wrong results. So, making categorical
data structures as explicit as possible is crucial for a correct implementation of category
theory. For this reason, whenever we define a categorical notion in this thesis, we will even
declare equalities of morphisms which are involved in this definition as part of the defining
data.

Another special feature of our presentation is the introduction of natural dependent
functions and the dependent sum category in Subsection I.1.2. Natural dependent functions
are also known under the concept of extraordinary Set-naturality, and can for example be
found in [Kel05] (in the context of enriched category theory). They are more general than
natural transformations (see Example I.1.17) since they can give precise meaning to the
assertion that a term such as εA : A⊗A∨ → 1 naturally depends on A both in a covariant
and contravariant way (see Example I.1.18), where A is an object in a rigid monoidal
category A with tensor unit 1.

We encountered natural dependent functions during the design of our templates for
categorical constructions in our software project Cap. We needed expressive types for
our categorical constructions that were able to capture interdependencies such as “the
result of the operation CokernelObject is equal to the range of the result of the operation
CokernelProjection” (see Cap project chapter). Dependent types are such expressive types.
They are the key technology in proof assistants like Coq or in new approaches to homotopy
theory [Uni13]. In our context every dependent function has a dependent type, e.g., εA
is of dependent type ∏A∈A Hom(A ⊗ A∨, 1) (see Definition I.1.1). From a computational
point of view, these dependent types provide solutions for two problems. First, they dictate
the correct specifications of each categorical construction, e.g., if you want to implement
A 7→ εA correctly, you have to ensure that the output is a morphism whose range equals

17



18 1. CONSTRUCTIVE CATEGORY THEORY

the unit object 1 and whose source is given by the output of the operation ⊗ applied to
A and A∨. Second, in category theory we are often tempted to replace a given object
with an isomorphic one and work with these objects as if they were the same. Of course,
performing such a substitution in Cap can only be valid if it is respected by all constructions
provided by Cap. Since we attached a dependent type to all constructions in Cap, we can
coherently add another specification to all these constructions by simply requiring that
every dependent function of a given dependent type in Cap shall be natural. Knowing
whether a given dependent function f is natural or not tells us if we may coherently
change the representation of a given object A without messing up the result of f(A).

Dependent sum categories are a handy tool for the creation of new categories. When-
ever we want to form a category whose objects are given by lists containing objects and
morphisms, dependent sum categories automatically provide the correct notion of mor-
phism between such lists. Furthermore, they subsume the notions of coslice, slice, and
comma categories (Example I.1.25), and natural dependent functions can be interpreted
as sections of their natural projection functor (Remark I.1.28). Natural dependent func-
tions and dependent sum categories are used throughout this thesis as a concise and precise
way to express naturality and for a convenient construction of categories.

In Subsections I.1.3 - I.2.2 we discuss images and limits. In Section I.2 we give a concrete
example of how to implement the category of finite dimensional vector spaces k-vec in a
computer algebra system as an abelian category well-suited for computations. Although
this example is extremely simple, k-vec serves as a building block for more complicated
categories throughout this thesis.

In Section I.3 we attack the following structure problem of tensor categories: Given
a finite group G such that k is a splitting field for G, denote its set of irreducible k-
representations by Irr(G). Then the problem is to compute a tensor product ⊗ and an
associator

α : A⊗ (B ⊗ C) ∼−→ (A⊗B)⊗ C
on the additive coproduct category ⊕i∈Irr(G) k-vec that turn it into a monoidal category
equivalent to the monoidal category of representations of G. This is an instance of the
«general question of categorification of based rings, which is one of the main problems in
the structure theory of tensor categories»([EGNO15]).

These tensor categories will in turn be the building blocks for our categories of G-
equivariant modules in Chapter III. Cap examples of such tensor categories are given in
Subsections I.3.3.9, I.3.3.10, and I.3.3.11.

1. Preliminaries

Before we start, we again emphasize that our exposition highlights the constructive
aspects of category theory and presents them in a way such that they become imple-
mentable in a computer algebra system. In particular, the categorical constructions which
we present are given by dependent functions having a dependent type, a concept which
has the following interpretation on a set-theoretic level.



1. PRELIMINARIES 19

Definition 1.1. Let A be a set and let (Ba)a∈A be an A-indexed family of sets. Then
we denote the set of all sections of the natural projection ]a∈ABa → A by∏

a∈A
Ba := {σ : A→ ]a∈ABa | σ(a) ∈ Ba}.

An element σ ∈ ∏a∈ABa is called a dependent function of dependent type (or simply
of type) ∏a∈ABa.

Example 1.2. As we have seen in the syntax section of the Cap project chapter,
Cap’s primitives have dependent types. Here is a concrete interpretation of the dependent
type of the primitive CokernelProjection: Let A be an additive category with cokernels.
For all A,B ∈ A, we have a dependent function CokernelProjection of type∏

φ∈HomA(A,B)
HomA (B,CokernelObject(φ))

that maps any morphism φ : A → B to another morphism whose range depends on the
given input φ, namely to the natural projection of B into the cokernel object of φ.

In Subsection I.1.2, we will generalize the concept of a dependent function to the
case where the indexing set A is a category A, and then speak about natural dependent
functions, which are roughly speaking given by dependent functions “compatible with the
morphisms in A”.

A general reference for category theory is [ML71].

1.1. Categories, Functors, Natural Transformations.
Definition 1.3. A category C consists of the following data:
(1) A class ObjC of objects.
(2) For every pair A,B ∈ ObjC, a set HomC(A,B) of morphisms.
(3) For every A ∈ ObjC, an identity morphism idA ∈ HomC(A,A).
(4) For every triple A,B,C ∈ ObjC, a composition function

◦ : HomC(B,C)× HomC(A,B)→ HomC(A,C).

(5) For all A,B ∈ ObjC, α ∈ HomC(A,B), we have

idB ◦ α = α

and
α = α ◦ idA.

(6) For all A,B,C,D ∈ ObjC, α ∈ HomC(A,B), β ∈ HomC(B,C), γ ∈ HomC(C,D),
we have

(γ ◦ β) ◦ α = γ ◦ (β ◦ α).
Notation 1.4. We write α : A → B for emphasizing the source and range of a mor-

phism α ∈ HomC(A,B). If β : B → C is another morphism, we either write β ◦ α or α · β
for their composite. Omitting any symbol as in the term βα will always mean β ◦ α.



20 1. CONSTRUCTIVE CATEGORY THEORY

Definition 1.5. Let A,B ∈ ObjC. We call a pair (φ, ψ) ∈ HomC(A,B)×HomC(B,A)
an isomorphism if it satisfies φ ◦ ψ = idB and ψ ◦ φ = idA, i.e., if φ and ψ are mutual
inverses.

Given two isomorphisms (φ, ψ) and (φ, χ), we trivially have ψ = χ, which is why we
will simply say φ is an isomorphism, and denote its uniquely determined inverse by φ−1.
We write φ : A ∼−→ B to indicate that φ is an isomorphism.

Definition 1.6. A functor F between two categories C and D consists of the following
data:

(1) An object function ObjC → ObjD, which we also denote by F .
(2) For A,B ∈ ObjC, a function FA,B : HomC(A,B)→ HomD(F (A), F (B)).
(3) For A ∈ ObjC, FA,A(idA) = idF (A).
(4) For A,B,C ∈ ObjC, α : A→ B, β : B → C, we have

FA,C(β ◦ α) = FB,C(β) ◦ FA,B(α).
We usually suppress subscripts and write F (α) instead of FA,B(α).

There is an obvious notion of composition of functors.
Definition 1.7. A natural transformation ν between two functors F,G : C → D

consists of the following data:
(1) A dependent function of type ∏C∈C HomD(FC,GC), i.e., a dependent function

mapping an object C ∈ C to a morphism νC ∈ HomD(FC,GC).
(2) For C,D ∈ C, α : C → D, we have G(α) ◦ νC = νD ◦ F (α), i.e., the following

diagram commutes:

FC GC

FD GD

νC

νD

F (α) G(α)

The morphisms νC are called the components of ν.
A natural transformation can be nicely depicted as a 2-cell:

C D

F

G

ν

Remark 1.8. Natural transformations can be composed in two ways.
(1) Given three functors F,G,H : C → D and two natural transformations ν : F →

G, µ : G→ H we can define µ◦ν : F → H componentwise. This is called vertical
composition.



1. PRELIMINARIES 21

C D

F

G

H

ν

µ

(2) Given categories C,D,E, functors F,G : C → D, H, I : D → E, and natural
transformations µ : F → G, ν : H → I, there are two ways to define the hori-
zontal composition ν⊗µ : HF → IG. The components are given by one of the
following two formulas, which both yield equal results:
• C 7→ νG(C) ◦H(µC),
• C 7→ I(µC) ◦ νF (C).

C D D

F

G

µ

H

I

ν

We set νF := ν ⊗ idF and Hµ := idH ⊗ µ.

The notation ν ⊗ µ is motivated by the fact that the functor category Hom(F, F ) can
be seen as a monoidal category with ⊗ as a tensor product.

The following definition captures the idea of an isomorphism between functors.
Definition 1.9. A natural isomorphism from a functor F : C → D to a functor

G : C→ D consists of the following data:
(1) A natural transformation ν : F → G.
(2) For all C ∈ C, the component νC is an isomorphism.

We also write ν : F ∼−→ G to indicate that ν is a natural isomorphism.
Definition 1.10. An equivalence ν between two categories C and D consists of the

following data:
(1) A functor F : C→ D.
(2) A functor G : D→ C.
(3) A natural isomorphism η : idC

∼−→ GF .
(4) A natural isomorphism ε : FG ∼−→ idD.

1.2. Naturality. In this section we clarify the notion of naturality for a categorical
term depending on an object variable. For a complete treatment, we have to take covariance
and contravariance concurrently into account.

Definition 1.11. Let C be a category. We call a functor F : Cop × C → Set a
discrete natural family with base category C.



22 1. CONSTRUCTIVE CATEGORY THEORY

Example 1.12. Let C be a category. The functor

Hom : Cop ×C→ Set

is a discrete natural family. More examples will follow as the types of natural dependent
functions.

The following notion can be found in [Kel05], in the more general context of enriched
category theory under the term extraordinary naturality for a family of maps.

Definition 1.13. Let F : Cop × C → Set be a discrete natural family. A natural
dependent function of dependent type (or simply of type) ∏C∈C F (C,C) consists of
the following data:

(1) A dependent function δ mapping an object C ∈ C to an element δC ∈ F (C,C).
(2) For all α : C → C ′ ∈ C, the equality F (α,C ′)(δC′) = F (C, α)(δC) holds.

The set of all natural dependent functions of a given type is also denoted by ∏C∈C F (C,C).

δC F (C,C) F (C ′, C ′) δC′

F (C,C ′)

F (C, α)(δC) = F (α,C ′)(δC′)

F (C, α) F (α,C ′)

∈ 3

∈

Remark 1.14. Definition I.1.13 generalizes the concept of a dependent function (see
Definition I.1.1) from a set-theoretic to a category-theoretic level. That means the fam-
ily of sets is replaced by a discrete natural family, and only those dependent functions
“compatible with morphisms” are considered as natural.

Remark 1.15. Every functor F : C → Set (or G : Cop → Set) gives rise to a
discrete natural family by composition with the natural projection Cop × C → C (or
Cop ×C→ Cop). We then say this family is dummy in the first (or second) component.
We simply write ∏C∈C F (C) (or ∏C∈C G(C)) for the sets of dependent functions associated
to F (or G) considered as a discrete natural family.

We give a couple of examples to illustrate the usefulness of natural dependent functions
in various contexts.

Example 1.16. The dependent function C 7→ idC is natural of type∏
C∈C

HomC(C,C),

where the discrete natural family is given by the Hom functor (see Example I.1.12).



1. PRELIMINARIES 23

Example 1.17. Let F,G : C → D be functors. A natural dependent function δ of
type ∏

C∈C
HomD(F (C), G(C))

is a natural transformation from F to G (see Definition I.1.7), because it satisfies

δC′ ◦ Fα = HomD(Fα,G(C ′))(δC′)
= HomD(F (C), Gα)(δC) = Gα ◦ δC

for every morphism α : C → C ′ in C.
Example 1.18. The dependent function mapping an object A to the evaluation mor-

phism εA in a rigid symmetric monoidal category C (see Definition I.3.28) is a natural
dependent function of type ∏A∈C HomC(A⊗A∨, 1). The naturality constraint states that
for every morphism α : A→ B in C, the diagram

B ⊗B∨ 1

A⊗B∨ A⊗ A∨

εB

A⊗ α∨
α⊗B∨ εA

commutes. Here, the concept of a natural dependent function captures the way in which
the term εA depends on A both in a covariant and contravariant way.

Example 1.19. The concept of a dinatural transformation [ML71] between two
functors F,G : Cop×C→ D can be expressed using natural dependent functions: We start
with the discrete natural family (C,C ′) 7→ HomD (F (C ′, C), G(C,C ′)) with base category
C. Then, a natural dependent function δ of type∏

C∈C
HomD (F (C,C), G(C,C))

is a dinatural transformation, because it satisfies

G(α,C ′) ◦ δC′ ◦ F (C ′, α) = HomD (F (C ′, α), G(α,C ′)) (δC′)
= HomD (F (α,C), G(C, α)) (δC) = G(C, α) ◦ δC ◦ F (α,C)

for every morphism α : C → C ′ in C.
Example 1.20. An object ⊥ in a category C is called initial if for every C ∈ C,

HomC(⊥, C) is a singleton. We claim that an object ⊥ is initial if and only if there exists
a natural dependent function f of type ∏C∈C HomC(⊥, C) such that f⊥ = id⊥. For if ⊥ is
initial, the unique maps ⊥→ C clearly give a natural dependent function. Now, let f be
a natural dependent function of type ∏C∈C HomC(⊥, C) such that f⊥ = id⊥. Then every
set HomC(⊥, C) is inhabited by fC . And given two morphisms α, β :⊥→ C, naturality of
f implies

α = α ◦ id⊥ = α ◦ f⊥ = fC = β ◦ f⊥ = β ◦ id⊥ = β.



24 1. CONSTRUCTIVE CATEGORY THEORY

We now turn to the case of several object variables and prove that naturality of a
dependent function can be checked componentwise.

Lemma 1.21. Let C,D be categories, F : (C×D)op × (C×D)→ Set be a discrete
natural family. Let furthermore δ be a dependent function mapping a pair (C,D) ∈ C×D
to a morphism δ(C,D) ∈ F ((C,D), (C,D)). Then δ is natural if and only if

(1) for all C ∈ C, the dependent function D 7→ δ(C,D) is natural,
(2) for all D ∈ D, the dependent function C 7→ δ(C,D) is natural.

Proof. If δ is natural then so are its restrictions to subcategories of the base category.
Conversely, let its restrictions be natural. Let α : C → C ′ ∈ C, β : D → D′ ∈ D be
morphisms. We compute:

F ((α, β), (C ′, D′))
(
δ(C′,D′)

)
= F ((α,D), (C ′, D′)) ◦ F ((C ′, β), (C ′, D′))

(
δ(C′,D′)

)
= F ((α,D), (C ′, D′)) ◦ F ((C ′, D), (C ′, β))

(
δ(C′,D)

)
= F ((α,D), (C ′, β))

(
δ(C′,D)

)
= F ((C,D), (C ′, β)) ◦ F ((α,D), (C ′, D))

(
δ(C′,D)

)
= F ((C,D), (C ′, β)) ◦ F ((C,D), (α,D))

(
δ(C,D)

)
= F ((C,D), (α, β))

(
δ(C,D)

)
. �

Corollary 1.22. Naturality of a natural transformation ν : S → T between functors
S, T : A×B→ C can be checked componentwise.

Proof. Use Lemma I.1.21 and Example I.1.17. �

If we have a natural dependent function δ of type∏
(C1,...,Cr)∈C1×···×Cr

F (C1, . . . , Cr, C1, . . . , Cr),

we treat it like a dependent function in several variables and say it is natural in each
component. We also denote its type by∏

C1∈C1,...,Cr∈Cr

F (C1, . . . , Cr, C1, . . . , Cr).

This notation and terminology is justified by Lemma I.1.21.
The dual construction to the set of all dependent functions associated to a discrete

natural family is given by the dependent sum category.
Definition 1.23. Let F : Cop ×C→ Set be a discrete natural family. Its associated

dependent sum category or category of elements is given by the following data:
(1) Objects are pairs (C,X) where C ∈ C and X ∈ F (C,C).
(2) A morphism from (C,X) to (D, Y ) where C,D ∈ C, X ∈ F (C,C), Y ∈ F (D,D)

is given by a morphism f : C → D such that F (C, f)(X) = F (f,D)(Y ).



1. PRELIMINARIES 25

Composition and identities are given by composition and identities in C. We denote this
category by ∑C∈C F (C,C).

As natural dependent functions can be seen as a generalization of dependent func-
tions from a set-theoretic to a category-theoretic level (see Remark I.1.14), the dependent
sum category ∑

C∈C F (C,C) can be seen as a categorical version of the disjoint union
]C∈CF (C,C)

To prove that composition in ∑C∈C F (C,C) is well-defined, let f : (C,X) → (D, Y )
and g : (D, Y )→ (E,Z) be morphisms. We compute

F (C, g ◦ f)(X) = F (C, g) ◦ F (C, f)(X)
= F (C, g) ◦ F (f,D)(Y )
= F (f, g)(Y )
= F (f, E) ◦ F (D, g)(Y )
= F (f, E) ◦ F (g, E)(Z) = F (g ◦ f, E)(Z).

Let F : C → Set (or G : Cop → Set) be an ordinary functor. We simply write∑
C∈C F (C) (or ∑C∈C G(C)) for the dependent sum category associated to F (or G) con-

sidered as a discrete natural family (see Remark I.1.15).
Example 1.24. The category ∑C∈C HomC(C,C) has as objects pairs (C, φ) where φ

is an endomorphism of an object C ∈ C. A morphism from (C, φ) to (D,ψ) is a morphism
f : C → D such that

f ◦ φ = HomC(C, f)(φ) = HomC(f,D)(ψ) = ψ ◦ f,

i.e., f is compatible with the endomorphisms.
Example 1.25. Let F : A→ B be a functor and B ∈ B. We can think of the category∑

A∈A HomB(B,F (A)) as the “left-fiber” of B, since it consists of all pairs (A, φ) such that
B

φ−→ F (A). Similarly, one can call ∑A∈A HomB(F (A), B) a “right-fiber” of B. These
categories are usually called coslice category and slice category, respectively. More
generally, let G : C → B be another functor. The category ∑A∈A,C∈C HomB(FA,GC) is
the comma category of F and G.

Remark 1.26. Using the terminology of Example I.1.25, the standard theorems on the
existence of adjoint functors read as follows:

(1) The functor F admits a left adjoint if and only if all left-fibers have an initial
object.

(2) The functor F admits a right adjoint if and only if all right-fibers have a terminal
object.

Remark 1.27. The dependent sum category ∑C∈C F (C,C) admits a functor

π :
∑
C∈C

F (C,C)→ C



26 1. CONSTRUCTIVE CATEGORY THEORY

which projects an object (C,X) to its first component. If F is dummy in one of its variables,
then π is the projection of a so-called discrete fibration.

Remark 1.28. A natural dependent function δ of type ∏C∈C F (C,C) gives rise to
a section of the projection functor π defined in Remark I.1.27 by sending f : A → B to
(A, δ(A)) f→ (B, δ(B)). Conversely, every section of π defines a natural dependent function
by projecting to the second component. Both directions are mutually inverse.

We will use dependent sum categories for our constructions throughout this thesis.
Furthermore, as already stated in the introduction of this chapter, knowing whether a
given dependent function f is natural or not tells us if we may coherently change the
representation of a given object A without messing up the result of f(A). It is thus
important for our implementation of categorical constructions to explicitly study their
compatibility with morphisms (as we do it in Subsection I.1.4 in the case of limits).

1.3. Images. Images and their dual notion of coimages provide an important con-
struction tool in homological algebra, which is why we will briefly sketch their theory in
the general categorical setup.

Definition 1.29. Let C be a category and A,B ∈ C be objects. A morphism α :
A → B is called monomorphism if for all objects T ∈ C and all pairs β, γ : T → A of
morphisms, α◦β = α◦γ implies β = γ. Dually, α is called epimorphism if for all objects
T ∈ C and all pairs β, γ : B → T of morphisms, β ◦ α = γ ◦ α implies β = γ.

Definition 1.30. Let α : A → B be a morphism in a category C. A mono factor-
ization of α consists of an object (I, ε, ι) in ∑I∈C HomC(A, I)× HomC(I, B) such that ι
is a monomorphism and ι ◦ ε = α.

A B

I

α

ε ι

Note that the morphism ε in a mono factorization is uniquely determined by ι. Now, we
turn to the categorical notion of an image, which is given by a universal mono factorization.

Definition 1.31. Let α : A → B be a morphism in a category C. An image of α
consists of the following data:

(1) A mono factorization (I, ε, ι) of α.
(2) A dependent function u mapping each mono factorization (J, ζ, η) of α to a mor-

phism (I, ε, ι)→ (J, ζ, η) in ∑I∈C HomC(A, I)× HomC(I, B).



1. PRELIMINARIES 27

A B

I

J

α

ε ι

ζ η

Remark 1.32. For all dependent functions u, v satisfying (2) in Definition I.1.31, it is
easy to see that we have u = v.

The dual notion of a mono factorization is given by an epi factorization. The dual
notion of an image is given by a coimage. We omit the obvious definitions and turn to
epi-mono factorizations.

Definition 1.33. An epi-mono factorization of α : A → B consists of a mono
factorization (I, ε, ι) which is also an epi factorization.

Definition 1.34. A universal epi-mono factorization of α : A → B is given by
the following data:

(1) An epi-mono factorization (I, ε, ι) of α.
(2) A dependent function u mapping each epi-mono factorization (J, ζ, η) to an iso-

morphism (I, ε, ι) ∼−→ (J, ζ, η) in ∑I∈C HomC(A, I)× HomC(I, B).
Definition 1.35. We say a category C has

• images if it is equipped with a dependent function mapping each morphism α to
an image of α, denoted by im(α),
• coimages if it is equipped with a dependent function mapping each morphism α
to a coimage of α, denoted by coim(α),
• universal epi-mono factorizations if it is equipped with a dependent function
mapping each morphism α to a universal epi-mono factorization.

Lemma 1.36. A category C which has universal epi-mono factorizations also has
images and coimages.

Proof. By duality, it suffices to show that C has images. Let (I, ε, ι) be a universal
epi-mono factorization of a morphism α : A→ B. Let (J, ζ, η) be a mono factorization of
α. Apply the epi-mono factorization to ζ, which yields (K, β, κ). Now κ ◦ u ((K, β, η ◦ κ))
is the desired morphism from (I, ε, ι) to (J, ζ, η).



28 1. CONSTRUCTIVE CATEGORY THEORY

A BK

J

I

ζ η

β

κ

ε ι

�

Definition 1.37. Let C be a category and A ∈ C. An object (B, ι : B → A) in∑
B∈C HomC(B,A) such that ι is a monomorphism is called a subobject of A. We

also write B ⊆ A. Two subobjects are said to be equal as subobjects if they are
isomorphic (as objects in the dependent sum category). Dually, an object (B, ε : A→ B)
in ∑B∈C HomC(A,B) such that ε is an epimorphism is called a quotient object of A.
Two quotient objects are said to be equal as quotient objects if they are isomorphic (as
objects in the dependent sum category).

As we would expect, every image (I, ε, ι) of α : A → B gives rise to a subobject (I, ι)
of B, and dually, every coimage (C, ε, ι) gives rise to a quotient object (C, ε) of A.

1.4. Limits. Limits subsume important mathematical constructions in various differ-
ent contexts, such as products, kernels or pullbacks of abelian groups, modules, or sheaves
(see Example I.1.47). The theory of limits in category theory highlights the fact that such
mathematical constructions are not merely given by single objects, but by objects equipped
with additional data. We illustrate this point by means of an example construction: The
pullback. Let C be a category and let

A B

C

α

γ

be a diagram in C. A pullback of that diagram consists of
(1) an object A×B C

to which we refer as the pullback object,
(2) two morphisms α∗ : A×B C → C and γ∗ : A×B C → A, rendering the diagram

A B

CA×B C

α

γγ∗

α∗

commutative,
which we also call the pullback projections. Furthermore, the universal property of the
pullback can also be seen as an additional datum:



1. PRELIMINARIES 29

(3) A dependent function u mapping every triple (T, τ1 : T → C, τ2 : T → A) which
also renders the above diagram commutative to a uniquely determined morphism

u(T, τ1, τ2) : T → A×B C
such that the diagram

A B

CA×B C

T

α

γγ∗

α∗

τ2

τ1

u(T, τ1, τ2)

commutes.
Thus, a pullback can be fully described by the tuple (A ×B C, (α∗, γ∗), u). Similarly, the
constructions of kernels or direct products can also be seen as objects carrying additional
data.

Now, we give a constructive exposition of limits, with which we can handle all these
special instances of interest at one stroke. The role of a diagram is played by any functor
D : I→ C from some index category I. In the case of the pullback, such an index category
is depicted by • → • ← •. The role of the pullback objects and the pullback projections is
played by sources.

Definition 1.38. Let D : I→ C be a functor. A source of D consists of the following
data:

(1) An object S ∈ C.
(2) A dependent function s mapping an object i ∈ I to a morphism s(i) : S → D(i)

such that for all i, j ∈ I, ι : i→ j, we have D(ι) ◦ s(i) = s(j)
Sources can be combined with functors and natural transformations.
Notation 1.39. For a natural transformation δ : D → E between functors D,E : I→

C, and a source s of D, we denote by δ ◦ s the source
(
S, (S s(i)−→ D(i) δ(i)−→ E(i))i∈I

)
. For

a functor F : C→ D, we denote by Fs the source
(
FS, (FS F (s(i))−→ FD(i))i∈I

)
of FD.

As in the case of the pullback, a limit is given by a source equipped with a universal
property:

Definition 1.40. Let D : I→ C be a functor. A limit of D consists of the following
data:

(1) A source of D given by the data (limD, (λ(i) : limD → D(i))i∈I).
(2) A dependent function u mapping every source τ = (T, (τ(i) : T → D(i))i∈I) to a

morphism u(τ) : T → limD such that λ(i) ◦ u(τ) = τ(i) for all i ∈ I.
(3) For any other dependent function v satisfying (2), we have u = v.



30 1. CONSTRUCTIVE CATEGORY THEORY

In abelian categories, the pullback of every pair of arrows having the same range exists.
So, we can say that abelian categories have pullbacks. Here is the general definition in the
case of limits.

Definition 1.41. Let I be a category. We say a category C has limits of type I
if it is equipped with a dependent function λ mapping a functor D : I → C to a limit
(limD,λD, uD) of D.

If two functors from I to C are related by natural transformations, we can ask in which
way such natural transformations are compatible with the dependent function λ.

Lemma 1.42. Let (C, λ) be a category having limits of type I. Then it can uniquely be
equipped with the following naturality data: For every natural transformation δ : D → E
between functors D,E : I→ C, we have

(1) a morphism λ(δ) : limD → limE,
(2) the equation δ(i) ◦ λD(i) = λE(i) ◦ λ(δ) holds for all i ∈ I,
(3) for every source τ = (T, (τ(i) : T → D(i))i∈I), the equation uE(δ◦τ) = λ(δ)◦uD(τ)

holds.
Thus, we get a commutative diagram:

limD D(i)

limE E(i)

T
λD(i)

λE(i)

λ(δ) δ(i)

τ(i)

uD(τ)

uE(δ ◦ τ)

Proof. We set λ(δ) := uE(δ ◦ λD). Using the universal properties, it is easy to check
that the equations hold. The uniqueness of λ(δ) follows from property (3) applied to the
source (limD,λD). �

The next natural question to ask is how a functor F : C→ C′ relates the limits of its
domain to the limits of its codomain. Note that since a limit is not merely an object, we
have to understand how F acts on all the defining data of a limit.

Lemma 1.43. Let (C, λ) and (C′, µ) be categories having limits of type I, where λ
denotes a dependent function D 7→ (limD,λD, uD) and µ denotes a dependent function
∆ 7→ (lim ∆, µ∆, v∆). Given a functor F : C → C′ between their underlying categories, it
relates all the data involved in their limits of diagrams D : I→ C:

“F ((limD,λD, uD))→ (limFD, µFD, vFD) ”.



1. PRELIMINARIES 31

More precisely, F can be equipped with the following data in a unique way: For every
diagram D : I→ C, we have

(1) a morphism fD : F (limD) → limFD which is natural in D, i.e., µ(Fδ) ◦ fD =
fE ◦ F (λ(δ)) for any diagram E : I→ C and natural transformation δ : D → E,

(2) for all i ∈ I, the equation µFD(i) ◦ fD = F (λD(i)) holds,
(3) for every source τ = (T, (τ(i) : T → D(i))i∈I), the equation fD ◦ F (uD(τ)) =

vFD(Fτ) holds.

FT F (limD) limFD

FD(i)

F (uD(τ)) fD

F (τ(i)) F (λD(i)) µFD(i)

νFD(Fτ)

Proof. We set fD := vFD(FλD). With this definition, property (2) is nothing but the
commutativity of the limit cone diagram of limFD together with (F (limD), F (λ)) as a test
object. Property (3) follows from the defining uniqueness property of ν. The uniqueness
of fD follows from property (3) applied to the source (limD,λD).

For the naturality of fD in D, we compute for i ∈ I

µFE(i) ◦ µ(Fδ) ◦ fD = F (δ(i)) ◦ µFD(i) ◦ fD Lemma I.1.42 (2)
= F (δ(i)) ◦ F (λD(i)) property (2)
= F (δ(i) ◦ λD(i))
= F (λE(i) ◦ λ(δ)) Lemma I.1.42 (2)
= F (λE(i)) ◦ F (λ(δ))
= µFE(i) ◦ fE ◦ F (λ(δ)) property (2).

Now the desired equation follows from the universal property of limFE. �

Definition 1.44. If fD is an isomorphism for everyD, we say that F preserves limits
of type I.

We saw in Lemma I.1.43 that a functor F : C → C′ relates the limits of its domain
to the limits of its codomain by means of a morphism fD : F (limD) → limFD. Since
functors are themselves related by natural transformations, the last natural question we
want to answer is in which way fD is compatible with such natural transformations.

Lemma 1.45. We use the notation of Lemma I.1.43. Given categories (C, λ) and
(C′, µ) having limits of type I, two functors F,G : C → C′ equipped with the data



32 1. CONSTRUCTIVE CATEGORY THEORY

(fD)D, (gD)D from Lemma I.1.43, respectively, and a natural transformation ε : F → G,
then the equation

µ(εD) ◦ fD = gD ◦ εlimD

holds. This means that the following diagram commutes:

F (limD) limFD

G(limD) limGD

fD

gD

εlimD µ(εD)

Proof. The above diagram is the left inner rectangular part of the following larger
diagram for i ∈ I:

F (limD)

limFD

G(limD)

limGD

FD(i)

GD(i)

fD

gD

εlimD µ(εD)

FλD(i)

GλD(i)

µFD(i)

µGD(i)

εFD(i)

Its inner triangular parts commute by definition of fD and gD. Its right inner rectangular
part commutes by definition of µ(εD). Its outer rectangle commutes by naturality of ε.
From these commutativities, we conclude

µGD(i) ◦ (µ(εD) ◦ fD) = µGD(i) ◦ (gD ◦ εlimD) .
Now the desired equation follows from the universal property of limGD. �

Corollary 1.46. Under the hypotheses of Lemma I.1.45, if G preserves the limit of D,
then εlimD is uniquely determined by the components εD(i) for i ∈ I.

Studying limits in Cop yields the theory of colimits in C.
Example 1.47. Depending on I some limits and colimits have special names:

I limit colimit
∅ terminal object initial object

a set direct product coproduct
• → • ← • pullback -
• ← • → • - pushout
•⇒ • equalizer coequalizer



1. PRELIMINARIES 33

We have adopted this level of generality in this subsection since for our implementation
of Cap, we wanted to know in what ways a given term (e.g., a limit) is compatible with
the morphisms of its context, answering the question if it is possible to coherently change
the representation of an object.



34 1. CONSTRUCTIVE CATEGORY THEORY

2. Additive, Abelian, and Coproduct Categories

The ultimate goal of this chapter is to construct a category SRepk(G) well-suited for
computations and equivalent to the representation category of a finite group G, where k
is a splitting field for G. As a fundamental building block for SRepk(G) will serve the
category k-vec, which is also a category well-suited for computations and equivalent to the
category of finite dimensional vector spaces over k.

Construction 2.1. We construct the category k-vec as follows:
(1) Objk-vec := N0.
(2) For m,n ∈ N0, Homk-vec(m,n) := km×n.
(3) For n ∈ N0, idn is the n× n identity matrix In.
(4) For m,n, o ∈ N0, A ∈ km×n, B ∈ kn×o, B ◦ A := A ·B.
So, objects in k-vec are simply modeled by natural numbers and morphisms by matrices

with entries in k. Taking k-vec as a model for the category of k-vector spaces forces us to
think in categorical terms: It does not make sense to address “vectors” of objects in k-vec
since the objects are just natural numbers. Nevertheless, constructions like subspaces and
quotient spaces can be described with the purely categorical terms subobject and quotient
object (see Definition I.1.37). In fact, we aim at describing all constructions that we need
for the computation of G-equivariant sheaf cohomology on projective space in terms of
category theory. There is a long way to go until we will finally reach this computational
goal in Section III.3, and it all starts with equipping k-vec with more and more categorical
structure.

2.1. Additive Categories. Addition of matrices defines an abelian group structure
on the homomorphism sets of k-vec. This turns k-vec into an Ab-category.

Definition 2.2. To define an Ab-category, take Definition I.1.3 of a category, replace
the homomorphism sets HomC(A,B) by abelian groups and the composition function ◦ :
HomC(B,C)×HomC(A,B)→ HomC(A,C) by a bilinear map. To define an Ab-functor
between two Ab-categories, take Definition I.1.6 of a functor and replace the functions FA,B
between the homomorphism sets by homomorphisms of abelian groups. An Ab-natural
transformation between two Ab-functors is simply an ordinary natural transformation
(see Definition I.1.7).

In an Ab-category, we usually denote the group operation of HomC(A,B) by +, and
its neutral element by 0A,B (or simply by 0 if the context is clear).

Remark 2.3. More generally, we can also study k-linear categories (or k-categories),
where k is any commutative ring. The homomorphism sets are replaced by k-modules,
◦ is a k-bilinear mapping. The corresponding functors are called k-linear functors (or
k-functors), where the functions FA,B between the homomorphism sets are given by k-
module homomorphisms. The corresponding natural transformations are called k-linear
natural transformations (or k-natural transformations). Even more generally, there is the
concept of V-enriched categories, where the homomorphism sets are replaced by objects in



2. ADDITIVE, ABELIAN, AND COPRODUCT CATEGORIES 35

some symmetric monoidal category (V ,⊗) (see Definition I.3.25), and composition is given
by a morphism HomC(B,C)⊗HomC(A,B)→ HomC(A,C) in V . See [Kel05] for details.

Of course, k-vec is a k-linear category. We turn to the categorical characterizations of
the zero dimensional vector space and direct sums.

Definition 2.4. An object Z in an Ab-category C is called a zero object if idZ = 0.
Definition 2.5. Let C be an Ab-category, I a finite set, Ci ∈ C for i ∈ I. A direct

sum of (Ci)i∈I consists of the following data:
(1) An object C ∈ C.
(2) For each i ∈ I, a morphism πi : C → Ci, called projection.
(3) For each i ∈ I, a morphism ιi : Ci → C, called injection.
(4) The equation ∑i∈I ιiπi = idC holds.
(5) For all i, j ∈ I, we have πjιi = δijidCi , where δij denotes the Kronecker delta.

Remark 2.6. If I is empty, then we have the equation 0 = ∑
i∈∅ ιiπi = idC . This shows

that the direct sum of the empty family is a zero object.
Construction 2.7. We can easily equip k-vec with direct sums: For (m1, . . . ,mr) ∈

k-vecr = Nr
0, we set

(1) ⊕ri=1mi := ∑r
i=1mi,

(2) ιi :=
(
. . . 0mi×mi−1 Imi 0mi×mi+1 . . .

)
, and πi := ιtri for i ∈ {1, . . . , r}.

This turns k-vec into an additive category.
Definition 2.8. An additive category consists of the following data:
(1) An Ab-category A.
(2) A dependent function ⊕A (or simply ⊕) mapping a finite set I and a collection

(Ai)i∈I of objects in A to a corresponding direct sum (⊕A
i∈IAi, (πi)i∈I , (ιi)i∈I).

By Remark I.2.6, ⊕A(∅) is a zero object, which we denote by 0A.
Notation 2.9. If I = {1, . . . , n} and (Ci)i∈I are given, we set C1⊕· · ·⊕Cn := ⊕i∈ICi.
The following lemma is often stated as “Any additive functor F commutes with direct

sums”. Behind this shortcut lies a specific isomorphism σ : F (A ⊕ B) ∼−→ F (A) ⊕ F (B)
from which we will greatly benefit in concrete computations (see Computation I.3.16 and
Construction I.3.38) as well as in theoretical results (see for example the classification of
k-linear functors in Lemma I.2.22, which in turn is used for understanding possible tensor
product functors on the coproduct category ⊕i∈I k-vec in Lemma I.3.10).

Lemma 2.10. Let (A,⊕A) and (B,⊕B) be additive categories whose projections and
injections we denote by πi, ιi and pi, qi, respectively. An Ab-functor F : A → B between
their underlying Ab-categories preserves the additive structure. More precisely, F can be
equipped with the following data in a unique way:

(1) A dependent function mapping a finite set I and a collection (Ai)i∈I of objects in
A to an isomorphism

σF ((Ai)i∈I) : F (⊕A
i∈IAi)

∼−→ ⊕B
i∈IF (Ai),



36 1. CONSTRUCTIVE CATEGORY THEORY

which we simply denote by σF or σ if no confusion may occur.
(2) The equalities pi ◦ σ = F (πi) and σ ◦ F (ιi) = qi hold.

In particular, we get an isomorphism z : F (0A) ∼−→ 0B.

Proof. Let σ, σ′ be morphisms satisfying pi ◦ σ = F (πi) = pi ◦ σ′. It follows that∑
i qipiσ = ∑

i qipiσ
′. Applying equality (4) in Definition I.2.5 gives us σ = σ′ and thus

proves uniqueness. Now, we set σ := ∑
i∈I qi ◦F (πi) and τ := ∑

i∈I F (ιi) ◦ pi. Then a short
computation using the equalities in Definition I.2.5 proves that σ is an isomorphism with
inverse τ . Furthermore, σ satisfies the desired equations. �

Additive categories allow a matrix calculus that we will use several times (e.g., in
Construction I.2.20, or Lemma I.3.54).

Definition 2.11 (Matrix calculus). Let I, J be finite sets, (Ai)i∈I , (Bj)j∈J families of
objects in A, and (αij : Ai → Bj)i∈I,j∈J a family of morphisms in A. These data give rise
to a morphism ⊕i∈IAi → ⊕j∈JBj defined by∑i,j ιj ◦αij ◦πi, which we denote by the matrix
(αij)ij. Note that this is the row convention, since we label the rows of the matrix (αij)ij
according to the objects of the domain. If we are only given a finite set I and matrices
(αi : Ai → Bi)i∈I , then we define ⊕i∈Iαi := ∑

i ιi ◦ αi ◦ πi, which gives us a block diagonal
matrix.

If µ is a natural transformation between Ab-functors, we are able to deduce from the
following lemma that the component µ⊕i∈IAi is already determined by the components µAi .
We will need this fact whenever we want to compute µ⊕i∈IAi from the µAi (as in Lemma
I.2.22 or in Lemma I.3.48). This is very useful especially in categories where every object
can be written as a direct sum of simple objects (as it is the case in the coproduct category
introduced in Definition I.2.21).

Lemma 2.12. Let F,G : A → B be Ab-functors equipped with the data σF , σG of
Lemma I.2.10, respectively. Let µ : F → G be a natural transformation. Then the equation

σG ◦ µ⊕i∈IAi = (⊕i∈IµAi) ◦ σF

holds, i.e., the following diagram commutes:

F (⊕i∈IAi) ⊕i∈IF (Ai)

G(⊕i∈IAi) ⊕i∈IG(Ai)

σF

σG

µ⊕i∈IAi ⊕i∈IµAi

In particular, µ0A = 0.

Proof. This can be seen as a special instance of Lemma I.1.45, since direct sums are
in particular direct products, or be checked directly using the definition of σ in the proof



2. ADDITIVE, ABELIAN, AND COPRODUCT CATEGORIES 37

of Lemma I.2.10 and the naturality of µ:
(⊕i∈IµAi) ◦ σF = (

∑
j

qj ◦ µAj ◦ pj) ◦ (
∑
i

qi ◦ F (πi))

=
∑
j

qj ◦ µAj ◦ F (πj)

=
∑
j

qj ◦G(πj) ◦ µ⊕i∈IAi = σG ◦ µ⊕i∈IAi . �

2.2. Abelian Categories. Important constructions for k-vector spaces are kernels
and cokernels. Categorically, a kernel of a morphism α is the equalizer of the diagram

A B
α

0
and thus a special instance of a limit. Nevertheless, we write down its definition explicitly
in order to give special names to its defining data.

Definition 2.13. Let α : A → B be a morphism in an Ab-category A. A kernel of
α consists of the following data:

(1) An object ker(α) ∈ A.
(2) A morphism KernelEmbedding(α) : ker(α)→ A such that

α ◦KernelEmbedding(α) = 0.
(3) A dependent function KernelLift(α,−) mapping a morphism τ : T → A with

α ◦ τ = 0 to a morphism T → ker(α) such that
τ = KernelEmbedding(α) ◦KernelLift(α, τ).

(4) For any other dependent function v satisfying (3), v = KernelLift(α,−).

ker(α) A B

T

KernelEmbedding(α) α

KernelLift(α, τ)

τ

Dually, a cokernel of α consists of the following data:
(1) An object coker(α) ∈ A.
(2) A morphism CokernelProjection(α) : B → coker(α) such that

CokernelProjection(α) ◦ α = 0.
(3) A dependent function CokernelColift(α,−) mapping a morphism τ : B → T with

τ ◦ α = 0 to a morphism coker(α)→ T such that
τ = CokernelColift(α, τ) ◦ CokernelProjection(α).

(4) For any other dependent function v satisfying (3), v = CokernelColift(α,−).



38 1. CONSTRUCTIVE CATEGORY THEORY

coker(α) B A

T

CokernelProjection(α) α

CokernelColift(α, τ)

τ

Construction 2.14. The category k-vec can be equipped with kernels and cokernels.
We introduce 4 algorithms that can all be deduced from Gaussian elimination.

(1) SyzygiesOfRows: The argument is a matrix A ∈ km×n. The output is a matrix
Ko×m whose rows form a basis of the row kernel of A.

(2) SyzygiesOfColumns: The argument is a matrix A ∈ km×n. The output is a matrix
Kn×o whose columns form a basis of the column kernel of A.

(3) LeftDivide: The arguments are matrices A ∈ km×n, B ∈ km×o. The output is a
matrix X ∈ kn×o such that AX = B, if it exists.

(4) RightDivide: The arguments are matrices B ∈ km×n, A ∈ ko×n. The output is a
matrix X ∈ km×o such that XA = B, if it exists.

We can build kernels and cokernels from these algorithms:
(1) Let A ∈ km×n, then we define:

(a) ker(A) := number of rows of SyzygiesOfRows(A),
(b) KernelEmbedding(A) := SyzygiesOfRows(A) ∈ Homk-vec (ker(A),m),
(c) for any T ∈ ko×m such that TA = 0, set the universal morphism

KernelLift(A, T ) := RightDivide(T, SyzygiesOfRows(A)).

(2) Let A ∈ km×n, then we define:
(a) coker(A) := number of columns of SyzygiesOfColumns(A),
(b) CokernelProjection(A) := SyzygiesOfColumns(A) ∈ Homk-vec (n, coker(A)),
(c) for any T ∈ kn×o such that AT = 0, set the universal morphism

CokernelColift(A, T ) := LeftDivide(SyzygiesOfColumns(A), T ).
Once these methods are implemented for k-vec, we do not have to care about their

internals anymore, since we want to focus on working with k-vec from a purely categorical
point of view. Up till now, k-vec has become a pre-abelian category.

Definition 2.15. A pre-abelian category consists of the following data:
(1) An additive category A.
(2) A dependent function mapping every morphism α : A → B for A,B ∈ A to a

kernel of α.
(3) A dependent function mapping every morphism α : A → B for A,B ∈ A to a

cokernel of α.
Functors between pre-abelian categories preserving kernels and cokernels (see Definition

I.1.44) are called exact. Due to the Lemma I.1.43 such functors can be uniquely equipped



2. ADDITIVE, ABELIAN, AND COPRODUCT CATEGORIES 39

with additional data relating the pre-abelian structures. Moreover, natural transformations
between exact functors are compatible with kernels and cokernels by Lemma I.1.45.

Definition 2.16. Let C be a category.
(1) Let A,K, T ∈ C be objects and ι : K → A, τ : T → A morphisms. A lift of τ

along ι is given by a morphism u : T → K such that ι ◦ u = τ .

T A

K
u

τ

ι

(2) Let A,C, T ∈ C be objects and ε : A→ C, τ : A→ T morphisms. A colift of τ
along ε is given by morphism u : C → T such that u ◦ ε = τ .

A T

C
u

τ

ε

Definition 2.17. An abelian category consists of the following data:
(1) A pre-abelian category A.
(2) A dependent function (−/−) mapping a pair ι : K → A, τ : T → A to a lift τ/ι of τ

along ι, where A,K, T ∈ A, ι is a monomorphism and CokernelProjection(ι)◦ τ =
0.

(3) A dependent function (−\−) mapping a pair ε : A→ C, τ : A→ T to a colift ε\τ
of τ along ε, whereA,C, T ∈ A, ε is an epimorphism and τ◦KernelEmbedding(ε) =
0.

Usually, an abelian category is defined as a pre-abelian category such that every
monomorphism is the kernel of its cokernel, and dually, every epimorphism is the cok-
ernel of its kernel. Unwrapping this definition yields the data enlisted in Definition I.2.17.

So far, whenever we equipped a category with new data we have answered the question
of how a functor interacts with these additional data (see Lemma I.1.43 for categories with
limits or Lemma I.2.10 for additive categories). For the sake of completeness, we do the
same for abelian categories.

Lemma 2.18. Let A, B be abelian categories. Let F : A → B be an exact functor.
Then F is compatible with the abelian structures. More precisely, the following equations
hold:

(1) For every pair ι, τ as in Definition I.2.17, we have F (τ/ι) = F (τ)/F (ι).
(2) For every pair ε, τ as in Definition I.2.17, we have F (ε\τ) = F (ε)\F (τ).

Proof. Exact functors respect monomorphisms and epimorphisms, thus the equations
are well-defined. Furthermore, lifts along monomorphisms and colifts along epimorphisms
are unique, and every functor maps a lift to a lift and a colift to a colift. �



40 1. CONSTRUCTIVE CATEGORY THEORY

Because the compatibility data in I.2.18 only involve equations of morphisms, there are
no interesting new data for natural transformations between exact functors (in contrast to
the case of natural transformations between additive functors, see Lemma I.2.12).

Construction 2.19. We can turn k-vec into an abelian category as follows:
(1) B/A := RightDivide(B,A),

where B ∈ km×n, A ∈ ko×n, B · CokernelProjection(A) = 0.
(2) A\B := LeftDivide(A,B),

where A ∈ km×n, B ∈ km×o, KernelEmbedding(A) ·B = 0.
We end this subsection with an explicit construction of pullbacks in abelian categories.

Note that since we know how to compute in k-vec as an abelian category, we can apply this
explicit construction for the computation of pullbacks in k-vec (which gives us, as a special
case, an algorithm for the intersection of subspaces or for the preimage of a subspace under
a homomorphism).

Construction 2.20. Given a diagram in an abelian category A of the form

A B

C

α

γ

we define the diagonal difference1

δ :=
(
α
−γ

)
: A⊕ C → B.

Then, we can construct a pullback of α, γ as follows:
(1) A×B C := ker(δ).
(2) Let πC : A⊕ C → C be the natural projection. We set

α∗ := πC ◦KernelEmbedding(δ) : A×B C → C.

(3) Let πA : A⊕ C → A be the natural projection. We set

γ∗ := πA ◦KernelEmbedding(δ) : A×B C → A.

(4) For any pair τA : T → A, τC : T → C such that α ◦ τA = γ ◦ τC , we set the
universal morphism into the pullback as

u(T, τA, τC) := KernelLift
(
δ,
(
τA τC

))
: T → A×B C.

Correctness of this construction follows from the fact that the equation α ◦ τA = γ ◦ τC is
equivalent to

(
τA τC

)
· δ = 0.

1 See Definition I.2.11 for an explanation of the matrix notation.



2. ADDITIVE, ABELIAN, AND COPRODUCT CATEGORIES 41

2.3. Coproduct Categories. We conclude this section with the introduction of the
coproduct category ⊕i∈Ik-vec, which will serve as the underlying abelian category of
SRepk(G), our computational model for the category of representations of a finite group
G.

Definition 2.21. Let I be a set. For i ∈ I, we define the objects

χi := (δij)j∈I

of the product category ∏i∈i k-vec, where δij denotes the Kronecker delta. The coproduct
category ⊕

i∈I
k-vec

is defined as the full subcategory of ∏i∈i k-vec generated by all objects of the form ⊕i∈Jaiχi,
where J ⊆ I is a finite subset of I and ai ∈ N0 for i ∈ J . We also write ⊕i∈Iaiχi for such
objects, and assume that ai 6= 0 for only finitely many i’s.

Note that the coproduct category ⊕i∈Ik-vec is an abelian k-linear category (see Remark
I.2.3), in which all constructions are performed componentwise in k-vec.

Now, we classify all k-linear functors starting from ⊕i∈Ik-vec. This classification will
in turn be used to classify possible tensor product functors on ⊕i∈Ik-vec in Lemma I.3.10.
Furthermore, it tells us when two functors F,G : ⊕i∈I k-vec → ⊕

j∈J k-vec are naturally
isomorphic (see Corollary I.2.23).

Lemma 2.22. Let I be a set, A be an additive k-linear category. Then evaluation at
the objects χi

F 7→
(
F (χi)

)
i∈I

yields an equivalence of categories:

Homk

(⊕
i∈I

k-vec,A
) ∼−−→

∏
i∈I

A

where the left hand side denotes the category of k-linear functors.

Proof. We will describe mutually inverse functors

Homk

(⊕
i∈I k-vec,A

) ∏
i∈I A

G

H

The action of G is given by evaluation on all χi’s:



42 1. CONSTRUCTIVE CATEGORY THEORY

⊕
i∈I k-vec A

F

F ′

µ 7−→


F (χi)

F ′(χi)

µχi


i∈I

Conversely, given a family of objects (Ai)i∈I in A, we construct a functor with the help of
the matrix notation for the morphism in A introduced in Definition I.2.11.

⊕i∈Iaiχi

⊕i∈Ibiχi

⊕i∈I ⊕aij=1 Ai

⊕i∈I ⊕bij=1 Ai

7−→

⊕
i∈I k-vec A :

(αi)i∈I ⊕i∈I
(
αijl · idAi

)
jl

H((Ai)i∈I)

The action of H on morphisms between families can also be described by matrices:
Ai

Bi

γi


i∈I

7−→



⊕i∈I ⊕aij=1 Ai

⊕i∈I ⊕aij=1 Bi

⊕i∈I ⊕aij=1 γ
i


(⊕i∈Iaiχi)∈

⊕
i∈I k-vec

where the right hand side are the components of a natural transformation
H((Ai)i∈I)→ H((Bi)i∈I).

The natural isomorphism ⊕1
j=1Ai

∼= Ai induces a natural isomorphism from G◦H((Ai)i∈I)
to (Ai)i∈I . The isomorphism σ from Lemma I.2.10 induces a natural isomorphism from F
to (H ◦G)(F ) which is also natural in F due to Lemma I.2.12:

F (⊕i∈Iaiχi) ⊕i∈I ⊕aij=1 F (χi)

F ′(⊕i∈Iaiχi) ⊕i∈I ⊕aij=1 F
′(χi)

σF

σF ′

µ⊕i∈Iχi ⊕i∈Iµχi

for any natural transformation µ : F → F ′ and object (⊕i∈Iaiχi) ∈
⊕

i∈I k-vec. �

Corollary 2.23. Any two k-functors F,G : ⊕i∈I k-vec → ⊕
j∈J k-vec are naturally

isomorphic if and only if they yield equal functions on objects.



2. ADDITIVE, ABELIAN, AND COPRODUCT CATEGORIES 43

Proof. From Lemma I.2.22 we get:
F ' G⇐⇒ (F (χi))i∈I ' (G(χi))i∈I

⇐⇒ (F (χi))i∈I = (G(χi))i∈I
But F and G coincide on all χi’s if and only if they coincide on all objects of ⊕i∈I k-vec,
which is due to the commutativity of F and G with direct sums (see Lemma I.2.10) and
the fact that any object in ⊕i∈I k-vec is given as a direct sum of the χi’s. �



44 1. CONSTRUCTIVE CATEGORY THEORY

3. Constructing Tensor Categories

In this section we reach our goal of constructing SRepk(G), a tensor category well-
suited for computations and equivalent as tensor categories to the representation category
of a finite group G, where k is a splitting field for G. The underlying abelian category of
SRepk(G) will be given by the coproduct category ⊕i∈I k-vec, where I is in bijection to
the set of irreducible k-characters of G.

Until now, the structure with which we equipped ⊕i∈I k-vec was completely canonical,
since being an abelian category is a categorical property: Any two abelian structures on⊕
i∈I k-vec are equivalent. However, there are many inequivalent ways to turn ⊕i∈I k-vec

into a tensor category (see Definition I.3.32).

3.1. Bilinear Bifunctors. We start this section with a classification of bilinear bi-
functors which can be defined on ⊕i∈I k-vec (and may serve as possible tensor products).
Here, k denotes an arbitrary field.

Definition 3.1. Let A,B,C be categories. Functors of the form T : A×B→ C are
called bifunctors. Their compatibility with composition is called the interchange law:

T (β ◦ α, δ ◦ γ) = T (β, δ) ◦ T (α, γ)
for all morphisms α : A→ A′, β : A′ → A′′ ∈ A, γ : B → B′, δ : B′ → B′′ ∈ B.

Every bifunctor T trivially gives rise to functors T (A,−) : B → C for A ∈ A and
T (−, B) : A → C for B ∈ B. In the case of Ab-categories we want T (A,−) and T (−, B)
to become additive, which leads to the notion of a bilinear bifunctor.

Definition 3.2. Let A,B,C be Ab-categories. A bifunctor T : A ×B → C is called
bilinear if its maps on homomorphisms are bilinear. If A,B,C are k-linear categories, T
is called k-bilinear (or simply bilinear) if its maps on homomorphisms are k-bilinear.

Construction 3.3. On k-vec, a bilinear bifunctor
⊗ : k-vec× k-vec→ k-vec

can be defined via Kronecker products:
(1) For m,n ∈ N0, m⊗ n := mn.
(2) For m,m′, n, n′ ∈ N0, M ∈ km×m

′
, N ∈ kn×n′ , M ⊗N ∈ Homk-vec(m⊗m′, n⊗ n′)

is given by the Kronecker product of M and N .
The bilinear bifunctor ⊗ turns k-vec into a category with bifunctor.
Definition 3.4. A category with bifunctor consists of the following data:
(1) A category C.
(2) A bifunctor ⊗ : C×C→ C.
It is natural to ask if (k-vec,⊗) is the unique way to equip k-vec with a bilinear bifunc-

tor. Of course, uniqueness can only be expected up to a categorical notion of equivalence.
Definition 3.5. Let (C,⊗C) and (D,⊗D) be categories with bifunctors. A functor

between categories with bifunctor from C to D consists of the following data:



3. CONSTRUCTING TENSOR CATEGORIES 45

(1) A functor F : C→ D.
(2) For A,B ∈ C, a natural isomorphism F2(A,B) : F (A)⊗D F (B) ∼−→ F (A⊗C B).

It is called an equivalence of categories with bifunctor if the underlying functor F is
an equivalence of categories.

Remark 3.6. If (F, F2) and (G,G2) are functors between categories with bifunctors
such that F and G are composable, then we equip G◦F with the following data to become
a functor between categories with bifunctors:

• (G ◦ F )2(A,B) := G(F2(A,B)) ◦G2(F (A), F (B)).

For understanding the ways in which k-vec and more generally⊕i∈I k-vec can be turned
into categories with bifunctor, we first need tools to transfer the classification result of k-
linear functors on ⊕i∈I k-vec (see Lemma I.2.22) to bilinear bifunctors.

Definition 3.7. Let A,B be Ab-categories. We define the Ab-product category
A⊗B as follows:

(1) ObjA⊗B := ObjA ×ObjB.
(2) For A,A′ ∈ A, B,B′ ∈ B, we set

HomA⊗B ((A,B), (A′, B′)) := HomA(A,A′)⊗Z HomB(B,B′).
(3) Composition is given on elementary tensors by the interchange law of ⊗Z.
(4) Identity of (A,B) is given by idA ⊗Z idB.
Clearly, A⊗B is an Ab-category.

Remark 3.8. Bilinear bifunctors T : A×B→ C correspond bijectively to Ab-functors
B : A⊗B→ C. Under this correspondence, we have equality on the level of objects, and
the bilinear maps on homomorphisms of T are in 1 : 1 correspondence to linear maps of
the tensor products over Z. In particular, we obtain a notion of equivalence of bilinear
bifunctors.

Lemma 3.9. Let A,B,C be Ab-categories. Then currying gives rise to an equivalence
of categories:

HomAb(A⊗B,C) ' HomAb(A,HomAb(B,C)),
where HomAb denotes the category of Ab-functors.

Proof. We will describe mutually inverse functors

HomAb(A⊗B,C) HomAb(A,HomAb(B,C))

G

H

We will only describe them on objects, for the action on morphisms can be given canoni-
cally.



46 1. CONSTRUCTIVE CATEGORY THEORY

By Remark I.3.8 we may describeG by starting with a bilinear bifunctor T : A×B→ C.
We set G(T )(α : A −→ A′) := B(α,−) : B(A,−) −→ B(A′,−). Conversely, given
F : A −→ HomAb(B,C), we define a bilinear functor H(F )(α, β) := F (α)(β). We have
GH(F ) = F and HG(T ) = T . �

Lemma I.3.9 has an obvious generalization to k-linear categories.
The next lemma and corollary give a classification of bilinear bifunctors F on⊕i∈I k-vec:

They are uniquely determined by their values on all pairs of the form (χi, χj). Thus, we
can use this lemma to understand in what different ways ⊕i∈I k-vec can be equipped with
a bilinear bifunctor (see Construction I.3.12).

Lemma 3.10. Let I, J be sets. Let A be a k-linear category. Then evaluation at the
objects (χi, χj)

F 7→
(
F ((χi, χj))

)
i∈I,j∈J

yields an equivalence of categories:

Homk

(
(
⊕
i∈I

k-vec)⊗ (
⊕
j∈J

k-vec),A
)
'
∏
i∈I

∏
j∈J

A.

Proof. Combining the results of Lemma I.3.9 and Lemma I.2.22, we get a chain of
equivalences:

Homk

(
(
⊕
i∈I

k-vec)⊗ (
⊕
j∈J

k-vec),A
)
' Homk

(⊕
i∈I

k-vec,Homk(
⊕
j∈J

k-vec,A)
)

'
∏
i∈I

Homk

(⊕
j∈J

k-vec,A
)
'
∏
i∈I

∏
j∈J

A. �

Corollary 3.11. Let I, J, L be sets. Any two k-functors

F,G : (
⊕
i∈I

k-vec)⊗ (
⊕
j∈J

k-vec)→
⊕
l∈L

k-vec

are naturally isomorphic if and only if they yield equal functions on objects.

Proof. This is a direct consequence of Lemma I.3.10. �

It follows that ⊗ on k-vec is uniquely determined as a k-bilinear bifunctor up to natural
isomorphism by the equation 1⊗ 1 = 1.

In the next construction we give formulas for k-bilinear bifunctors on ⊕i∈I k-vec which
are based on Kronecker products. Such a formula is needed for an implementation of a
specific instance of the category ⊕i∈I k-vec equipped with a bifunctor.

Construction 3.12. Let I be a set and let

n :=
⊕
l∈I

n(i, j)l · χl

i,j∈I

∈
∏
i,j∈I

k-vec



3. CONSTRUCTING TENSOR CATEGORIES 47

be an I × I-indexed family of objects in k-vec. By Lemma I.3.10, there exists a bilinear
bifunctor (unique up to natural isomorphism)

⊗n :
(⊕
i∈I

k-vec×
⊕
i∈I

k-vec
)
→
⊕
i∈I

k-vec

with the property
χi ⊗n χj =

⊕
l∈I

n(i, j)l · χl.

Now, we construct one particular instance of such a functor for given n: Given morphisms
α = (αi)i∈I and γ = (γj)j∈I , we set the l-th component of α⊗n γ as

(α⊗n γ)l :=
⊕
i,j

(
αi ⊗ γj ⊗ In(i,j)l

)
,

where I denotes the identity matrix and⊗ the Kronecker product of matrices. Functoriality
of ⊗n follows from the interchange law of the Kronecker product.

The next theorem states that all ways to equip ⊕i∈I k-vec with a bilinear bifunctor are
given by (⊕i∈I k-vec,⊗n). Since it is our goal to turn ⊕i∈I k-vec into a tensor category
equivalent to Repk(G), this theorem already tells us how to define the tensor product
functor on ⊕i∈I k-vec (see Theorem I.3.36).

Theorem 3.13. Let I be a set and let
⊗ :

⊕
i∈I

k-vec×
⊕
i∈I

k-vec→
⊕
i∈I

k-vec

be a k-bilinear bifunctor. Furthermore, let

n :=
(
χi ⊗ χj

)
i,j∈I
∈
∏
i,j∈I

k-vec

and let ⊗n be the k-bilinear bifunctor from Construction I.3.12. Then there is an equiva-
lence of categories with bifunctors

(
⊕
i∈I

k-vec,⊗) ' (
⊕
i∈I

k-vec,⊗n)

whose underlying functor is given by the identity.

Proof. By Lemma I.3.10, the k-bilinear bifunctor ⊗ is naturally isomorphic to ⊗n,
which is the claim. �

3.2. Monoidal Categories. In this subsection we start with the definition of a
monoidal category and end with the definition of a tensor category. Tensor categories
provide the categorical structure needed for the computation of G-equivariant cohomology
groups in Section III.3.

Definition 3.14 ([ML71]). A monoidal category consists of the following data:
(1) A category with bifunctor (C,⊗ : C×C→ C).
(2) An object 1 ∈ C, called tensor unit.



48 1. CONSTRUCTIVE CATEGORY THEORY

(3) For A,B,C ∈ C, a natural isomorphism αA,B,C : A ⊗ (B ⊗ C) ∼−→ (A ⊗ B) ⊗ C,
called associator.

(4) For A ∈ C, a natural isomorphism λA : 1⊗ A ∼−→ A, called left unitor.
(5) For A ∈ C, a natural isomorphism ρA : A⊗ 1 ∼−→ A, called right unitor.
(6) For A,B,C,D ∈ C, the following pentagonal diagram commutes:

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D)

(A⊗ (B ⊗ C))⊗D ((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

A⊗αB,C,D

αA,B⊗C,D

αA,B,C⊗D

αA⊗B,C,D

αA,B,C⊗D

(7) For A,C ∈ C, the following triangular diagram commutes:

A⊗ (1⊗ C) (A⊗ 1)⊗ C

A⊗ C

αA,1,C

A⊗λC ρA⊗C

Construction 3.15. In the case of k-vec and Kronecker products ⊗, it is simple to
define a monoidal structure, since Kronecker products are strictly associative:

(1) The tensor unit is given by 1 ∈ N0.
(2) The associator, left unitor, and right unitor are given by identity matrices.
Computation 3.16. Note that even though the associator and the unitors in k-vec

are given by identity matrices, this is not the case for all structure morphisms. To see an
example, we compute the natural left distributivity morphism

2⊗ (1⊕ 1) ∼−→ (2⊗ 1)⊕ (2⊗ 1)
with the Cap package LinearAlgebraForCAP, which yields the matrix

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


as a result.
gap> Q := HomalgFieldOfRationals();;
gap> U := TensorUnit( MatrixCategory( Q ) );
<A vector space object over Q of dimension 1>
gap> V := DirectSum( U, U );



3. CONSTRUCTING TENSOR CATEGORIES 49

<A vector space object over Q of dimension 2>
gap> Display( LeftDistributivityExpanding( V, [ U, U ] ) );
[ [ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ],
[ 0, 1, 0, 0 ],
[ 0, 0, 0, 1 ] ]

A morphism in Category of matrices over Q

Here, Cap uses the constructions of Lemma I.2.10 for the computation.
An arbitrary functor between the underlying categories of two monoidal categories does

not have to respect the monoidal structures. Thus, such a preservation has to be ensured
by an extra datum. Note that this situation differs from the case of additive categories,
where Ab-functors automatically preserve direct sums and the extra datum comes for free
(see Lemma I.2.10).

Definition 3.17. Let (C,⊗C, 1C, αC, λC, ρC) and (D,⊗D, 1D, αD, λD, ρD) be monoidal
categories. A monoidal functor from C to D consists of the following data:

(1) A functor between categories with bifunctor2 (F, F2) : (C,⊗C)→ (D,⊗D).
(2) An isomorphism F0 : 1D ∼−→ F (1C).
(3) For A,B,C ∈ C, the following diagram commutes:

F (A)⊗D (F (B)⊗D F (C)) (F (A)⊗D F (B))⊗D F (C)

F (A)⊗D F (B ⊗C C) F (A⊗C B)⊗D F (C)

F (A⊗C (B ⊗C C)) F ((A⊗C B)⊗C C)

αD
F (A),F (B),F (C)

F (A)⊗D F2(B,C) F2(A,B)⊗D F (C)

F2(A,B ⊗C C) F2(A⊗C B,C)

F (αC
A,B,C)

(4) For A ∈ C, the following diagram commutes:

F (A)⊗D 1D F (A)

F (A)⊗D F (1C) F (A⊗C 1C)

ρF (A)

F2(A, 1C)
F (A)⊗D F0 F (ρA)

2Cf. Definition I.3.5



50 1. CONSTRUCTIVE CATEGORY THEORY

(5) For A ∈ C, the following diagram commutes:

1D ⊗D F (A) F (A)

F (1C)⊗D F (A) F (1C ⊗C A)

λF (A)

F2(1C, A)
F0 ⊗D F (A) F (λA)

In the definition of a monoidal functor F given in [ML71], F0 and F2 only have to be
morphisms. If they are isomorphisms, F is called strong. Since we will only deal with the
case where F0 and F2 are isomorphisms, we omit this adjective.

Remark 3.18. For two composable monoidal functors F , G, we equip G ◦ F with the
following data to become a monoidal functor:

(1) (G ◦ F )0 := G(F0) ◦G0,
(2) (G ◦ F )2(A,B) := G(F2(A,B)) ◦G2(F (A), F (B)).

Definition 3.19 ([ML71]). Given two monoidal functors (F, F0, F2), (G,G0, G2) from
(C,⊗C, 1C) to (D,⊗D, 1D), a monoidal natural transformation consists of the follow-
ing data:

(1) A natural transformation ν : F → G.
(2) For A,B ∈ C, the following diagram commutes:

F (A)⊗D F (B) F (A⊗C B)

G(A)⊗D G(B) G(A⊗C B)

F2(A,B)

G2(A,B)
νA ⊗D νB νA⊗CB

(3) The following diagram commutes:

1D F (1C)

G(1C)

F0

G0
ν1C

Definition 3.20. We call a monoidal functor
(F, F0, F2) : (C,⊗C, 1C, αC, λC, ρC)→ (D,⊗D, 1D, αD, λD, ρD)

a monoidal equivalence if F is an equivalence of categories.
This notion of a monoidal equivalence is justified in [SR72] in the sense that there

exists an appropriate inverse. In Remark I.3.39 we will see two inequivalent monoidal



3. CONSTRUCTING TENSOR CATEGORIES 51

categories with equal underlying category with bifunctors. This illustrates the importance
of treating the associator as an extra datum and not merely as a property (however, the
unitors may be seen as a categorical property, see [SR72] for details).

Definition 3.21 ([ML71]). A braiding for a monoidal category (C,⊗, 1, α, λ, ρ) con-
sists of the following data:

(1) For A,B ∈ C, a natural isomorphism γA,B : A⊗B ∼−→ B ⊗ A.
(2) Compatibility with unitors: For A ∈ C, the following diagram commutes:

A⊗ 1 1⊗ A

A

γA,1

ρA λA

(3) For A,B,C ∈ C, the following diagram swapping B and C commutes:

(A⊗B)⊗ C

A⊗ (B ⊗ C)

A⊗ (C ⊗B)

C ⊗ (A⊗B)

(C ⊗ A)⊗B

(A⊗ C)⊗B

γA⊗B,C

α−1
A,B,C

A⊗ γB,C

αC,A,B

γC,A ⊗B

αA,C,B

(4) For A,B,C ∈ C, the following diagram swapping A and B commutes:

A⊗ (B ⊗ C)

(A⊗B)⊗ C

(B ⊗ A)⊗ C

(B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

B ⊗ (A⊗ C)

γA,B⊗C

αA,B,C

γA,B ⊗ C

α−1
B,C,A

B ⊗ γC,A

α−1
B,A,C



52 1. CONSTRUCTIVE CATEGORY THEORY

Kronecker products are not commutative. Of course, this does not prevent k-vec from
being a braided monoidal category, it simply means that we cannot expect the braiding to
be given by identity matrices.

Construction 3.22. Here is how we define the braiding on k-vec:
• Let m,n ∈ N0, B := ({1, . . . ,m} × {1, . . . , n}, <) be the totally ordered set with
the lexicographical ordering, i.e., (i, j) < (i′, j′) ⇔ (i < i′) or ((i = i′) ∧ (j < j′)).
Let further ν : ({1, . . . ,mn}, <) → B denote the unique order preserving map.
The braiding γm,n is given by the row permutation matrix defined by the permu-
tation

{1, . . . ,mn} B B {1, . . . ,mn}.ν (i, j) 7→ (j, i) ν−1

For example, if m = n = 2, we have

ν : {1, 2, 3, 4} → {1, 2} × {1, 2}
1 7→ (1, 1)
2 7→ (1, 2)
3 7→ (2, 1)
4 7→ (2, 2)

which induces the permutation (2, 3) (as a cycle in the permutation group on {1, 2, 3, 4}).
Thus, the braiding γ2,2 is given by the 4× 4 permutation matrix

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


which is not the identity matrix.

Definition 3.23 ([ML71]). Let (C,⊗C, α
C, γC) and let (D,⊗D, α

D, γD) be braided
monoidal categories. A braided monoidal functor from C to D consists of the following
data:

(1) A monoidal functor (F, F0, F2).
(2) For A,B ∈ C, the following diagram commutes (compatibility with braiding):

FA⊗D FB

F (A⊗C B)

FB ⊗D FA

F (B ⊗C A).

γD
FA,FB

F2(A,B) F2(B,A)

F (γC
A,B)



3. CONSTRUCTING TENSOR CATEGORIES 53

Since a braided monoidal category equips a monoidal category only with a natural
family of isomorphisms, a braided monoidal functor does not have to be equipped with
any object or morphism datum. In particular, the notion of a braided monoidal natural
transformation coincides with the one of a monoidal natural transformation.

Remark 3.24. Mac Lane’s coherence theorem [ML71] states that all formal expres-
sions of natural isomorphisms which are built up from α, λ, ρ coincide if they have the same
formal source and the same formal range. It is due to this coherence theorem that we may
omit parentheses whenever we formally work with monoidal categories. Such a coherence
theorem cannot be expected for braided monoidal categories, since γB,A ◦ γA,B 6= idA⊗B
in general. However, there exists a graphical language, called string diagrams, which
‘compiles’ any formal expression of a braided monoidal category to a graph consisting of
strings and nodes. Equality of two formal expressions can be decided by comparing their
corresponding graphs. In this sense string diagrams are a generalization of Mac Lane’s
coherence theorem. A very good survey on the string diagram calculus for numerous kinds
of monoidal categories can be found in [Sel11].

Definition 3.25. A braided monoidal category (C,⊗, γ) is called symmetric if
γB,A ◦ γA,B = idA⊗B

for all objects A,B ∈ C.
The braiding which we constructed for k-vec is clearly symmetric.
Definition 3.26 ([ML71]). A closed category consists of the following data:
(1) A symmetric monoidal category (C,⊗).
(2) For each A ∈ C, a right adjoint Hom(A,−) : C → C to (−) ⊗ A, called the

internal Hom.
Definition 3.27. For an object A in a closed category C, we define its dual object

as A∨ := Hom(A, 1).
There is a more restrictive context in which dual objects can be introduced.
Definition 3.28. A compact closed category or rigid symmetric monoidal cat-

egory consists of the following data:
(1) A symmetric monoidal category (C,⊗, 1).
(2) A dependent function mapping an object A ∈ C to an exact pairing, i.e., an

object A∨ ∈ C (called dual object of A) and morphisms ηA : 1 → A∨ ⊗ A and
εA : A⊗ A∨ → 1 satisfying the zig-zag identities:

A A⊗ A∨ ⊗ A

A

A⊗ ηA

εA ⊗ AidA

A∨ A∨ ⊗ A⊗ A∨

A∨

ηA ⊗ A∨

A∨ ⊗ εAidA∨



54 1. CONSTRUCTIVE CATEGORY THEORY

Remark 3.29. In a compact closed category, assigning to A its dual object A∨ is a
contravariant functorial operation: Dualizing a morphism α : A → B is given by the
composition

B∨ A∨ ⊗ A⊗B∨ A∨ ⊗B ⊗B∨ A∨.
ηA ⊗B∨ A∨ ⊗ α⊗B∨ A∨ ⊗ εB

Remark 3.30. A compact closed category gives rise to a closed category by setting
Hom(A,B) := A∨⊗B. In particular, Hom(A, 1) ∼= A∨, which justifies the notation of dual
objects in Definition I.3.27 and Definition I.3.28. In the case of a compact closed category
the natural morphism A→ (A∨)∨ is always an isomorphism.

Construction 3.31. We introduce dual objects in k-vec:
• For m ∈ N0, m∨ := m.
• For m ∈ N0, νm : 1 → m∨ ⊗m is given by the concatenation of the rows of the
m×m identity matrix, which yields one single row.
• For m ∈ N0, εm : m⊗m∨ → 1 is given by the transposed matrix of νm.

From the definition of ν and ε, it follows that the action of (−)∨ on morphisms is given by
transposing matrices (see Remark I.3.29).

This turns k-vec into a tensor category.
Definition 3.32 ([Del90]). Let k be a field. A tensor category over k is an abelian

rigid symmetric monoidal k-linear category such that the tensor product is k-bilinear and
End(1) = k · id1.

Example 3.33. The abelian k-linear category ⊕
d∈Z k-vec can be regarded as the

category of Z-graded vector spaces. We give two inequivalent choices of tensor cate-
gory structures on ⊕

d∈Z k-vec. A first one can be defined using the forgetful functor⊕
d∈Z k-vec → k-vec and structure transport. We denote the braiding of this first tensor

structure by γ. A second tensor structure can be defined using the embedding of⊕d∈Z k-vec
in the category of chain complexes over k and structure transport. We denote the braiding
of this second tensor structure by γ′. If V denotes a 1-dimensional space sitting in degree
1, then there is no way of rendering the diagram

V ⊗ V

V ⊗ V

V ⊗ V

V ⊗ V

γV,V = (1)

F2(V, V ) F2(V, V )

γ′V,V = (−1)

commutative, which shows the inequivalence of these tensor structures.



3. CONSTRUCTING TENSOR CATEGORIES 55

Convention. Without further specification, we regard the category of graded k-vector
spaces as a tensor category equipped with the first structure presented in Example I.3.33,
i.e., no signs are involved in the braiding.

3.3. Skeletal Tensor Categories. In this subsection we turn to the construction of
a tensor category SRepk(G) equivalent to the category of group representations Repk(G)
for a finite group G over a splitting field k for G. The underlying abelian category of
SRepk(G) is given by ⊕i∈I k-vec for a set I which is in bijection to irreducible characters
of G. In particular, the objects in SRepk(G) are simply given by finite lists of non-negative
integers, and just like in the case of k-vec, we are forced by this model to think in purely
categorical terms: It does not make sense to ‘evaluate an object in SRepk(G) at a group
element’, a process which we can do for objects in Repk(G). However, all we need for the
computation of G-equivariant cohomology groups in Section III.3 is the tensor category
structure of Repk(G), and since the data structures for objects and morphisms in SRepk(G)
are very easy, we will prefer SRepk(G) as our computational model.

Here is the plan for defining a tensor category structure on SRepk(G):
(1) Start with an equivalence

F : SRepk(G) ∼−→ Repk(G)

between abelian categories.
(2) Use structure transport to transfer the well-known tensor product of Repk(G) to

SRepk(G) (see Theorem I.3.36).
(3) Use structure transport to induce

• an associator (see Subsection I.3.3.3),
• a braiding (see Subsection I.3.3.4),

on SRepk(G) compatible with F .
(4) Define unitors (see Subsection I.3.3.5) compatible with the associator and braiding.
(5) Define duals (see Subsection I.3.3.6).

All these construction steps are quite technical, but suitable for a computer implementa-
tion. And once these methods are implemented for SRepk, we do not have to care about
their internals anymore, just like in the case of computing kernels in k-vec via Gaussian
elimination.

Notation 3.34. For our notational conventions concerning ⊕i∈I k-vec see Definition
I.2.21.

3.3.1. Representation Category of Finite Groups. Let G be a finite group and let k
be a splitting field for G, i.e., we have char(k) - |G| and any irreducible representation is
absolutely irreducible. By Irr(G) we denote the set of irreducible k-characters equipped
with an arbitrary total order (so that we are able to address the i-th element in Irr(G)).

By BG, we denote the delooping of G, i.e., the category with only one object •,
homomorphisms given by HomBG(•, •) = G, composition ◦ given by group multiplication,
and identity given by e, the neutral element of G. The representation category of G is



56 1. CONSTRUCTIVE CATEGORY THEORY

defined as the functor category
Repk(G) := Hom(BG, k-vec).

It inherits its tensor category structure over k from k-vec in a natural way: Given two
representations V, V ′ ∈ Hom(BG, k-vec), their tensor product is given by

(V ⊗ V ′)(g) = V (g)⊗ V ′(g)
for g ∈ G. The associator, braiding, unitors, and duals are directly induced by the corre-
sponding concepts in k-vec. See [Day74] for a general treatment of monoidal structures on
categories of functors. Furthermore, Repk(G) is a strict monoidal category, i.e., we have:

• For all V ∈ Repk(G): 1⊗ V = V ⊗ 1 = V ,
• For all V ∈ Repk(G): λV = idV = ρV ,
• For all A,B,C ∈ Repk(G): (A⊗B)⊗ C = A⊗ (B ⊗ C),
• For all A,B,C ∈ Repk(G): αA,B,C = id(A⊗B)⊗C .

This is true since we constructed k-vec as a strict monoidal category.
Let I := {1, . . . , | Irr(G)|}. For i ∈ I, we can use algorithms from representation theory

to construct representations V i affording the i-th irreducible character in Irr(G). Such
algorithms are for example provided by the GAP package repsn [Dab11]. We define a
functor

F :
⊕
i∈I

k-vec→ Repk(G)

by setting F (χi) = V i and then employing the construction in the proof of Lemma I.2.22
to extend F to a functor strictly commuting with direct sums. Due to our assumptions
on k, all objects in Repk(G) are semisimple by Maschke’s theorem and F gives rise to an
equivalence of categories.

For every pair a, b ∈ I, there exist an isomorphism

εa,b :
⊕
i∈I

n(a,b)i⊕
j=1

V i ∼−−→ V a ⊗ V b

for natural numbers n(a, b)i ∈ N0. Such isomorphisms can be constructed by computing
a k-basis of the G fixed points of Homk(V i, V a ⊗ V b) for all i ∈ I, which can be done by
solving linear equations.

3.3.2. Defining a Bifunctor. We will use equivalences of categories to transport a bi-
functor from one category to another.

Construction 3.35 (Structure transport of bifunctors). Let A be a k-linear category
and (B,⊗B) be a k-linear category with a k-bilinear bifunctor. Let furthermore

A (B,⊗B)

F

R



3. CONSTRUCTING TENSOR CATEGORIES 57

be an equivalence with natural isomorphism µB : FR(B) ∼−→ B for B ∈ B. Then we
construct the k-bilinear bifunctor

⊗A A×A B×B B A:= F × F ⊗B R

on A. Furthermore, we set
F2(A1, A2) := µ−1

FA1⊗BFA2 : FA1 ⊗B FA2
∼−→ F (R(FA1 ⊗B FA2)) = F (A1 ⊗A A2)

which gives us an equivalence
(F, F2) : (A,⊗A) ∼−→ (B,⊗B)

of categories with bifunctor.
Now, we transport the tensor product of Repk(G) to ⊕i∈I k-vec.
Theorem 3.36. Let Repk(G) be the representation category of G with the given equiv-

alence
F :

⊕
i∈I

k-vec ∼−−→ Repk(G)

and isomorphisms

εa,b :
⊕
i∈I

n(a,b)i⊕
j=1

V i ∼−−→ V a ⊗ V b

for a, b ∈ I (see Subsection I.3.3.1). We further define the family

n :=
(⊕
i∈I

n(a, b)i · χi
)
a,b∈I

∈
∏
a,b∈I

k-vec.

Then there exists an equivalence of categories with bifunctors

(F, F2) : (
⊕
i∈I

k-vec,⊗n) ∼−−→ Repk(G)

where ⊗n denotes the k-bilinear bifunctor associated to n defined in Construction I.3.12.
This equivalence of categories with bifunctors has F as its underlying functor and for
a, b ∈ I, we further have

F2(χa, χb) = ε−1
a,b.

Proof. We apply structure transport (see Construction I.3.35) to the equivalence F
which gives us a k-bilinear bifunctor ⊗ on⊕i∈I k-vec and an equivalence of categories with
bifunctors

(F, F ′2) : (
⊕
i∈I

k-vec,⊗) ∼−→ Repk(G).

From this equivalence, it follows that χa ⊗ χb = ⊕
i∈I n(a, b)i · χi. Thus, we also have an

equivalence of categories with bifunctors

(id, F ′′2 ) : (
⊕
i∈I

k-vec,⊗n) ∼−→ (
⊕
i∈I

k-vec,⊗)



58 1. CONSTRUCTIVE CATEGORY THEORY

due to Theorem I.3.13, which yields by composition an equivalence of categories with
bifunctors

(F, F ′′′2 ) : (
⊕
i∈I

k-vec,⊗n) ∼−→ Repk(G).

As a last step, we will modify F
′′′
2 as follows: Any natural isomorphism τ : ⊗n ∼−→ ⊗n

between k-bilinear bifunctors defines an automorphism (id, τ) of (⊕i∈I k-vec,⊗n). Any
family of isomorphisms τab :

(
χa ⊗n χb

∼−→ χa ⊗n χb
)
ab

uniquely determines such a τ by
Lemma I.3.10. We compose (id, τ) with (F, F ′′′2 ) with the formula in Remark I.3.6:

F (χa)⊗ F (χb) F (χa ⊗n χb) F (χa ⊗n χb)
F
′′′
2 (χa, χb) F (τab)

Since F is an equivalence, it is full and faithful. Thus, F (τab) can be any isomorphism we
want, and we choose it such that the above composition yields ε−1

a,b. This is possible since
source and range are correct:

F (χa)⊗ F (χb) = V a ⊗ V b

and

F (χa ⊗n χb) = F (
⊕
i∈I

n(a, b)i · χi) =
⊕
i∈I

n(a,b)i⊕
j=1

F (χi) =
⊕
i∈I

n(a,b)i⊕
j=1

V i

by the strict commutativity of F with ⊕. �

Notation 3.37. We will abbreviate the tensor product ⊗n of Theorem I.3.36 on⊕
i∈I k-vec simply by ⊗, if no confusion might occur.
3.3.3. Defining an Associator. In [SR72] it is shown that we can use the equivalence

(F, F2) : (
⊕
i∈I

k-vec,⊗n) ∼−→ Repk(G)

of Theorem I.3.36 to define a uniquely determined associator on (⊕i∈I k-vec,⊗n) compat-
ible with (F, F2).

Construction 3.38. We are going to use (F, F2) : ⊕i∈I k-vec ∼−→ Repk(G) for comput-
ing an associator on⊕i∈I k-vec. Let a, b, c ∈ I. We define αχa,χb,χc as the unique morphism
such that F (αχa,χb,χc) satisfies the associator compatibility in Definition I.3.17. Unwrap-
ping the definitions, we end up with the following commutative diagram in Repk(G):



3. CONSTRUCTING TENSOR CATEGORIES 59(
V a ⊗ V b

)
⊗ V c

(⊕
i∈I
⊕n(a,b)i

j=1 V i
)
⊗ V c

⊕
i∈I

(⊕n(a,b)i
j=1 V i ⊗ V c

)

⊕
i∈I
⊕n(a,b)i
j=1 (V i ⊗ V c)

⊕
i∈I
⊕n(a,b)i

j=1

(⊕
k∈I

⊕n(i,c)k
l=1 V k

)

V a ⊗
(
V b ⊗ V c

)

V a ⊗
(⊕

i∈I
⊕n(b,c)i

j=1 V i
)

⊕
i∈I

(
V a ⊗

(⊕n(b,c)i
j=1 V i

))

⊕
i∈I
⊕n(b,c)i

j=1 (V a ⊗ V i)

⊕
i∈I
⊕n(b,c)i
j=1

(⊕
k∈I

⊕n(a,i)k
l=1 V k

)

F2(χa, χb)⊗ V c

=

=

⊕
i∈I

⊕n(a,b)i

j=1 F2(χi, χc)

V a ⊗ F2(χb, χc)−1

σV a⊗−

((⊕n(b,c)i

j=1 V i
)
i∈I

)

⊕
i∈I σV a⊗−

((
V i
)n(b,c)i

j=1

)

⊕
i∈I

⊕n(b,c)i

j=1 F2(χa, χi)−1

=

F (α−1
χa,χb,χc )

Recall that we denote the natural distributivity isomorphisms by σ (see Lemma I.2.10).
The equalities in the diagram above are due to the fact that the associator and right
distributivity in k-vec and thus in Repk(G) are given by identity matrices. But since the
left distributivity may be non-trivial (see Computation I.3.16), we have to take it into
account. In theory, the above approach is not restricted to triples of simple objects. But
since the involved matrices may become very big, it is better to compute the associators
for an arbitrary triple of objects A = ⊕

i∈I aiχ
i, B = ⊕

j∈I bjχ
j, C = ⊕

k∈I ckχ
k using the

distributivity laws of ⊗ in ⊕i∈I k-vec. Since we have already computed the action of ⊗ on
morphisms in Theorem I.3.36, we can also compute the natural distributivity isomorphisms.



60 1. CONSTRUCTIVE CATEGORY THEORY

The corresponding diagram for computing arbitrary associators in ⊕i∈I k-vec using those
on simple objects looks as follows:

(A⊗B)⊗ C

⊕
i∈I ai ((χi ⊗B)⊗ C)

⊕
i∈I ai

⊕
j∈I bj ((χi ⊗ χj)⊗ C)

⊕
i∈I ai

⊕
j∈I bj

⊕
k∈I ck

(
(χi ⊗ χj)⊗ χk

)

A⊗ (B ⊗ C)

⊕
i∈I ai (χi ⊗ (B ⊗ C))

⊕
i∈I ai

⊕
j∈I bj (χi ⊗ (χj ⊗ C))

⊕
i∈I ai

⊕
j∈I bj

⊕
k∈I ck

(
χi ⊗ (χj ⊗ χk)

)

σ(−⊗B)⊗C
(
χ1, . . . , χ1︸ ︷︷ ︸
×a1

, χ2, . . . , χ2︸ ︷︷ ︸
×a2

, χ3, . . .
)

⊕
i∈I aiσ(χi⊗−)⊗C

(
χ1, . . . , χ1︸ ︷︷ ︸
×b1

, χ2, . . .
)

⊕
i∈I ai

⊕
j∈I bjσ(χi⊗χj )⊗−

(
χ1, . . . , χ1︸ ︷︷ ︸
×c1

, χ2, . . .
)

σ−1
−⊗(B⊗C)

(
χ1, . . . , χ1︸ ︷︷ ︸
×a1

, χ2, . . . , χ2︸ ︷︷ ︸
×a2

, χ3, . . .
)

⊕
i∈I aiσ

−1
χi⊗(−⊗C)

(
χ1, . . . , χ1︸ ︷︷ ︸
×b1

, χ2, . . .
)

⊕
i∈I ai

⊕
j∈I bjσ

−1
χi⊗(χj⊗−)

(
χ1, . . . , χ1︸ ︷︷ ︸
×c1

, χ2, . . .
)

α−1
A,B,C

⊕
i∈I ai

⊕
j∈I bj

⊕
k∈I ck

(
α−1
χi,χj ,χk

)
Note that it is possible that each of the morphisms involved in this computation is non-
trivial (i.e., not equal to the identity).

Remark 3.39. The author knows no good choice of the isomorphisms εa,b such that the
associator on⊕i∈I k-vec gets a particular simple shape. In general, we cannot expect to find
a choice such that the associator α becomes the identity. For example, consider the finite
groups D8 and Q8. They have equal character tables, which implies that the categories
with bifunctor ⊕i∈Irr(D8) k-vec and ⊕i∈Irr(Q8) k-vec are equal, where the bifunctor is of the
form ⊗n (see Theorem I.3.36). In Subsection I.3.3.10, we show that the representation
categories Repk(D8) and Repk(Q8) are not equivalent as braided monoidal categories. In
[EG01], it is furthermore shown that these groups are not isocategorical, which means that
their representation categories are not equivalent even as monoidal categories, i.e., when we



3. CONSTRUCTING TENSOR CATEGORIES 61

forget the braiding. In particular, the associator α cannot be the identity in both categories.
Alternatively, a direct computation shows that setting α to the identity in both cases
violates the pentagonal equality in Definition I.3.14, when we set A = B = C = D = χ,
where χ corresponds to the unique irreducible character of degree 2.

Example 3.40. One-dimensional representations in Repk(G) form a group with ⊗ as
multiplication. For a, b ∈ I such that V a, V b are one-dimensional, denote by ab the index
such that V ab = V a ⊗ V b. Now, we set the isomorphisms

εa,b : V ab → V a ⊗ V b

all to the identity matrix. With this particular choice, the Construction I.3.38 of an
associator on ⊕

i∈I k-vec yields the identity for all triples χa, χb, χc, where a, b, c ∈ I
correspond to one-dimensional characters. In particular, if G is abelian, the associator on
simple objects can be given by the identity. Note that in the abelian case, G is determined
up to isomorphism by Repk(G) regarded as a category with bifunctor.

3.3.4. Defining a Braiding. In [SR72] it is shown that we can use the equivalence

(F, F2) : (
⊕
i∈I

k-vec,⊗n) ∼−→ Repk(G)

of Theorem I.3.36 to define a uniquely determined braiding on (⊕i∈I k-vec,⊗n) compatible
with (F, F2) and compatible with the associator defined in Subsection I.3.3.3.

Construction 3.41. In this construction we adjust the isomorphisms εa,b for simpli-
fying our future computation of the braiding on ⊕i∈I k-vec. For a, b ∈ I such that a < b,
we reset

εb,a := γV a,V b ◦ εa,b,
where γV a,V b is the braiding in Repk(G). Furthermore, consider the automorphism

⊕
i∈I
⊕n(a,a)i
j=1 V i V a ⊗ V a V a ⊗ V a ⊕

i∈I
⊕n(a,a)i

j=1 V i.
εa,a γV a,V a ε−1

a,a

Since Repk(G) is a symmetric category, this automorphism is of order 2. If we assume that
char(k) 6= 2, then it can be conjugated by another automorphism κa : ⊕i∈I

⊕n(a,a)i
j=1 V i →⊕

i∈I
⊕n(a,a)i
j=1 V i such that the result is given by a diagonal matrix having only 1 and −1

on the diagonal (see Definition I.2.11 for the matrix calculus in additive categories). We
reset εa,a by εa,a ◦ κa. Since all constructions so far worked with arbitrary choices for εa,b,
this resetting does not violate any of the previous results.

From now on, we assume that char(k) 6= 2.
Construction 3.42. We are going to use (F, F2) : ⊕i∈I k-vec ∼−→ Repk(G) for comput-

ing a braiding on ⊕i∈I k-vec. Let a, b ∈ I. We define γχa,χb as the unique morphism such
that F (γχa,χb) satisfies the braiding compatibility in Definition I.3.23. Due to our resetting
of ε in Construction I.3.41, we end up with

γχa,χb = id



62 1. CONSTRUCTIVE CATEGORY THEORY

for a 6= b. Again, we use the distributivity laws of ⊗ in ⊕i∈I k-vec to compute the braiding
for an arbitrary pair of objects A = ⊕

i∈I aiχ
i, B = ⊕

j∈I bjχ
j:

A⊗B

⊕
i∈I ai(χi ⊗B)

⊕
i∈I ai

⊕
j∈I bj(χi ⊗ χj)

B ⊗ A

⊕
i∈I ai(B ⊗ χi)

⊕
i∈I ai

⊕
j∈I bj(χj ⊗ χi)

σ−⊗B
(
χ1, . . . , χ1︸ ︷︷ ︸
×a1

, χ2, . . . , χ2︸ ︷︷ ︸
×a2

, χ3, . . .
)

⊕
i∈I aiσχi⊗−

(
χ1, . . . , χ1︸ ︷︷ ︸
×b1

, χ2, . . .
)

σ−1
B⊗−

(
χ1, . . . , χ1︸ ︷︷ ︸
×a1

, χ2, . . . , χ2︸ ︷︷ ︸
×a2

, χ3, . . .
)

⊕
i∈I aiσ

−1
−⊗χi

(
χ1, . . . , χ1︸ ︷︷ ︸
×b1

, χ2, . . .
)

γA,B

⊕
i∈I ai

⊕
j∈I bj

(
γχi,χj

)
It is possible that each of the morphisms involved in this computation is not equal to the
identity.

How does γχa,χa look like?
Definition 3.43. Given an object A in a tensor category over k, we define ∧2A as the

cokernel object of the morphism idA⊗A + γA,A.
Theorem 3.44. Let a, l ∈ I. The l-th component of γχa,χa (given by Construction

I.3.42) is a diagonal matrix having only 1 and −1 on the diagonal. Furthermore, the
number of −1 entries is equal to dimk

(
Hom(χl,∧2χa)

)
.

Proof. Due to our resetting of εa,a in Construction I.3.41, the l-th component of γχa,χa
clearly is a diagonal matrix having only 1 and −1 on the diagonal. Its number of −1 entries
equals the number of 0 entries in the l-th component of idχa⊗χa + γχa,χa , since we assume
char(k) 6= 2. But the number of 0-entries of the latter can be read off from the cokernel
object’s dimension. �

The −1 and 1 entries can be arranged arbitrarily on the diagonal of γχa,χa . We choose
the following convention:

Diag(1, . . . , 1, −1, . . . ,−1︸ ︷︷ ︸
× dimk(χl,∧2χa)

).

Remark 3.45. The number dimk

(
Hom(χl,∧2χa)

)
can simply be computed using the

character table and the 2-power map of G. Concretely, if V is a representation of G with



3. CONSTRUCTING TENSOR CATEGORIES 63

k-character χV , then the k-character of the representation ∧2V is given by

χ∧2V = χV (g)2 − χV (g2)
2 .

Thus, for the computation of χ∧2V , all we need to know is the following:
(1) The values of χV on conjugacy classes, which is the information provided by the

character table.
(2) The map sending a conjugacy class of an element g to the conjugacy class of g2.

Remark 3.46. The natural distributivity morphisms between ⊗ and ⊕ in ⊕i∈I k-vec
are all given by permutation matrices. This can be seen as follows: From the construction
of σ in Lemma I.2.10 and the definition of ⊗ in ⊕i∈I k-vec (see Construction I.3.12), it
follows that each component of σ contains exactly one non-zero entry per column, which
is given by 1. But since σ is an isomorphism, it has to be a permutation matrix. A direct
computation of the corresponding permutation yields a more efficient implementation of σ
than using the construction in Lemma I.2.10.

3.3.5. Defining Unitors. There is a uniquely determined index u ∈ I such that V u is
the unit object in Repk(G). In this subsection we will see that for χu, we can define unitors
in⊕i∈I k-vec compatible with the associator and braiding of Subsections I.3.3.3 and I.3.3.4.

Construction 3.47. In this construction we adjust once again the isomorphisms εa,b
for simplifying our computation of the unitors. For a ∈ I, we have

V a ⊗ V u = V a = V u ⊗ V a

since Repk(G) is a strict monoidal category. Thus, we may reset
εa,u := idV a ,
εu,a := idV a .

Because γV a,V u = idV a = γV u,V a in Repk(G), this resetting is compatible with the resetting
in Construction I.3.41.

In [SR72] it is shown that for a category with associator and braiding, having a
unit and unitors which are compatible with the associator and the braiding is a cate-
gorical property. Thus, it suffices to find a left unitor λ and a right unitor ρ for the data
(⊕i∈I k-vec,⊗, α, γ, V u) that we have constructed so far.

Since ⊕i∈I k-vec is skeletal (see Definition I.3.57), we have
A⊗ χu = A = χu ⊗ A

for all A ∈⊕i∈I k-vec. Thus, we may simply define
ρA := idA,
λA := idA.

It remains to prove that this choice is compatible with the associator and the braiding.
We prove the following auxiliary lemma.



64 1. CONSTRUCTIVE CATEGORY THEORY

Lemma 3.48. Let
(F, F2) :

⊕
i∈I

k-vec ∼−→ Repk(G)

be the functor of Theorem I.3.36. Then

F2(A,χu) = idFA = F2(χu, A)
for all objects A ∈⊕i∈I k-vec.

Proof. By our resetting in Construction I.3.47, the claim holds for A = χi, where
i ∈ I. For arbitrary A = ⊕

i∈I aiχ
i, the value of F2(⊕i∈I aiχ

i, χu) is uniquely determined
by the values of F2(χi, χu) thanks to Lemma I.2.12:

F (⊕i∈I aiχ
i)⊗ F (χu) ⊕

i∈I
⊕ai

j=1 (F (χi)⊗ F (χu))

F ((⊕i∈I aiχ
i)⊗ χu) ⊕

i∈I
⊕ai

j=1 F (χi ⊗ χu)

=

=

F2(⊕i∈I aiχ
i, χu)

(⊕
i∈I
⊕ai
j=1 F2(χi, χu)

)
= id

The horizontal morphisms are given by identities since F , (−⊗ F (χu)), and (−⊗ χu)
strictly commute with direct sums. Analogously, F2(χu, A) = idFA. �

Lemma 3.49. The unitors ρA and λA for A ∈ ⊕
i∈I k-vec are compatible with the

associator.

Proof. Compatibility with the associator α means that the diagram in Definition
I.3.14 involving λ, ρ and α commutes, which in our case is equivalent to the assertion

αA,χu,C = idA⊗C
for A,C ∈ ⊕

i∈I k-vec. Now, αA,χu,C was defined via structure transport, i.e., as the
uniquely determined morphism such that

F (A)⊗ (F (χu)⊗ F (C)) (F (A)⊗ F (χu))⊗ F (C)

F (A)⊗ F (χu ⊗ C) F (A⊗ χu)⊗ F (C)

F (A⊗ (χu ⊗ C)) F ((A⊗ χu)⊗ C)

id

id = (F (A)⊗ F2(χu, C)) id = (F2(A,χu)⊗ F (C))

F2(A,C) = F2(A,χu ⊗ C) F2(A,C) = F2(A⊗ χu, C)

F (αA,χu,C)

commutes. The two vertical identities are due to Lemma I.3.48. From this diagram, we
can deduce αA,χu,C = idA⊗C . �



3. CONSTRUCTING TENSOR CATEGORIES 65

Lemma 3.50. The unitors ρA and λA for A ∈ ⊕
i∈I k-vec are compatible with the

braiding.

Proof. Compatibility with the braiding γ means that the diagram in Definition I.3.21
involving λ, ρ and γ commutes, which in our case is equivalent to the assertion

γA,χu = idA
for A ∈ ⊕i∈I k-vec. Now, γA,χu was defined via structure transport, i.e., as the uniquely
determined morphism such that

FA⊗ Fχu

F (A⊗ χu)

Fχu ⊗ FA

F (χu ⊗ A).

id

id = F2(A,χu) id = F2(χu, A)

F (γA,χu)

commutes. The two vertical identities are due to Lemma I.3.48. From this diagram, we
can deduce γA,χu = idA. �

3.3.6. Defining Duals. Having dual objects is a property of a symmetric monoidal cate-
gory. This means that all ways in which a category can be equipped with exact pairings are
equivalent [Sel11]. Since we have established a monoidal equivalence between ⊕i∈I k-vec
and Repk(G), the former inherits this property from the latter.

Because ⊕i∈I k-vec is skeletal, the dual object A∨ associated to A ∈ ⊕
i∈I k-vec is

uniquely determined. Furthermore, Lemma I.2.22 gives us a chain of equivalences of functor
categories

Homk

(
⊕
i∈I

k-vec)op,
⊕
j∈I

k-vec
 ' Homk

(
⊕
i∈I

k-vec),
⊕
j∈I

k-vec
 '∏

i∈I

⊕
j∈I

k-vec,

which proves that the dualization functor is uniquely determined up to natural isomorphism
by its action on objects. A good instance of such a dualization functor is given by the
contravariant functor which acts on objects as dictated by the assignment A 7→ A∨, and
on morphisms by transposing matrices. We denote this functor by

(−)∗ : (
⊕
i∈I

k-vec)op →
⊕
i∈I

k-vec.

It is easy to see that (−)∗ strictly commutes with direct sums, which is a particularly
convenient computational feature.

Our goal is to describe exact pairings (see Definition I.3.28) of the objects in⊕i∈I k-vec
such that the induced dualization functor (−)∨ (see Remark I.3.29) equals (−)∗. We will
use the following lemma to achieve this goal.



66 1. CONSTRUCTIVE CATEGORY THEORY

Lemma 3.51. Let A be a rigid symmetric monoidal category. Denote its dualization
functor by (−)∨ (see Remark I.3.29). Let (−)∗ : Aop → A be another functor coinciding
with (−)∨ on objects, such that for all morphisms α : A→ B, the diagram

A⊗ A∗

A⊗B∗

1

B ⊗B∗

A⊗ α∗

εA

α⊗B∗

εB

commutes. Then (−)∗ coincides with (−)∨ on morphisms.
Proof. We calculate

α∨ = (A∨ ⊗ εB) ◦ (A∨ ⊗ α⊗B∨) ◦ (ηA ⊗B∨)
= (A∨ ⊗ (εB ◦ (α⊗B∨))) ◦ (ηA ⊗B∨)
= (A∨ ⊗ (εA ◦ (A⊗ α∗))) ◦ (ηA ⊗B∨)
= (A∨ ⊗ εA) ◦ (A∨ ⊗ A⊗ α∗) ◦ (ηA ⊗B∨)
= (A∨ ⊗ εA) ◦ (ηA ⊗ α∗) = α∗,

where the last equation holds in every rigid symmetric monoidal category, as can simply
be seen from the corresponding equation of string diagrams (see Remark I.3.24):

α∗
B A

A

A

= α∗
B A

�

Remark 3.52. The diagram in Lemma I.3.51 is motivated by the diagram coming
from the natural dependent function A 7→ εA of type ∏A∈A HomA(A⊗A∨, 1) (see Example
I.1.18).

Construction 3.53. We construct exact pairings for all simple objects. So let i ∈ I.
Since

Hom(1, (χi)∨ ⊗ χi) ' Hom(χi, χi) = k · idχi
and

Hom(χi ⊗ (χi)∨, 1) ' Hom(χi, χi) = k · idχi ,
ηχi and εχi are both given by a scalar in k. If (η, ε) is an exact pairing, then so is (aη, 1

a
ε)

for every non-zero scalar a ∈ k. Thus we simply set ηχi to be given by the scalar 1. The
scalar of εχi now is uniquely determined by the commutativity of the diagrams in Definition
I.3.28.

Using the following lemma, we get exact pairings for arbitrary objects in ⊕i∈I k-vec.



3. CONSTRUCTING TENSOR CATEGORIES 67

Lemma 3.54. Let A be a symmetric monoidal category. Let (−)∨ : Aop → A be an
equivalence. If (A∨, ηA, εA) and (B∨, ηB, εB) are exact pairings for A,B, respectively, then
so is ((A⊕B)∨, ηA⊕B, εA⊕B) for A⊕B, where ηA⊕B is induced by the row

1 (A∨ ⊗ A)⊕ (A∨ ⊗B)⊕ (B∨ ⊗ A)⊕ (B∨ ⊗B)

(
ηA · · ηB

)

and εA⊕B is induced by the column

(A⊗ A∨)⊕ (A⊗B∨)⊕ (B ⊗ A∨)⊕ (B ⊗B∨) 1.


εA
·
·
εB



Proof. The verification of the zig-zag identities boils down to a simple calculation of
matrices with entries given by homomorphisms in A:

(
εA
·
·
εB

⊗
(

idA ·
· idB

))
◦
((idA ·
· idB

)
⊗
(
ηA · · ηB

) )
= idA⊕B

and

((idA∨ ·
· idB∨

)
⊗


εA
·
·
εB

) ◦ ( (ηA · · ηB
)
⊗
(

idA∨ ·
· idB∨

))
= idA∨⊕B∨ . �

Construction 3.55. Lemma I.3.54 justifies the following construction of ηA and εA for
an arbitrary object A = ⊕

i∈I aiχ
i ∈ ⊕i∈I k-vec. Here, Row and Column will denote func-

tions taking a matrix as an input and constructing one single row/column by concatenating
the rows/columns of the given input:



68 1. CONSTRUCTIVE CATEGORY THEORY

1
⊕

i∈I ai
⊕
j∈I aj((χi)∨ ⊗ χj)

⊕
i∈I ai((χi)∨ ⊗ A)

(⊕i∈I ai(χi)∨)⊗ AA∨ ⊗ A

Row

Diag(ηχ1 , . . . , ηχ1︸ ︷︷ ︸
×a1

, ηχ2 , . . . , ηχ2︸ ︷︷ ︸
×a2

, ηχ3 , . . . )


⊕

i∈I aiσ
−1
(χi)∨⊗−(χ1, . . . , χ1︸ ︷︷ ︸

×a1

, χ2, . . . )

σ−1
−⊗A((χ1)∨, . . . , (χ1)∨︸ ︷︷ ︸

×a1

, (χ2)∨, . . . )

=

ηA

is the diagram for computing ηA and

1
⊕

i∈I ai
⊕
j∈I aj(χj ⊗ (χi)∨)

⊕
i∈I ai(A⊗ (χi)∨)

A⊗ (⊕i∈I ai(χi)∨)A⊗ A∨

Column

Diag(εχ1 , . . . , εχ1︸ ︷︷ ︸
×a1

, εχ2 , . . . , εχ2︸ ︷︷ ︸
×a2

, εχ3 , . . . )


⊕

i∈I aiσ−⊗(χi)∨ (χ1, . . . , χ1︸ ︷︷ ︸
×a1

, χ2, . . . )

σA⊗−((χ1)∨, . . . , (χ1)∨︸ ︷︷ ︸
×a1

, (χ2)∨, . . . )

=

εA

is the diagram for computing εA. The equalities are due to the fact that (−)∗ strictly
commutes with direct sums.

Theorem 3.56. The exact pairings of constructions I.3.53 and I.3.55 give rise to a
functor (−)∨ as described in Remark I.3.29 that acts on morphisms by transposing matrices.

Proof. We are going to check the commutativity condition of Lemma I.3.51. By
definition, (−)∨ and (−)∗ coincide on objects. If A, B are simple objects, then α has to
be 0 if A 6= B, and is given by a scalar multiplication if A = B. Since transposing a scalar
does not change the scalar, the commutativity condition holds. Now, take direct sums



3. CONSTRUCTING TENSOR CATEGORIES 69

A = A1 ⊕ A2, B = B1 ⊕B2, and a morphism

α =
(
α11 α12
α21 α22

)
: A→ B.

Since we chose εA and εB to be compatible with the natural commutativity morphisms of
(−)∗ with direct sums, the commutativity condition of Lemma I.3.51 is equivalent to an
equation between matrices with entries given by homomorphisms in ⊕i∈I k-vec:

εA1

·
·
εA2

 ◦ (
(

idA1 ·
· idA2

)
⊗
(
α∗11 α∗21
α∗12 α∗22

))
=


εB1

·
·
εB2

 ◦ (
(
α11 α12
α21 α22

)
⊗
(

idB1 ·
· idB2

))
.

But this holds by induction on the number of irreducible summands of A and B. �

3.3.7. Skeletal Representation Category of Finite Groups. We give a summary of our
construction of SRepk(G), where the prefix “S” stands for skeletal.

Definition 3.57. A category C is skeletal if A ' A′ implies A = A′ for all objects
A,A′ ∈ C.

Let G be a finite group. Let k be a field such that
(1) char(k) - |G|,
(2) char(k) 6= 2,
(3) any irreducible representation of G over k is already absolutely irreducible.

Let I := {1, . . . , | Irr(G)|} be a set which is in bijection to irreducible characters of G.
Then we can define on the category ⊕i∈I k-vec

(1) a bifunctor ⊗ (Subsection I.3.3.2),
(2) an associator α (Subsection I.3.3.3),
(3) a braiding γ (Subsection I.3.3.4),
(4) unitors λ, ρ (Subsection I.3.3.5),
(5) duals (Subsection I.3.3.6),

such that it becomes a tensor category which we denote by SRepk(G). By construction,
we have an equivalence

SRepk(G) ' Repk(G)
of tensor categories. Since we constructed k-vec as a skeletal category (see Section I.2),
SRepk(G) is also skeletal.

3.3.8. Graded Group Representations. Studying the functor category
RepZ

k (G) := Hom(BG,
⊕
d∈Z

k-vec)

means studying Z-graded representations of G. From the skeletal model SRepk(G) of
group representations, we can easily derive a skeletal model SRepZ

k (G) of Z-graded group
representations: Let I := {1, . . . , | Irr(G)|}.

(1) SRepZ
k (G) has ⊕I×Z k-vec as its underlying abelian category.



70 1. CONSTRUCTIVE CATEGORY THEORY

(2) The tensor product of χi,d and χj,d′ is defined as the object χi ⊗n χj ∈ SRepk(G)
decorated with degree d+ d′.

(3) Let χu denote the unit in SRepk(G). Then the unit in SRepZ
k (G) is given by χu,0.

(4) For χi ∈ SRepk(G), let χi′ denote its dual object. Then the dual object of χi,d in
SRepZ

k (G) is given by χi′,−d.
(5) The functor

SRepZ
k (G)→ SRepk(G) : χi,d 7→ χi

forgetting degrees uniquely determines the remaining structure morphisms of a
tensor category.

The tensor category SRepZ
k (G) will be used in Section III.3 in the modeling of G-

equivariant Z-graded modules over the exterior algebra.
Another way to create a skeletal model for RepZ

k (G) is to apply structure transport to
an equivalence of abelian categories

F :
⊕
I×Z

k-vec ∼−→ RepZ
k (G)

just as we did in the case of Repk(G). Structure transport is a universal tool which
can be also applied to define a tensor category structure on ⊕i∈I k-vec equivalent to the
representation category of a given Lie-algebra g.

3.3.9. Example: S3. In this example we are going to construct a computational model
for Repk(S3), the tensor category of representations over k := Q of the symmetric group
S3, using the methods of this section. As abelian categories, we have an equivalence

F : k-vec⊕ k-vec⊕ k-vec ∼−→ Repk(S3)

where each summand corresponds to an irreducible character of S3 and thus to a simple
object in Repk(S3). We start with the choice of an irreducible representation V 1, V 2, V 3

for each irreducible character. Such a choice makes the functor F explicit, as described in
Subsection I.3.3.1.

Computation 3.58. For the computation of V 1, V 2, V 3, we use the Cap package
GroupRepresentationsForCAP, which relies on the GAP implementation of a method by
Dixon [Dix93] for making an automatic choice of irreducible representations for given irre-
ducible characters. Of course, for such a small example, we could have chosen the represen-
tations manually, but having such an automatic process is extremely handy for examples
with more and higher-dimensional representations (although not too high-dimensional).

GAP provides the following character table of S3 = 〈(1, 2), (1, 2, 3)〉:
Character (1) (1, 2) (1, 2, 3)

ψ1 1 −1 1
ψ2 2 0 −1
ψ3 1 1 1

Applying Dixon’s method yields the following representations:



3. CONSTRUCTING TENSOR CATEGORIES 71

Character Representation (1, 2) (1, 2, 3)
ψ1 V 1

(
−1
) (

1
)

ψ2 V 2
(

1 1
0 −1

) (
0 1
−1 −1

)
ψ3 V 3

(
1
) (

1
)

Note that we can make such a choice for V 1, V 2, V 3 once and for all. Cap stores these
representations and can make use of them in future sessions. Thus, the following code
(yielding the above results) only has to be performed once, which is why it can make use
of argumentless global functions.
gap> G := SymmetricGroup( 3 );
Sym( [ 1 .. 3 ] )
gap> InitializeGroupDataDixon( G );;
gap> DisplayInitializedGroupData();
-Representations of:

SymmetricGroup( [ 1 .. 3 ] )
-Defined over the rationals
-Given by images of the following generators:

[ (1,2,3), (1,2) ]
-Affording the irreducible characters:

CT1

2 1 1 .
3 1 . 1

1a 2a 3a
2P 1a 1a 3a
3P 1a 2a 1a

X.1 1 -1 1
X.2 2 . -1
X.3 1 1 1

----------------
Representation affording character X.1:
(1,2,3)->
1

(1,2)->
-1



72 1. CONSTRUCTIVE CATEGORY THEORY

Representation affording character X.2:
(1,2,3)->
0, 1,
-1,-1

(1,2)->
1,1,
0,-1

Representation affording character X.3:
(1,2,3)->
1

(1,2)->
1

As a next step, we choose decomposition isomorphisms

εa,b :
⊕

i∈{1,2,3}

n(a,b)i⊕
j=1

V i ∼−−→ V a ⊗ V b

for a, b = 1, 2, 3.
Computation 3.59. From the following multiplication table of irreducible characters,

we can read off the decomposition numbers n(a, b)i:

⊗ ψ1 ψ2 ψ3

ψ1 ψ3 ψ2 ψ1

ψ2 ψ2 ψ1 + ψ2 + ψ3 ψ2

ψ3 ψ1 ψ2 ψ3

In the following table, we list the underlying matrices of some possible choices for the
isomorphisms εa,b:

a\b 1 2 3

1
(
1
) (

−1 −2
2 1

) (
1
)

2
(
−1 −2

2 1

) 
0 −1 1 0
−1 −1 −1 0

0 1 1 1
2 1 1 2

 I2

3
(
1
)

I2
(
1
)



3. CONSTRUCTING TENSOR CATEGORIES 73

The following two commands of the Cap package GroupRepresentationsForCAP compute
and display these isomorphisms εa,b in the context of our current session. Note again that
we can make such a choice once and for all.

gap> SkeletalFunctorTensorData();;
gap> DisplaySkeletalFunctorTensorData();
----------------

1*(X.3) -> (X.1)*(X.1):

1

----------------

1*(X.2) -> (X.1)*(X.2):

-1,-2,
2, 1

----------------

1*(X.1) -> (X.1)*(X.3):

1

----------------

1*(X.2) -> (X.2)*(X.1):

-1,-2,
2, 1

----------------

1*(X.1) + 1*(X.2) + 1*(X.3) -> (X.2)*(X.2):

0, -1,1, 0,
-1,-1,-1,0,
0, 1, 1, 1,
2, 1, 1, 2

----------------



74 1. CONSTRUCTIVE CATEGORY THEORY

1*(X.2) -> (X.2)*(X.3):

1,0,
0,1

----------------

1*(X.1) -> (X.3)*(X.1):

1

----------------

1*(X.2) -> (X.3)*(X.2):

1,0,
0,1

----------------

1*(X.3) -> (X.3)*(X.3):

1

With these isomorphisms, we are able to transport the tensor product and the associator
from Repk(S3) to k-vec⊕ k-vec⊕ k-vec, as described in Theorem I.3.36 and Construction
I.3.38.

Computation 3.60. We are now able to work in our skeletal model SRepk(S3). In
the following session (based on the Cap package GroupRepresentationsForCAP), we first
define SRepk(S3).

Defining SRepk(S3)

gap> SRepG := RepresentationCategory( G );
The representation category of SymmetricGroup( [ 1 .. 3 ] )

For constructing objects in SRepk(S3), we need to define the set of irreducible characters
of S3.

Defining Irr(S3)

gap> irr := Irr( G );;

The simple objects χ1, χ2, χ3 in SRepk(S3) correspond to the irreducible characters ψ1, ψ2,
ψ3 of S3. An arbitrary object in SRepk(S3) is given by a formal N0-linear combination of



3. CONSTRUCTING TENSOR CATEGORIES 75

simple objects. With the following commands, we define all simple objects in our current
session.

Defining the simple object v1 := 1 · χ1

gap> v1 := RepresentationCategoryObject( irr[1], SRepG );
1*(x_1)

Defining the simple object v2 := 1 · χ2

gap> v2 := RepresentationCategoryObject( irr[2], SRepG );
1*(x_2)

Defining the simple object v3 := 1 · χ3

gap> v3 := RepresentationCategoryObject( irr[3], SRepG );
1*(x_3)

We check that v3 is the tensor unit in SRepk(G).

gap> TensorUnit( SRepG );
1*(x_3)

Note that in this session the trivial character was labeled by the number 3.
Now, we enlist the associators of the form

(va ⊗ vb)⊗ vc ∼−−→ va ⊗ (vb ⊗ vc).

We omit the following special cases:

(1) One of the objects is the tensor unit.
(2) All objects are 1-dimensional.

In both cases, the associator is given by the identity matrix. In the first case, the associator
can be built from the unitors, which are given by identity matrices. For the second case,
see Example I.3.40.

For reading the following table enlisting the associators, note that a morphism in⊕
i∈{1,2,3} k-vec consists of three components.



76 1. CONSTRUCTIVE CATEGORY THEORY

Component: χ1 χ2 χ3

αv2,v1,v1 −
(
−3
)

−

αv1,v2,v1 −
(
1
)

−

αv1,v1,v2 −
(
−1

3

)
−

αv2,v2,v1

(
−1
) (

−1
) (

1
3

)
αv2,v1,v2

(
−1
) (

1
) (

−1
)

αv1,v2,v2

(
1
) (

−1
) (

−3
)

αv2,v2,v2

(
−1
) 

−1
2 −1 1

2
1
2 0 1

2
−1

2 1 1
2

 (
1
)

gap> Display( AssociatorLeftToRight( v2, v1, v1 ) );
Component: (x_2)

-3

A morphism in Category of matrices over Q
------------------------
gap> Display( AssociatorLeftToRight( v1, v2, v1 ) );
Component: (x_2)

1

A morphism in Category of matrices over Q
------------------------
gap> Display( AssociatorLeftToRight( v1, v1, v2 ) );
Component: (x_2)

-1/3

A morphism in Category of matrices over Q
------------------------
gap> Display( AssociatorLeftToRight( v2, v2, v1 ) );
Component: (x_1)

-1

A morphism in Category of matrices over Q



3. CONSTRUCTING TENSOR CATEGORIES 77

------------------------
Component: (x_2)

-1

A morphism in Category of matrices over Q
------------------------
Component: (x_3)

1/3

A morphism in Category of matrices over Q
------------------------
gap> Display( AssociatorLeftToRight( v2, v1, v2 ) );
Component: (x_1)

-1

A morphism in Category of matrices over Q
------------------------
Component: (x_2)

1

A morphism in Category of matrices over Q
------------------------
Component: (x_3)

-1

A morphism in Category of matrices over Q
------------------------
gap> Display( AssociatorLeftToRight( v1, v2, v2 ) );
Component: (x_1)

1

A morphism in Category of matrices over Q
------------------------
Component: (x_2)

-1



78 1. CONSTRUCTIVE CATEGORY THEORY

A morphism in Category of matrices over Q
------------------------
Component: (x_3)

-3

A morphism in Category of matrices over Q
------------------------
gap> Display( AssociatorLeftToRight( v2, v2, v2 ) );
Component: (x_1)

-1

A morphism in Category of matrices over Q
------------------------
Component: (x_2)

-1/2,-1,1/2,
1/2, 0, 1/2,
-1/2,1, 1/2

A morphism in Category of matrices over Q
------------------------
Component: (x_3)

1

A morphism in Category of matrices over Q
------------------------

3.3.10. Example: D8 and Q8. The dihedral group D8 of order 8 and the quaternion
group Q8 have equal character tables, but nonequivalent representation categories regarded
as tensor categories. Using Cap, we can demonstrate this fact in a simple way.

Computation 3.61. Let k = Q(i). In Repk(Q8) and in Repk(D8) the irreducible
representation v of dimension 2 is categorically characterized up to isomorphism by being
simple but not being invertible (meaning that the unit ηv is not an isomorphism). Our
goal is to compute the object ∧2v (see Definition I.3.43) in Repk(Q8) and Repk(D8).

We start with the construction in SRepk(D8).



3. CONSTRUCTING TENSOR CATEGORIES 79

Defining SRepk(D8)

gap> SRepG := RepresentationCategory( 8, 3 );
The representation category of Group( [ f1, f2, f3 ] )

The pair (8, 3) is the identification number of D8 in GAP’s SmallGroups library.
gap> G := UnderlyingGroupForRepresentationCategory( SRepG );
<pc group of size 8 with 3 generators>
gap> StructureDescription( G );
"D8"

We need access to irreducible characters for defining objects in SRepk(D8).
Defining Irr(D8)

gap> irr := Irr( G );;

Now, we can construct v from the 5-th irreducible character in Irr(D8).
Defining v := 1 · χ5

gap> v := RepresentationCategoryObject( irr[5], SRepG );
1*(x_5)

We check that this is really the simple object of dimension 2.
gap> Dimension( v );
2

Now, we can turn to the construction of ∧2v = coker(idv + γv,v).
Defining α := idv + γv,v

gap> alpha := IdentityMorphism( TensorProductOnObjects( v, v ) )
> + Braiding( v, v );
<A morphism in The representation category of Group( [ f1, f2, f3 ] )>

Computing coker(α) = 1 · χ4

gap> CokernelObject( alpha );
1*(x_4)

We want to compare this object to the tensor unit.
gap> TensorUnit( SRepG );
1*(x_1)

Since χ1 6' χ4, we see that ∧2v is not isomorphic to the tensor unit.
When we repeat the same sequence of commands in the case of Q8, it follows that ∧2v

is isomorphic to the tensor unit. Thus, SRepk(Q8) 6' SRepk(D8) as tensor categories.



80 1. CONSTRUCTIVE CATEGORY THEORY

gap> SRepG := RepresentationCategory( 8, 4 );
The representation category of Group( [ f1, f2, f3 ] )
gap> G := UnderlyingGroupForRepresentationCategory( SRepG );
<pc group of size 8 with 3 generators>
gap> StructureDescription( G );
"Q8"
gap> irr := Irr( G );;
gap> v := RepresentationCategoryObject( irr[5], SRepG );
1*(x_5)
gap> Dimension( v );
2
gap> alpha := IdentityMorphism( TensorProductOnObjects( v, v ) )
> + Braiding( v, v );
<A morphism in The representation category of Group( [ f1, f2, f3 ] )>
gap> CokernelObject( alpha );
1*(x_1)
gap> TensorUnit( SRepG );
1*(x_1)

3.3.11. Example: Subgroup of Order 1000 of the Automorphism Group of the Horrocks-
Mumford Bundle. In [HM73] Horrocks and Mumford constructed a G-equivariant rank 2
vector bundle on the complex projective space of dimension 4 with G ' H5oSL2(5). Here,
H5 is the Heisenberg group of order 53. In particular, the order of G is 15000 = 23 · 3 · 54.
Using GAP, we can see that this group has 50 irreducible characters, and 4 of them are of
degree 30. If we tried Construction I.3.38 for computing associators, we would have to deal
with matrices of dimension 303×303 = 27000×27000 over Q[ε], where ε is a 5-th primitive
root of unity.

We are going to construct a subgroup H of G having lower-dimensional irreducible
representations, for this makes the construction of the associator more feasible on the com-
puter. The Horrocks-Mumford bundle is still an H-equivariant vector bundle, and we will
be able to compute its equivariant cohomology in the end of this thesis (see Computation
III.3.11). For the construction of H, take any Sylow 2-subgroup S of G. Then S will also
be a Sylow 2-subgroup of SL2(5), and any such S is isomorphic to the quaternion group
Q8. The subgroup H := H5 oQ8 of G is of order 1000.

Computation 3.62. In the following GAP session, we first construct G using the ma-
trices described in [HM73].

gap> eps := E(5);;
gap> g1 := PermutationMat( (1,2,3,4,5), 5 );;
gap> g2 := DiagonalMat( [1, eps, eps^2, eps^3, eps^4 ] );;
gap> n1 := PermutationMat( (2,5)(3,4), 5 );;
gap> n2 := -1*PermutationMat( (2,3,5,4), 5 );;



3. CONSTRUCTING TENSOR CATEGORIES 81

gap> n3 := DiagonalMat( [1, eps, eps^4, eps^4, eps] );;
gap> n4 := -1*ER(5)^(-1) *
> [ [ eps, eps^2, eps^3, eps^4, 1 ],
> [ eps^2, eps^4, eps, eps^3, 1 ],
> [ eps^3, eps, eps^4, eps^2, 1],
> [ eps^4, eps^3, eps^2, eps, 1 ],
> [ 1, 1, 1, 1, 1 ] ];;
gap> G := Group( g1, g2, n1, n2, n3, n4 );
<matrix group with 6 generators>
gap> ConjugacyClasses(G);;

G ' H5 o SL2(5)

gap> StructureDescription( G );
"((C5 x C5) : C5) : SL(2,5)"

Next, we create a subgroup H ≤ G isomorphic to H5 oQ8.
gap> H5 := Group( [ g1, g2 ] );;
gap> genH5 := GeneratorsOfGroup( H5 );;
gap> Q8 := SylowSubgroup( G, 2 );;
gap> genQ8 := GeneratorsOfGroup( Q8 );;
gap> H := Group( Concatenation( genH5, genQ8 ) );
<matrix group with 5 generators>

H ' H5 oQ8

gap> StructureDescription( H );
"((C5 x C5) : C5) : Q8"

We are interested in the number and degree of the irreducible characters of H.
gap> Size( Irr( H ) );
28
gap> List( Irr( H ), Degree );
[ 1, 1, 1, 1, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8,

10, 10, 10, 10 ]

Thus, the largest degree is given by 10, and an associator computation for H has to
deal with 1000 × 1000 matrices over Q[ε], which is a feasible task with the help of the
computer algebra system Magma [BCP97] (which we can access via GAP using homalg
[hom17, BLH11]). In Computation III.3.11 we will actually work with the tensor category
SRepZ

k (H) on the computer.





CHAPTER 2

Constructive Homological Algebra

The goal of this chapter is to describe, in the context of an arbitrary abelian category
A, an algorithm for computing spectral sequences which is suitable for a direct computer
implementation. This means we will only use categorical constructions provided by the
axioms of an abelian category, such as the existence of kernels and cokernels, and construct
the objects and differentials on the pages of a spectral sequence as a concatenation of such
primitives. Not only will we achieve this goal but we will get non-recursive closed formulas
for the objects and differentials (Construction II.2.23 and II.2.25). In addition, we realize
the functoriality of spectral sequences (Construction II.2.26).

Classical descriptions of spectral sequences (e.g. [Wei94]) are based on diagram chas-
ing, which is a tool in homological algebra used for proving properties or the existence of
morphisms situated in (commutative) diagrams of prescribed shape. Famous instances are
for example the five lemma or the snake lemma [ML71]. For realizing our constructive
approach to spectral sequences it will suffice to render diagram chases constructive.

There are many different approaches to diagram chases, but most of them are based
on the idea of chasing some kind of “element” through a given diagram. For example, if
we use the (non-constructive) Freyd-Mitchell embedding theorem [Mit65], we may think
of objects A ∈ A as modules, and get access to the elements of their underlying sets. In
[ML71], we chase so-called “members” of A, which are modeled by morphisms X → A
that can be adjusted by composing with an arbitrary epimorphism Y � X → A. In
[Sta16, Tag 05PP], diagram chasing for the abelian category of sheaves on a site is said
to be performed by working with global sections or at the level of stalks.

A crucial step while performing a diagram chase with elements is the choice of a preim-
age of an element a ∈ A under an epimorphism α : X � A. Usually, one picks any such
preimage x ∈ X, defines a new term with the help of x, and in the end proves that this
term is independent of the particular choice of x. As an example, consider the following
diagram in the category of abelian groups:

X

A B

α β

For a given a ∈ A, we choose x ∈ α−1({a}) and define the term β(x). It is easy to see
that β(x) is independent of the choice of x if and only if β(ker(α)) = 0. In this case, the
assignment a 7→ β(x) gives us a well-defined group homomorphism A→ B.

83



84 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

A natural strategy to avoid this choice is to work with the whole preimage α−1({a}) at
once, and not just to take a single element x ∈ α−1({a}). For that, we define a relation

A X

a α−1({a})

α−1

7−→

and call it the pseudo-inverse of α. The dashed line highlights that α−1 has to be seen as a
relation and not as a function. The assignment a 7→ β(x) can now be conveniently written
as a composition of relations: β ◦ α−1. In fact, any morphism constructed by means of a
diagram chase can then be expressed as a composition of relations.

It follows that a constructive approach to diagram chases boils down to a categorifica-
tion of the concept of relations, i.e., a description of relations which only uses categorical
notions (in particular, it must not use elements). Such a categorification was given by
Johnstone [Joh02] in the context of creating and characterizing toposes, where he uses
what we call a stable span (see Definition II.1.20) as a data structure for a relation. His
approach works for arbitrary regular categories. A formal axiomatization of the theory of
“categories with relations as morphisms” is given in [FS90] under the name allegory.

In this chapter we develop the theory of relations in the context of an abelian category.
This approach is a special instance of Johnstone’s work, since abelian categories are par-
ticular regular categories. But in fact, we can greatly benefit from the additional abelian
structure. For example, instead of being forced to work with spans A ← X → B as a
data structure for relations, we are able to choose between six different data structures
(see Subsection II.1.4), including cospans A → X ← B and 3-arrows A ←↩ X → Y � B.
Different data structures might be best suited for the different computational tasks we
want to solve:

• The 3-arrow data structure provides an easy normal form for a relation (Corollary
II.1.45),
• there is a 4-arrow data structure which immediately gives an epi-mono factoriza-
tion of a relation (Corollary II.1.53),
• computing the composition of cospans involves only one pushout,
• computing the composition of spans involves only one pullback.

In the context of regular categories we simply lack this variety of data structures. Another
advantage of developing the theory of relations for abelian categories is that we can define
notions tailored for homological algebra, or specifically for diagram chases. An example
of such a notion is given by the defect (see Definition II.1.59), which is a subobject of
the source measuring how far away a relation is from being single-valued, which simply
cannot be defined in an arbitrary regular category. Furthermore, our presentation of the
material focuses on constructive aspects of relations which are of importance for an effective
computer implementation. For example, whereas in [FS90], spans have to undergo a
normalization process each time when they are composed, we prove that this normalization
process actually commutes with span composition and thus can be deferred to the end of the



1. GENERALIZED MORPHISMS 85

computation (see Theorem II.1.15), which in turn can lead to a substantial improvement
of performance.

Due to all of these computational and conceptual advantages, we introduce the new
term generalized morphisms for relations in the abelian context, following Barakat’s con-
vention in [Bar09a], [Bar09b], and [BLH14].

The author does not claim originality for the mathematical notions and theorems pre-
sented in this chapter. The approach is rather covered by the axiomatic setup for perform-
ing diagram chases in [Pup62] and [BP69] combined with the explicit construction of the
category of generalized morphisms given in [Hil66]. However, our exposition refrains from
stating the axioms in [BP69] (which are designed to reach even beyond abelian categories)
and instead focuses on performing all necessary constructions directly in the category of
generalized morphisms. In this way, it singles out those ideas relevant for the purpose of
our computer implementation.

The chapter is divided in two sections. The first section is devoted to the general theory
of generalized morphisms culminating in Subsection II.1.7 where we state computations
rules useful for diagram chasing. The second section applies this theory to diagram chases
which, in turn, are used for a constructive treatment of spectral sequences.

1. Generalized Morphisms

1.1. Additive Relations. In this first motivational subsection we introduce a frame-
work for performing a diagram chase in the context of R-mod, the category of left modules
over a unital ring R. The goal of the subsequent subsections is a categorification of this
framework, i.e., a generalization to arbitrary abelian categories.

The main idea is to replace R-module homomorphisms in the category R-mod by
additive relations.

Definition 1.1. Let A,B ∈ R-mod. We call a submodule S ⊆ A ⊕ B an additive
relation (or simply relation) from A to B and denote it by S : A 99K B. For a ∈ A, b ∈ B,
we also write S(a, b) instead of the term “(a, b) ∈ S”.

The categorification of an additive relation is given by an object in the category of
spans (see Definition II.1.8).

Definition 1.2. For every homomorphism of modules f : A→ B, its graph

Γf = {(a, f(a)) ∈ A⊕B | a ∈ A}

defines a relation Γf : A 99K B.
Definition 1.3. Let S : A 99K B and T : B 99K C be relations. We define their

composite as
T ◦ S := {(a, c) ∈ A⊕ C | ∃b ∈ B : S(a, b) ∧ T (b, c)} .

T ◦ S is an additive relation from A to C. Its categorification is given by the pullback
operation as described in Definition II.1.9.



86 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

Definition 1.4. The category of relations Rel(R-mod) consists of the following
data:

(1) Objects are R-modules.
(2) Morphisms are relations of R-modules.
(3) For an object A ∈ Rel(R-mod), the identity of A is given by

{(a, a) ∈ A⊕ A | a ∈ A}.
(4) Composition of relations is given as in Definition II.1.3.
In Definition II.1.17 we describe the generalized morphism category for an arbitrary

abelian category A, which turns out to be equivalent to Rel(R-mod) in the case A = R-mod
(see Theorem II.1.19).

Sending an R-module homomorphism f to its graph Γf is compatible with composi-
tion, which yields an embedding of R-mod into Rel(R-mod). Its categorification is de-
scribed in Lemma II.1.26. Thus, we can interpret every diagram in R-mod as a diagram in
Rel(R-mod). The benefit for diagram chases is enormous: Every morphism can be reversed
(in the sense of a pseudo-inverse).

Definition 1.5. Let S : A 99K B be a relation. The relation S−1 : B 99K A given
by swapping components is called the pseudo-inverse of S. That means for all a ∈ A,
b ∈ B, we have

S−1(b, a) ⇔ S(a, b).
A categorical definition of the pseudo-inverse is given in Definition II.1.27.
Let us consider a toy example of a diagram chase. Given the following diagram of

R-modules:

X

A B

α β

The goal is to find a homomorphism from A to B rendering this diagram commutative.
Regarding the homomorphisms α and β as relations, we can always form the composite
relation

β ◦ α−1 =
{

(a, b) ∈ A×B | ∃x ∈ α−1({a}) : β(x) = b
}
.

The only question left is: When is β ◦ α−1 equal to the graph of an R-module homomor-
phism? There are exactly 2 possible obstructions: β ◦ α−1 might not be single-valued,
which means that one element in A might have multiple images, or not total, which means
that one element in A might have no image at all. These obstructions are measured by the
defect and the domain.

Definition 1.6. Let S : A 99K B be a relation. We introduce the following subobjects.
• The domain of S is defined as

dom(S) := {a ∈ A | ∃b ∈ B : S(a, b)} ⊆ A.



1. GENERALIZED MORPHISMS 87

• The generalized kernel of S is defined as
gker(S) := {a ∈ A | S(a, 0)} ⊆ A.

• The defect of S is defined as
def(S) := {b ∈ B | S(0, b)} ⊆ B.

• The generalized image of S is defined as
gim(S) := {b ∈ B | ∃a ∈ A : S(a, b)} ⊆ B.

Dually, we introduce the following quotient objects.
• The codomain of S is defined as codom(S) := B/ def(S).
• The generalized cokernel of S is defined as gcoker(S) := B/ gim(S).
• The codefect of S is defined as codef(S) := A/ dom(S).
• The generalized coimage of S is defined as gcoim := A/ gker(S).

In our example, def(β ◦ α−1) = β(ker(α)) and dom(β ◦ α−1) = im(α). It follows that
β ◦ α−1 equals the graph of an R-module homomorphism if and only if

β(ker(α)) = 0 and im(α) = A.

So, we see that the canonical subobjects and quotient objects of Definition II.1.6 are helpful
tools for diagram chasing.

All these canonical subobjects and quotient objects can be described in a completely
categorical way (see Definition II.1.59).

1.2. Categorification of Additive Relations. As a first step towards a constructive
framework for diagram chases, we formulate the concept of an additive relation in the
context of an arbitrary abelian category.

Notation 1.7. In this subsection A denotes an abelian category. In this case, A has
pullbacks (see Construction I.2.20), i.e., is equipped with a dependent function mapping
α : A → B and γ : C → B to a pullback (A ×B C,A

γ∗←− A ×B C
α∗−→ C) of α and γ.

Dually, A has pushouts, i.e., is equipped with a dependent function mapping α : B → A
and γ : B → C to a pushout (A tB C,A

γ∗−→ A tB C
α∗←− C) of α and γ.

In R-mod an additive relation from A to B was defined as a submodule S ⊆ A⊕B. By
the universal property of ⊕, such a submodule defines homomorphisms A ←− S −→ B.
Such a span serves as a data structure for relations.

Definition 1.8. Let A,B ∈ A. The category of spans from A to B is defined as the
dependent sum category ∑C∈A HomA(C,A)×HomA(C,B) and denoted by SpanA(A,B).
We depict an object S = (C, α, β) as

A B

C

S

βα



88 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

or as

A BC
βα

Concretely, a morphism from (A α←− C
β−→ B) to (A α′←− D

β′−→ B) consists of a morphism
γ : C → D such that α = α′ ◦ γ and β = β′ ◦ γ.

Now, we are going to define a category where the homomorphisms from A to B are
given by spans from A to B. Since such spans are themselves arranged in a category, we
would expect to obtain a 2-category. However, since we do not need these extra data, we
will truncate them and just speak about equality of spans.

Definition 1.9. The category of spans of A, denoted by Span(A), is defined by
the following data:

(1) Objects are given by ObjA.
(2) Morphisms from A to B are objects in SpanA(A,B).
(3) Two spans are considered to be equal as spans if they are isomorphic as objects

in SpanA(A,B).
(4) The identity of A is given by (A id←− A

id−→ A), where id denotes the identity of
A regarded as an object in A.

(5) Composition of (A α←− D
β−→ B) and (B γ←− E

δ−→ C) is given by the outer
span in the following diagram:

A B C

D E

D ×B E

α β γ δ

γ∗ β∗

We need to check that the defining equations of a category hold for Span(A) up to
equality of spans.

Lemma 1.10.

(1) The identity in Span(A) acts like a unit up to equality of spans.
(2) Composition of morphisms in Span(A) is associative up to equality of spans.

Proof. For the first assertion, let (A α←− D
β−→ B) be a span. Composition with

(B id←− B
id−→ B) from the right yields the diagram



1. GENERALIZED MORPHISMS 89

A B B

D B

D

α β id id

id β

This proves that the identity is a right unit. An analogous argument shows that it is also a
left unit. For the second assertion, consider the following diagram of consecutive pullbacks:

A B C D

E F G

E ×B F F ×C G

(E ×B F )×F (F ×C G)

S T U

By transitivity of pullbacks, the rectangles with vertices E,B, F×CG, (E×BF )×F (F×CG)
and C,G,E ×B F, (E ×B F )×F (F ×C G) are also pullback squares. But this means that
the outer span of the above diagram is isomorphic to both (U ◦T ) ◦S and U ◦ (T ◦S). �

Every span (A←− C −→ B) determines a morphism C −→ A⊕B which is not monic
in general. Thus, in the case A = R-mod, we cannot expect Rel(R-mod) to be equivalent
to the category of spans of Span(A). This issue can be fixed by passing to an appropriate
quotient category.

Definition 1.11. Given a span (A α←− C
β−→ B), we define its associated relation

as the image of the morphism
(α, β) : C −→ A⊕B.

In particular, the associated relation of a span is a subobject of A⊕B.
Definition 1.12. We say two spans from A to B are stably equivalent if and only

if their associated relations are equal as subobjects of A⊕B.

Remark 1.13. Being stably equivalent is coarser than being equal as spans.

Lemma 1.14. Let ε : D � C be an epimorphism in A. Every span of the form

(A α←− C
β−→ B)

is stably equivalent to the outer span in the diagram given by composition with ε:



90 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

A B

C

D

α β

ε

Proof. We have (α ◦ ε, β ◦ ε) = (α, β) ◦ ε, and in an abelian category, the image is not
affected by epimorphisms. Thus, im ((α ◦ ε, β ◦ ε)) = im ((α, β)). �

Theorem 1.15. Being stably equivalent defines a congruence on Span(A).
Proof. Let S = (A ←− D −→ B) be a span and let (ζ, η) : I ↪→ B ⊕ C be a

monomorphism. Let T = (B ←− E −→ C) be a span obtained by composing ζ, η with an
epimorphism ε : E � I. By transitivity of the pullback, we get T ◦ S as the outer span in
the following diagram:

A B C

D I

D ×B I

(D ×B I)×I E

E

S

ζ η

ε

ε∗

In an abelian category the pullback of an epimorphism yields an epimorphism. Thus, ε∗ is
an epimorphism. Now, we apply Lemma II.1.14 to see that the stable equivalence class of
T ◦S only depends on (ζ, η), which is the associated relation of T . Thus, if T and T ′ have
the same associated relation, i.e., are stably equivalent, then so are S ◦ T and S ◦ T ′. By
the symmetry of the situation, a similar statement holds for stably equivalent S, S ′ and
compositions S ◦ T , S ′ ◦ T . This shows the claim. �

Remark 1.16. For the proof of Theorem II.1.15, we actually did not need A to be
abelian, but to admit an image factorization such that regular epimorphisms are preserved
by pullbacks. Regular categories satisfy these properties, which is why in [Joh02], the
constructions of this subsection are performed with regular categories.

Due to Theorem II.1.15, we can now define the generalized morphism category.
Definition 1.17. Let A be an abelian category. The quotient category of Span(A)

modulo stable equivalences is called the generalized morphism category of A, and
denoted by G(A). Concretely, it consists of the following data:



1. GENERALIZED MORPHISMS 91

(1) Objects are given by ObjA.
(2) Morphisms from A to B are spans from A to B.
(3) Two spans are considered to be equal as generalized morphisms if and only

if they are stably equivalent.
(4) Identity and composition are given as in Definition II.1.9.

We call a span from A to B a generalized morphism when we regard it as a morphism
in G(A).

Remark 1.18. Note that due to Theorem II.1.15, composition of spans commutes
with taking the associated relation. In particular, if we want to compose several general-
ized morphisms, we may first compose them as spans, and defer the computation of the
associated relation to the end. This is an extremely useful feature w.r.t. an implementation
of generalized morphisms on the computer. Note that in [Joh02] the computation of the
associated relation is built into the composition process, which can be very costly in an
actual implementation.

Now, we are going to show that in the case A = R-mod, the concept of generalized
morphisms is a formalization of additive relations in the language of category theory. For
seeing this, we start by defining a functor

F : G(R-mod)→ Rel(R-mod)

sending a span to its associated relation. On the other hand, we can define a functor

G : Rel(R-mod)→ G(R-mod)

sending an additive relation S ⊆ A⊕B to the span
(
A

πA←− A⊕B ←↩ S ↪→ A⊕B πB−→ B
)
.

Theorem 1.19. F and G are well-defined functors giving rise to an equivalence of
categories.

Proof. First, we show compatibility with composition. For this we will use the vari-
able names in the following diagram depicting a composition:

A B C

D E

D ×B E

S T

α β γ δ

γ∗ β∗

We can describe the associated relation of S as follows: For a ∈ A, b ∈ B, we have

S(a, b) :⇐⇒ (a, b) ∈ im ((α, β))

⇐⇒ b ∈ β
(
α−1({a})

)
⇐⇒ a ∈ α

(
β−1({b})

)
.



92 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

For a ∈ A, c ∈ C, we have equivalences

∃b ∈ B : S(a, b) ∧ T (b, c)

⇐⇒ ∃b ∈ B :
(
b ∈ β(α−1({a}))

)
∧
(
b ∈ γ(δ−1({c}))

)
⇐⇒ ∃d ∈ D, e ∈ E : (α(d) = a) ∧ (δ(e) = c) ∧ (β(d) = γ(e))
⇐⇒ ∃p ∈ D ×B E : (αγ∗(p) = a) ∧ (δβ∗(p) = b) .

This proves compatibility of F with composition. On the other hand, if we assume that
S and T are morphisms lying in the image of G, we can also use the above chain of
equivalences to prove compatibility of G with composition. F ◦G yields the identity. G◦F
does not change the associated relation and thus yields stably equivalent spans. �

1.3. Computation Rules for Generalized Morphisms. For the construction of
morphisms by diagram chases, we have to learn how to compute within the generalized
morphism category. In this subsection we see how we can decide equality of general-
ized morphisms (Remark II.1.23), interpret a morphism in A as a generalized morphism
(Lemma II.1.26), construct pseudo-inverses (Definition II.1.27), and simplify equations of
generalized morphisms via computation rules (Theorem II.1.31 and Theorem II.1.35).

For deciding equality, we establish a normal form.

Definition 1.20. A span (A α←− C
β−→ B) is called stable if the morphism

(α, β) : C → A⊕B

is a monomorphism.
Lemma 1.21. Two stable spans are equal as generalized morphisms if and only if they

are equal as spans.

Proof. For stable spans, being equal as spans means that the associated relations are
equal as subobjects. �

Lemma 1.22. Any span S = (A α←− C
β−→ B) is stably equivalent to a stable span.

Proof. We construct the image factorization

C A⊕B.

I

(α, β)

(ζ, η)

By Lemma II.1.14, (I, ζ, η) is stably equivalent to S. �

Remark 1.23. Combining the Lemmas II.1.21 and II.1.22, we can think of stable spans
as a normal form for generalized morphisms.

Here is how we can construct a normal form for a generalized morphism.



1. GENERALIZED MORPHISMS 93

Construction 1.24. The image embedding of a morphism (α, β) : C → A ⊕ B by
definition is given by

KernelEmbedding (CokernelProjection(α, β)) .
It can be constructed via pullbacks and pushouts using the following fact: A sequence

C A⊕B D
(α, β)

(
γ
δ

)

is right/left exact if and only if the commutative diagram
D

A B

C

α β

γ −δ

is a pushout/pullback square, respectively. In particular, the image embedding of (α, β)
can be constructed by first taking the pushout of α, β, which gives us morphisms γ,−δ, and
then taking the pullback of γ,−δ, which yields morphisms ζ, η. Then (ζ, η) : I → A ⊕ B
is the image embedding (α, β).

Remark 1.25. In general, the method for computing the image embedding described
in Construction II.1.24 does not work for regular categories which are not abelian. For
example, let us study relations in Set. Every relation R ⊆ A × B which arises as the
pullback of a cospan (A −→ D ←− B) has the following “transitivity” property: For all
a, a′ ∈ A, b, b′ ∈ B:

R(a, b) ∧R(a′, b) ∧R(a′, b′)⇒ R(a, b′).
Conversely, every relation satisfying this “transitivity” property arises as the pullback of
a cospan. But not every relation in Set satisfies the “transitivity” property, e.g., define
R ⊆ {1, 2, 3}2 such that exactly R(1, 2), R(3, 2), R(3, 1) hold, but not R(1, 1). The method
described in Construction II.1.24 then yields a coarser relation, i.e., a relation containing
R.

Since we want to interpret every diagram in A as a diagram in G(A), we need an
embedding of A into G(A).

Lemma 1.26. Mapping a morphism α : A→ B to the span
A B

A

[α]

αidA

yields a faithful functor [−] : A→ G(A).



94 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

Proof. The pullback of an identity morphism can be chosen as an identity morphism.
This proves functoriality. Because [α] = (A id←− A

α−→ B) is a stable span, it is equal to
[β] = (A id←− A

β−→ B) as generalized morphisms if and only if α = β (Lemma II.1.21).
Thus, [−] is faithful. �

The most powerful feature of G(A) regarding diagram chases is the possibility to
“reverse” every arrow.

Definition 1.27. For a span S = (A α←− C
β−→ B) from A to B, we call the span

(B β←− C
α−→ A) from B to A its pseudo-inverse and denote it by S−1.
A B

C

S

βα
←→

B A

C

S−1

αβ

Remark 1.28. Taking pseudo-inverses is compatible with stable equivalences. Thus,
it defines an equivalence of categories

(−)−1 : G(A)op → G(A).

Remark 1.29. We will see in Theorem II.1.35 that pseudo-inverses are inverses in
the sense of semi-groups. From this it will follow that if a generalized morphism S is an
isomorphism, its inverse equals its pseudo-inverse. This justifies the notation S−1.

The morphisms constructed by diagram chases are often given by a finite composition
of the form

(†) · · · ◦ [αi] ◦ [αi+1]−1 ◦ [αi+2] ◦ [αi+3]−1 ◦ [αi+4] ◦ . . .

for morphisms αi ∈ A (as an example see the Snake Lemma II.2.1). Thus, we need to
learn how to simplify terms like (†).

Lemma 1.30. Every span (A α←− C
β−→ B) is equal to [β] ◦ [α]−1 as generalized

morphisms.

Proof. A square consisting of identities is a pullback square. Thus, we have an equa-
tion of generalized morphisms (even as spans):

A C B

C C

C

α id id β

id id

=
A B

C

α β

�



1. GENERALIZED MORPHISMS 95

Now, we can state computation rules for G(A) that allow us to “swap” two consecutive
morphisms in a term like (†).

Theorem 1.31. Given a pullback diagram

B

A C

A×B C

α γ

γ∗ α∗

the pullback computation rule

[γ]−1 ◦ [α] = [α∗] ◦ [γ∗]−1

holds. Dually, given a pushout square

A tB C

A C

B

γα

α∗γ∗

the pushout computation rule

[γ] ◦ [α]−1 = [α∗]−1 ◦ [γ∗]

holds.

Proof. From the diagram

A B C

A C

A×B C

[α] [γ]−1

idA α γ idC

γ∗ α∗

and Lemma II.1.30, we get the pullback computation rule. Now let α∗∗ : A×AtBC C → A
and γ∗∗ : A×AtBC C → C be the pullback projections of γ∗, α∗:



96 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

A tB C

A C

A×AtBC C
γ∗∗α∗∗

α∗γ∗

By the pullback computation rule, we have

[α∗]−1 ◦ [γ∗] = [γ∗∗ ] ◦ [α∗∗]−1.

But taking pushout followed by taking pullback yields the image embedding (see Construc-
tion II.1.24) and thus the stable representative of [γ] ◦ [α]−1. It follows that

[γ∗∗ ] ◦ [α∗∗]−1 = [γ] ◦ [α]−1.

�

Remark 1.32. Remark II.1.25 shows that in general, the pushout computation rule
does not hold if A was a regular category.

The next computation rule that we are going to state justifies the name of the pseudo-
inverse. For its proof, we need to know the connection between bicartesian squares and
stable spans.

Definition 1.33. A square
C

A B

D

is called bicartesian if it is a pullback and a pushout square.
Lemma 1.34. A span (A α←− C

γ−→ B) is stable if and only if the pushout diagram
A tC B

A B

C

γα

α∗γ∗

is bicartesian.

Proof. By Construction II.1.24, (α, γ) : C → A ⊕ B is a monomorphism if and only
if the given pushout diagram is also a pullback diagram. �



1. GENERALIZED MORPHISMS 97

Theorem 1.35. Let S be a span from A to B. Then the following computation rules
hold:

(1) S ◦ S−1 ◦ S = S,
(2) S−1 ◦ S ◦ S−1 = S−1,

as generalized morphisms. In particular, if S is an isomorphism in G(A), then its pseudo-
inverse is an inverse.

Proof. The second equation follows by applying (−)−1 to the first equation. Thus,
it suffices to prove the first claim. Using Lemma II.1.22, we may assume that the span
S = (A α←− C

β−→ B) is stable. By Lemma II.1.34, this means that the following pushout
diagram is bicartesian, where D denotes A tC B:

D

A B

C.

γα

α∗γ∗

Now, consider the following commutative diagram, where (C ×D D, η, ζ) denotes the
pullback of α∗ ◦ γ and γ∗ ◦ α, and u the universal morphism associated to the source
(C, idC , idC):

D

A B A B

C C

C ×D C

C

γ∗

α∗ γ∗

α∗

α γ α γ

η ζ

idC idC

S S−1 S

u

From the pushout and the pullback computation rules, we get the equation
S ◦ S−1 ◦ S = [γ ◦ ζ] ◦ [α ◦ η]−1.

Since (α ◦ η, γ ◦ ζ) ◦u = (α, γ), we have im ((α ◦ η, γ ◦ ζ)) ⊇ im((α, γ)). To prove the other
direction, we construct a morphism v : C×D C → C as the universal morphism associated



98 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

to the source (C ×D C, α ◦ η, γ ◦ ζ), where we consider C as a pullback of γ∗, α∗ (which we
can do since we assumed S to be stable):

D

A B

CC C

C ×D C

γα

α∗γ∗

α γ

η ζ
v

Since (α, γ)◦v = (α◦η, γ◦ζ), we have im ((α ◦ η, γ ◦ ζ)) ⊆ im((α, γ)). Thus, [γ◦ζ]◦[α◦η]−1

and [γ] ◦ [α]−1 = S are stably equivalent. �

Remark 1.36. Theorem II.1.35 may not hold if A is a regular category which is not
abelian. For example, if A = Set, the relation associated to the span S ◦ S−1 ◦ S always
has the “transitivity” property described in Remark II.1.25.

1.4. Data Structures for Generalized Morphisms. Remember that we are build-
ing a framework for effective diagram chases based on computing with generalized mor-
phisms. Up to now, we have represented a generalized morphism by a span

(A←− C −→ B)

Composition of spans involves pullbacks, which is a costly operation in specific instances
of abelian categories (like in the category of finitely presented R-modules introduced in
the Cap project chapter). Pushouts, on the other hand, can be very cheap. Thus, for
an effective implementation of generalized morphisms on the computer, alternative data
structures are desirable.

In this subsection we derive six different data structures for generalized morphisms,
including cospans (which can be composed via pushouts). We further characterize normal
forms for each of these data structures. In addition to their computational value, these data
structures clarify the abstract structure of generalized morphisms and are the key ingredient
to the proof that any generalized morphism has a universal epi-mono factorization in
Subsection II.1.5.

This is how we derive the six data structures for generalized morphisms: Given a span
A B

C

βα

we apply an image factorization to α and β:



1. GENERALIZED MORPHISMS 99

A B

D E

C

Next, we successively take pushouts to construct a diamond shaped diagram (Figure II.1).
Here, the pushouts are taken in alphabetical order, i.e., F,G,H, I.

Figure 1. A diamond with epimorphisms and monomorphisms.

A B

D E

C

F

G H

I

Since pushouts in any category respect epimorphisms, and pushouts in any abelian category
respect monomorphisms, each arrow in the diamond is either a monomorphism or an
epimorphism, the exact distribution is depicted in Figure II.1. Taking pseudo-inverses of
those arrows pointing north-west, we get six paths from A to B in G(A) (see Figure II.2).
Note that since taking pseudo-inverse is an anti-equivalence of G(A), monomorphisms are
mapped to epimorphisms and vice versa.



100 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

Figure 2. There exist six paths from A to B.

A B

D E

C

F

G H

I

By the pushout computation rule II.1.31, each of those paths yields the same generalized
morphism. Following for example the path

A F

G H

B

we can already see that a generalized morphism can be decomposed into an epimorphism
and a monomorphism. In Corollary II.1.53, we will prove that such a factorization is
universal, i.e., essentially unique.

Remark 1.37. If A was only a regular category, the six paths could differ, since the
pushout computation rule may not hold (see Remark II.1.32).

Each of those paths may serve as a representation for the same generalized morphism.
We already have a formal context for the representation corresponding to the lower path
of Figure II.2, namely it can be seen as an object in the category Span(A,B). We give a
formal context for each of the other five representations.

Notation 1.38. For objectsX, Y ∈ A, we introduce the notation Y X := HomA(X, Y ).
Definition 1.39. Let A,B ∈ A.
(1) The category of cospans from A to B is defined as the dependent sum category

Cospan(A,B) :=
∑
I∈A

IA × IB

(2) The category of 3-arrows from A to B is defined as the full subcategory of
the dependent sum category∑

D,H∈A
AD ×HD ×HB



1. GENERALIZED MORPHISMS 101

generated by those objects (D,H, α, β, γ) such that α : D ↪→ A is a monomorphism
and γ : B � H is an epimorphism. It is denoted by 3-Arrow(A,B).

(3) The category of reversed 3-arrows from A to B is defined as the full subcat-
egory of the dependent sum category∑

G,E∈A
GA ×GE ×BE

generated by those objects (G,E, α, β, γ) such that α : A� G is an epimorphism
and γ : E ↪→ B is a monomorphism. It is denoted by 3-Arrow◦(A,B).

(4) The category of 4-arrows from A to B is defined as the full subcategory of
the dependent sum category∑

D,F,E∈A
AD × FD × FE ×BE

generated by those objects (D,F,E, α, β, γ, δ) such that α : D ↪→ A, δ : E ↪→ B
are monomorphisms and β : D � F , γ : E � F are epimorphisms. It is denoted
by 4-Arrow(A,B).

(5) The category of reversed 4-arrows from A to B is defined as the full subcat-
egory of the dependent sum category∑

G,F,H∈A
GA ×GF ×HF ×HB

generated by those objects (G,F,H, α, β, γ, δ) such that α : A � G, δ : B � H
are epimorphisms and β : F ↪→ G, γ : F ↪→ H are monomorphisms. It is denoted
by 4-Arrow◦(A,B).

So, each of the new representations that we found for a generalized morphism can be
seen as an object in one of the five categories enlisted in Definition II.1.39. We call the
underlying category of a given representation its data structure. Two representations of
the same data structure are said to be equal as representations if they are isomorphic
as objects.

Now, we are going to study normal forms for generalized morphisms in each of these
data structures. To handle all cases at one stroke, we introduce the following special type
of diagram.

Definition 1.40. Let A,B ∈ A. The category of diamonds from A to B is defined
as the dependent sum category∑

C,D,E,F,
G,H,I∈A

DC × EC × AD × FD × FE ×BE ×GA ×GF ×HF ×HB × IG × IH

and denoted by 3(A,B). Objects in 3(A,B) are called diamonds (from A to B). We
depict a diamond by a not necessarily commutative diagram of the following form:



102 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

A B

D E

C

F

G H

I

We say two diamonds from A to B are equal as diamonds if they are isomorphic as
objects in 3(A,B).

The process described in the beginning of this subsection defines a functor

3 : Span(A,B)→ 3(A,B),

since constructing an image factorization and taking pushouts are functorial operations.
Given a diamond, we can forget all of its objects and morphisms but the ones in the lower
span and compose consecutive morphisms. This process yields a functor

∨ : 3(A,B)→ Span(A,B)

such that ∨◦3 = idSpan(A,B). Since we want to construct normal forms for the six different
data structures, we are interested in 3(S) for stable spans S.

Definition 1.41. A diamond is called stable if it is a diamond with epimorphisms and
monomorphisms as depicted in Figure II.1 and if each of its inner squares is bicartesian.

Theorem 1.42. The functors 3 and ∨ restrict to an equivalence of categories between
stable spans and stable diamonds.

Proof. On the one hand, we already know that ∨ ◦ 3 = idSpan(A,B). On the other
hand, if ∆ is a stable diamond, then (3 ◦ ∨) (∆) and ∆ are equal as diamonds due to the
uniqueness of pushouts and universal epi-mono factorizations. Thus, it suffices to show
that 3 and ∨ restrict to stable spans and stable diamonds.

Given a stable diamond ∆, its outer square is bicartesian due to transitivity of pullback
and pushout. By Lemma II.1.34, this means that ∨(∆) is stable.

Now, if S = (A α←− C
β−→ B) is a span, then 3(S) is a diamond with epimorphisms

and monomorphisms as depicted in Figure II.1 by construction of 3. We will use the
variable names in Figure II.1 for our notation in the rest of this proof. Since S is stable,
the morphism (α, β) : C → A ⊕ B is a monomorphism. Since D ↪→ A and E ↪→ B
are monomorphisms, so is D ⊕ E ↪→ A ⊕ B. Since subobjects of A ⊕ B are related via
monomorphisms, the morphism C → D⊕E is a monomorphism. Thus, by Lemma II.1.34,
the square with vertices C,D,E, F is bicartesian.

Furthermore, the morphism D → A⊕F is a monomorphism since D → A is. Again by
Lemma II.1.34, the square with vertices D,A, F,G is bicartesian. An analogous argument



1. GENERALIZED MORPHISMS 103

is valid for the other two inner squares. This shows stability of 3(S) and concludes the
proof. �

Remark 1.43. Likewise, functors analogous to 3 can be also defined for the other five
data structures by decomposing arrows via the image factorization, and taking successively
pushouts and pullbacks until we obtain a diamond with epimorphisms and monomorphisms
as depicted in Figure II.1.

Functors analogous to ∨ can also be defined for the other five data structures by forget-
ting all of its objects and morphisms but the ones in the path corresponding to the chosen
data structure, and by composing consecutive morphisms.

Again, we have ∨ ◦3 = id.

Corollary 1.44. Let A,B ∈ A. Let C denote either Span(A,B) or one of the cat-
egories defined in II.1.39. Let S, T ∈ C such that 3(S) and 3(T ) are stable diamonds.
Then S and T represent the same generalized morphism if and only if 3(S) and 3(T ) are
equal as diamonds.

Proof. This is a direct consequence of Theorem II.1.42 and Lemma II.1.21. �

Corollary 1.45 (Normal forms for 3-arrows and 4-arrows). Let A,B ∈ A and let
C denote either 3-Arrow(A,B), 3-Arrow◦(A,B), 4-Arrow(A,B), or 4-Arrow◦(A,B). Let
S, T ∈ C. Then S and T represent the same generalized morphism if and only if they are
equal as representations.

Proof. First we show that 3(S) is stable for S ∈ C. This follows from the fact
that the pushout of two morphisms α, γ, where α is a monomorphism, yields a bicartesian
square, and dually, the pullback of two morphisms α, γ, where α is an epimorphism, also
yields a bicartesian square. Now, using Corollary II.1.44, we see that S and T represent
the same generalized morphism if and only if 3(S) = 3(T ). Applying ∨ yields S = T . �

To complete the description of normal forms, we discuss cospans.

Definition 1.46. A cospan (A α−→ C
β←− B) is called stable if the morphism(

α
β

)
: A⊕B → C

is an epimorphism.
Lemma 1.47 (Normal forms for cospans). Let A,B ∈ A and let S, T ∈ Cospan(A,B)

be stable. Then S, T represent the same generalized morphism if and only if they are equal
as cospans.

Proof. Taking the pullback of the morphisms in a stable cospan yields a bicartesian
square. Now, S, T represent the same generalized morphism if and only if the spans inside
these bicartesian squares are equal as spans, which is the case if and only if the cospans
inside these bicartesian squares are equal as cospans. �



104 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

In order to compute with each of these data structures, we have to transfer the relevant
computational functions such as composition and pseudo-inversion from spans to the data
structure in question. For example, a description of the composition in the three arrow
calculus 3-Arrow(A,B) can be found in [BLH14]. Such a transfer can be done using
conversions of data structures.

Theorem 1.48 (Conversion from spans to cospans). Mapping a span

(A α←− C
β−→ B)

to its pushout cospan
(A β∗−→ A tC B

α∗←− B)
defines an equivalence of categories

Conversion : G(A)→ G(Aop).
Proof. Conversion maps stably equivalent spans to equal cospans due to Construction

II.1.24. Furthermore, it respects composition due to the pullback and pushout computation
rules. Its inverse functor is given by mapping a cospan to its pullback span. �

Remark 1.49. Theorem II.1.48 does not hold in general if A was only a regular cat-
egory, since for example, if A = Set, not all relations arise as a pullback (see Remark
II.1.25).

From Theorem II.1.48 and Remark II.1.28, we get a tool for dualizing in the context of
generalized morphisms.

Definition 1.50. The equivalence of categories
Dualize : G(A)op → G(Aop)

is defined as the composition

G(A)op G(A) G(Aop).
(−)−1 Conversion

Remark 1.51. The functor Dualize (see Definition II.1.50) dualizes a generalized mor-
phism in the following way: It first constructs the pseudo-inverse and second applies (−)op

to the arrows in its representation. More formally: If γ = (A α←− C
β−→ B) is a generalized

morphism in G(A), then
Dualize(γ) = Dualize([β] ◦ [α]−1) = [αop]−1 ◦ [βop].

This is a direct consequence of the pushout computation rule. By abuse of notation, we
also write γop for Dualize(γ):

A B

C

γ

βα


op

←→
Dualize A B

C.

γop

αop βop



1. GENERALIZED MORPHISMS 105

1.5. Epi-Mono Factorizations of Generalized Morphisms. In this subsection
we prove that any generalized morphism admits a universal epi-mono factorization. In
particular, any generalized morphism has an image and a coimage in the categorical sense
(see Subsection I.1.3), and they are isomorphic like in abelian categories. These images
and coimages are the key tool for reasoning about the morphisms we construct via diagram
chases, as we will see in Subsection II.1.6.

In the last subsection we saw that any generalized morphism admits an epi-mono
factorization due to the 4-arrow representation. In order to see that this factorization
is essentially unique, we need to understand the structure of arbitrary monomorphisms
and epimorphisms in G(A).

Theorem 1.52. Every monomorphism in G(A) has a stable representative of the form
A B

C

and every morphism of this form is a monomorphism. Moreover, every monomorphism in
G(A) is split with its pseudo-inverse as a retraction.

Dually, every epimorphism in G(A) has a stable representative of the form
A B

C

and every morphism of this form is an epimorphism. Moreover, every epimorphism in
G(A) is split with its pseudo-inverse as a section.

Proof. By Remark II.1.28 it suffices to show the claim for monomorphisms. So given
a monomorphism µ in G(A), we represent it as a 4-arrow:

A

D

F

E

B

µ

α β γ δ

Let ε : A� coker(α) denote the cokernel projection of α. We compute

[α]−1 ◦ [ε]−1 = [ε ◦ α]−1

= [0]−1

= [0 ◦ α]−1 = [α]−1 ◦ [0]−1.



106 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

From this we conclude
µ ◦ [ε]−1 = [δ] ◦ [γ]−1 ◦ [β] ◦

(
[α]−1 ◦ [ε]−1

)
= [δ] ◦ [γ]−1 ◦ [β] ◦

(
[α]−1 ◦ [0]−1

)
= µ ◦ [0]−1.

Since µ is a monomorphism, it follows that ε is the zero morphism and thus α is an
isomorphism. So from now on we may assume that µ is given by a three arrow

A

F E

Bµ

β

γ

δ

Let κ : ker(β) ↪→ A denote the kernel embedding of β. A similar computation as above
proves that κ is the zero morphism and thus β an isomorphism. Thus, every monomorphism
can be represented as a span of the form

A B

C

βα

Conversely, given a monomorphism β : C ↪→ B, the morphism [β] is a split monomorphism
since

[β]−1 ◦ [β] = [idC ] ◦ [idC ]−1 = idC
by the pullback computation rule and the fact that the pullback of two equal monomor-
phisms is given by identity morphisms. By the dual argumentation, given an epimorphism
α : C � A, [α] is a split epimorphism. Since [−]−1 maps split epimorphisms to split
monomorphisms, the claim follows. �

Corollary 1.53. The generalized morphism category has a universal epi-mono factor-
ization, i.e., an essentially unique epi-mono factorization (see Definition I.1.34).

Proof. The 4-arrow data structure of a generalized morphism γ : A 99K B is an
epi-mono factorization. Now, given any other epi-mono factorization

A F B

Theorem II.1.52 shows that the epimorphism and the monomorphism in this factorization
can themselves be decomposed as

A

D

F

E

B



1. GENERALIZED MORPHISMS 107

But this is a 4-arrow representation of γ. Thus, the claim follows from the uniqueness of
the 4-arrow representation (Corollary II.1.45). �

Due to Lemma I.1.36, we are now able to work with images and coimages of gen-
eralized morphisms.

Here is another nice fact about diagrams involving epimorphisms and monomorphisms
in A, which is helpful in diagram chases (for example in the proof of the Snake Lemma
II.2.1).

Corollary 1.54. For every commutative diagram in A of the form
A

B C

γ
β

α

where α is a monomorphism, the identity

[γ] = [α]−1 ◦ [β]

holds in G(A). Dually, for every commutative diagram in A of the form
A

B C

γ
β

α

where α is an epimorphism, the identity

[γ] = [β] ◦ [α]−1

holds in G(A).

Proof. Due to Theorem II.1.52, in the first case [α]−1 is a retraction which we apply to
[β] = [α]◦[γ], and in the second case, [α]−1 is a section which we apply to [β] = [γ]◦[α]. �

1.6. Attributes and Properties of Generalized Morphisms.
1.6.1. Canonical Objects in the Underlying Abelian Category. In Subsection II.1.1 we

saw that the notions defect and domain are indispensable for reasoning about the gener-
alized morphisms that we construct via diagram chases. In this subsection we can finally
define these notions in the context of an arbitrary abelian category A, using the fact that
every generalized morphism has an image and a coimage (see Subsection II.1.5).

The image of a generalized morphism γ : A 99K B is a subobject of A (where we regard
A as an object in G(A)). Such a subobject corresponds to a subquotient of A (where we
regard A as an object in the underlying abelian category A).

Definition 1.55. Let A ∈ A. A subquotient of A is defined as a subobject of
A in G(A). We say two subquotients are equal as subquotients if they are equal as
subobjects in G(A).



108 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

Remark 1.56. Since the functor (−)−1 maps monomorphisms to epimorphisms and
vice versa, we could have defined a subquotient of A equivalently as a quotient object of
A in G(A).

Remark 1.57. Every pair of objects (A′′, A′) in A such that A′′ ⊆ A′ ⊆ A defines a
subquotient

A′/A′′ A

A′,

emb( A′
A′′

) :=

which we also call a subquotient embedding. Conversely, every subquotient
B A

A′

α

defines such a pair (ker(α), A′). These two conversions are mutual inverses with respect
to the notions of equality as subquotients and being isomorphic as objects in the category∑
A′′,A′∈C HomA(A′′, A′)× HomA(A′, A).

So from now on, we also call pairs (A′′, A′) as described in Remark II.1.57 a subquotient
of A and, by abuse of notation, we also denote this subquotient simply by A′

A′′
.

Remark 1.58. We call the pseudo-inverse of a subquotient embedding a subquotient
projection. Given a subquotient A′

A′′
of A, we set

A A′/A′′proj( A′
A′′

) := emb( A′
A′′

)−1 :

Finally, we can define the canonical objects for reasoning about the generalized mor-
phisms constructed by diagram chases.

Definition 1.59. Given a generalized morphism γ : A 99K B, its image is a subquo-
tient embedding

B′

B′′ B
im(γ)

and its coimage is a subquotient projection

A A′

A′′
.

coim(γ)

We introduce the following canonical objects:
• The domain of γ is defined as the subobject A′ ⊆ A and denoted by dom(γ).
• The codomain of γ is defined as the quotient object B/B′′ and denoted by

codom(γ).



1. GENERALIZED MORPHISMS 109

• The generalized kernel of γ is defined as the subobject A′′ ⊆ A and denoted
by gker(γ).
• The generalized cokernel of γ is defined as the quotient object B/B′ and
denoted by gcoker(γ).
• The codefect of γ is defined as the quotient object A/A′ and denoted by codef(γ).
• The defect of γ is defined as the subobject B′′ ⊆ B and denoted by def(γ).
• The generalized image of γ is defined as the subobject B′ ⊆ B and denoted by

gim(γ).
• The generalized coimage of γ is defined as the quotient object A/A′′ and de-
noted by gcoim(γ).

The subobjects and quotient objects of Definition II.1.59 can be nicely depicted using
a Hasse diagram. An explanation of Hasse diagrams is given in [Bar09b].

Figure 3. A Hasse diagram depicting subobjects and quotient objects as-
sociated to a generalized morphism γ.

coim(γ) im(γ)

0

gker(γ)

dom(γ)

A

def(γ)

0

gim(γ)

B

γ

gcoker(γ)

codom(γ)

codef(γ)

gcoim(γ)

Remark 1.60. Using the notions of Definition II.1.59, we can write the epi-mono
factorization of a generalized morphism γ : A 99K B as

A

gcoim(γ)

dom(γ)

dom(γ)
gker(γ)

gim(γ)
def(γ)

codom(γ)

gim(γ)

B'

Remark 1.61. If γ : A → B is a morphism in A, then dom([γ]) = A, def([γ]) = 0,
codom([γ]) = B, codef([γ]) = 0. In this case, the diagram in Remark II.1.60 degenerates



110 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

to the usual epi-mono factorization in an abelian category, from which we can see that the
canonical subobjects and quotient objects of [γ] are compatible with those of γ, i.e., we
have the equalities

(1) gim([γ]) = im(γ),
(2) gcoim([γ]) = coim(γ),
(3) gker([γ]) = ker(γ),
(4) gcoker([γ]) = coker(γ).

Remark II.1.60 suggests that given a generalized morphism, we can compute all the
canonical objects by reading them off from its 4-arrow representation or its reversed 4-arrow
representation. The next construction shows that there are much simpler constructions.

Construction 1.62. Given a generalized morphism γ : A 99K B represented by a span
S = (A α←− C

β−→ B), we can construct gim(γ) as the image embedding of β. We now
prove correctness of this construction: Consider an epi-mono factorization

C A⊕B.

I.

(α, β)

(ζ, η)

Denote by πB : A⊕B → B the natural projection. Then
im(β) = im (πB ◦ (α, β)) = im (πB ◦ (ζ, η)) = im(η).

Thus, we may assume that S is stable (see Lemma II.1.22). But then correctness is clear
by the diagram in Remark II.1.60 which can be embedded into a stable diamond.

Remark 1.63. The generalized morphism category G(A) can be equipped with depen-
dent functions computing all the objects described in Definition II.1.59. From Construction
II.1.62, we get the generalized image. In Lemma II.1.68, we will see how to construct the
other canonical subobjects using the generalized image. In Remark II.1.69, we will see how
these constructions translate to constructions for the canonical quotient objects.

Remark 1.64. If A = R-mod for a ring R, the canonical subobjects and quotient
objects map to the objects defined in II.1.6 via the equivalence of G(A) and Rel(R-mod)
(see Theorem II.1.19). This is easy to see for the generalized image if we employ Construc-
tion II.1.62. For the other canonical subobjects, we can use Lemma II.1.68 to rewrite them
in terms of the generalized image.

1.6.2. Honest Morphisms. In the end of a diagram chase, we have to check whether
the generalized morphism that we constructed is honest, i.e., if it actually lies in A. The
defect and the codefect introduced in Definition II.1.59 precisely define the obstructions of
a generalized morphism for being honest.

Definition 1.65. Let γ : A 99K B be a generalized morphism.
• We say γ is single-valued or has full codomain if def(γ) equals 0 as subobjects.
This is also the case if and only if codom(γ) equals B as quotient objects.



1. GENERALIZED MORPHISMS 111

• We say γ is total or has full domain if codef(γ) equals 0 as quotient objects.
This is also the case if and only if dom(γ) equals A as subobjects.
• We say γ is honest if it is total and single-valued.

Remark 1.66. Every morphism α ∈ HomA(A,B) defines an honest morphism [α] ∈
HomG(A)(A,B). Conversely, every honest generalized morphism from A to B represented
by (D,H, α, β, γ) ∈ 3-Arrow(A,B) defines a morphism γ−1 ◦ β ◦ α−1 ∈ HomA(A,B) (note
that being honest means that α and γ are invertible in A). These two assignments are
mutual inverses with respect to the notions of equality for morphisms in A and equality
as generalized morphisms. Thus, if we want to test if a generalized morphism γ equals [α]
for a morphism α in A, we have to check whether the defect and codefect of γ equal 0.

Whenever we draw a diagram in G(A), we will use solid arrows (−→) for honest
generalized morphisms instead of dashed ones (99K).

Remark 1.67. Given a generalized morphism γ : A 99K B, the composition

proj (codom(γ)) ◦ γ ◦ emb(dom(γ)) : dom(γ) −→ codom(γ)

yields an honest morphism. This can be easily read off from the diagram in Remark II.1.60,
using the pullback and pushout computation rule. We call this composition the associated
morphism of γ.

1.7. Reasoning with the Canonical Objects. This subsection provides sufficiently
many rules for reasoning with the canonical objects (like the defect or codefect) in order to
successfully do a diagram chase like in the Snake Lemma II.2.1 or for constructing spectral
sequences (see Subsection II.2.3).

We will apply the following general strategy to compute with and to reason about the
canonical subobjects and quotient objects:

(1) Restate a given claim about the canonical subobjects and quotient objects in terms
of the generalized image (a typical claim could be the vanishing of the defect or
the codefect).

(2) Apply computation rules for the generalized image for proving the restated claim.
The next lemma enlists how we can rewrite all the canonical subobjects only in terms

of the generalized image.
Lemma 1.68. Let γ : A 99K B be a generalized morphism. Then we have the following

equalities of subobjects:

(1) def(γ) = gim(0 [0]−→ A
γ
99K B),

(2) dom(γ) = gim(γ−1),

(3) gker(γ) = gim(0 [0]−→ B
γ−1

99K A).

Proof. We start proving the first claim. Let γ = µ ◦ ε be the universal epi-mono
factorization of γ. First, we prove that ε◦ [0] = [0]. By Theorem II.1.52, ε : A 99K F equals



112 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

[β] ◦ [α]−1 for a monomorphism α and an epimorphism β in A. Using Corollary II.1.54, we
compute [α]−1 ◦ [0] = [0] and thus

[ε] ◦ [0] = [β] ◦ [α]−1 ◦ [0] = [β] ◦ [0] = [β ◦ 0] = [0].
So γ ◦ [0] = µ ◦ [0], where µ is represented by (B′/B′′ � B′ ↪→ B) again due to Theorem
II.1.52. By the pullback computation rule, the lower span in the following diagram depicts
the composition µ ◦ [0]:

0

B′/B′′

B′

B′′

B

Since B′′ ⊆ B is by definition the defect of γ, the first claim follows.
The second claim can be read off from the diagram in Remark II.1.60. Using the first

claim, the third claim is equivalent to gker(γ) = def(γ−1), which can be read off from the
diagram in Remark II.1.60 again. �

Remark 1.69. Using the dualization principle stated in Remark II.1.51, we get the
following dictionary between the canonical subobjects and quotient objects:

Subobjects Quotient objects
gker(γ) gcoker (γop)
dom(γ) codom (γop)
def(γ) codef (γop)
gim(γ) gcoim (γop)

Thus, any statement about canonical quotient objects in A can be restated in terms of
canonical subobjects in Aop, which in turn can be restated in terms of the generalized
image by Lemma II.1.68.

Here is a fairly general computation rule for the generalized image that we are going
to employ over and over again in the next section.

Lemma 1.70. Let γ, γ′ : A 99K B be generalized morphisms such that gim(γ) ⊆
gim(γ′). Then for every generalized morphism α : B 99K C, we have

gim(α ◦ γ) ⊆ gim(α ◦ γ′)
as subobjects of C. In particular, if gim(γ) = gim(γ′), then gim(α ◦ γ) = gim(α ◦ γ′).

Proof. The generalized image can be read off from the monomorphism in an reversed
3-arrow representation. The composition of two reversed 3-arrows γ = (D,E,A� D,E →
D,E ↪→ B) and α = (F,G,B � F,G → F,G ↪→ C) can be depicted in a commutative
diagram



1. GENERALIZED MORPHISMS 113

A B C

D E F G

HD tE H H ×F G

γ α

where we can read off the resulting reversed 3-arrow from the lower morphisms. The
morphisms E � H and H ↪→ F are an epi-mono factorization of E → F . We see
that gim(α ◦ γ) = (H ×F G ↪→ G ↪→ C) only depends on α and (E ↪→ B) = gim(γ).
Furthermore, the association

(E ↪→ B) 7→ (H ×F G ↪→ G ↪→ C)
between subobjects of B and C is functorial since all steps involved in its construction
are functorial. Thus, gim(γ) ⊆ gim(γ′) implies gim(α ◦ γ) ⊆ gim(α ◦ γ′), which is the
claim. �

We conclude this section with an example of our strategy to reason about canonical
subobjects: We restate and prove a claim about the defect in terms of the generalized
image. Furthermore, this lemma simplifies the proof of the Snake Lemma II.2.1.

Lemma 1.71. Let γ : A 99K B be a generalized morphism. For every single-valued
generalized morphism σ : C 99K A, we have

def(γ) = def(γ ◦ σ)
as subobjects of C.

Proof. Using Lemma II.1.68, we restate the claim as
gim(γ ◦ [0]) = gim(γ ◦ σ ◦ [0]).

Due to Lemma II.1.70, it suffices to show
gim([0]) = gim(σ ◦ [0]).

But this is true since
gim(σ ◦ [0]) = def(σ) = 0 = im(0) = gim([0]),

where we again use Lemma II.1.68 and σ being single-valued. �

We summarize the computation rules of this subsection in the following theorem.
Theorem 1.72. Let γ : A 99K B be a generalized morphism.
(1) Rewriting canonical subobjects:

(a) def(γ) = gim(0 [0]−→ A
γ
99K B),

(b) dom(γ) = gim(γ−1),

(c) gker(γ) = gim(0 [0]−→ B
γ−1

99K A).



114 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

(2) Computation rule for the generalized image: Let γ′ : A 99K B be another
generalized morphism such that gim(γ) ⊆ gim(γ′). Then for every generalized
morphism α : B 99K C, we have

gim(α ◦ γ) ⊆ gim(α ◦ γ′).
(3) Computation rule for the defect: For every single-valued generalized mor-

phism σ : C 99K A, we have
def(γ) = def(γ ◦ σ).

Proof. Lemma II.1.68, II.1.70, and II.1.71. �



2. DIAGRAM CHASES AND SPECTRAL SEQUENCES 115

2. Diagram Chases and Spectral Sequences

2.1. Constructive Diagram Chases. Diagram chases in homological algebra are
used for proving categorical theorems concerning properties and the existence of morphisms
situated in diagrams of prescribed shape. Due to the theory of generalized morphisms, we
are now able to perform diagram chases constructively, which means that we end up with
explicit formulas for the morphisms whose existence is claimed. Furthermore, the reasoning
techniques for generalized morphisms presented in Subsection II.1.7 are handy for proving
correctness of our constructions. We illustrate such a constructive diagram chase with a
refinement of the famous Snake Lemma.

Lemma 2.1. Given the following (not necessarily commutative) diagram in an abelian
category A:

A B C 0

ker(γ)

A′ B′ C ′0

coker(α)

δ ε

ι ν

η := KernelEmbedding(γ)

ζ := CokernelProjection(α)

α β γ

We define the generalized morphism

σ := [ζ] ◦ [ι]−1 ◦ [β] ◦ [ε]−1 ◦ [η].

Then σ is single-valued if
(1) the diagram is horizontally exact at A′ and B,
(2) the left square is commutative, i.e., β ◦ δ = ι ◦ α.

Dually, σ is total if
(1) the diagram is horizontally exact at C and B′,
(2) the right square is commutative, i.e., γ ◦ ε = ν ◦ β.

In particular, σ is honest if the diagram is commutative and horizontally exact.

Proof. We show that σ is single-valued under the given assumptions. By definition,
being single-valued means that def(σ) = 0. We have

def(σ) = def
(
[ζ] ◦ [ι]−1 ◦ [β] ◦ [ε]−1 ◦ [η]

)
= def

(
[ζ] ◦ [ι]−1 ◦ [β] ◦ [ε]−1

)



116 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

since [η] is single-valued (Lemma II.1.71). Let 0 : 0→ C be the zero morphism. By Lemma
II.1.68, we can compute the defect as a generalized image:

def
(
[ζ] ◦ [ι]−1 ◦ [β] ◦ [ε]−1

)
= gim

(
[ζ] ◦ [ι]−1 ◦ [β] ◦ [ε]−1 ◦ [0]

)
.

We have
gim([ε]−1 ◦ [0]) = gker([ε])

by Lemma II.1.68, and

gker([ε]) = ker(ε) = im(δ) = gim([δ])

by Remark II.1.61 and the horizontal exactness at B. Using Lemma II.1.70, we conclude

gim
(
[ζ] ◦ [ι]−1 ◦ [β] ◦ [ε]−1 ◦ [0]

)
= gim

(
[ζ] ◦ [ι]−1 ◦ [β] ◦ [δ]

)
.

Exactness at A′ means that ι is a monomorphism. Since the left square commutes, Corol-
lary II.1.54 applies and gives us

[ι]−1 ◦ [β] ◦ [δ] = [α].

Thus, we are left with the computation of

gim ([ζ] ◦ [α]) = gim([ζ ◦ α]) = im(ζ ◦ α) = 0.

This proves the claim. By duality (see Remark II.1.51), we also proved that σ is total
under the given assumptions. �

2.2. Generalized Cochain Complexes. Using the technology of generalized mor-
phisms, we can now attack the problem given in the introduction of this chapter: To
describe, in the context of an arbitrary abelian category A, an algorithm for computing
spectral sequences which is suitable for a direct computer implementation.

Our spectral sequence algorithm takes as input a descending filtration F (see Definition
II.2.11) and outputs a cohomological spectral sequence E (see Definition II.2.10). As an
intermediate step, our algorithm constructs a collection of so-called generalized cochain
complexes ∆.

A generalized cochain complex is like an ordinary cochain complex, but with generalized
morphisms as differentials (Definition II.2.4). Each generalized cochain complex gives
rises to an ordinary cochain complex (Theorem II.2.8). It will turn out that the spectral
sequence E associated to F is nothing but the ordinary cochain complexes associated to
the generalized cochain complexes ∆.

In this subsection we start with a formal introduction of generalized chain and cochain
complexes.

Definition 2.2. Let C be a category. We define a category GrZ(C) as follows:
(1) Objects are Z-indexed families (Ag)g∈Z of objects Ag ∈ C.
(2) Morphisms from (Ag)g to (Bg)g are families (αg : Ag → Bg)g∈Z of morphisms in

C.



2. DIAGRAM CHASES AND SPECTRAL SEQUENCES 117

Composition and identities are given componentwise. We call this category the associated
Z-graded category of C. Furthermore, for every h ∈ Z, we define a functor [h] :
GrZ(A) → GrZ(A) by (Ag)g∈Z[h] := (Ag+h)g∈Z and (αg : Ag → Bg)g∈Z[h] := (αg+h :
Ag+h → Bg+h)g∈Z.

Definition 2.3. Let A be an Ab-category.
(1) The full subcategory of ∑A•∈GrZ(A) HomGrZ(A)(A•, A•[−1]) generated by those

pairs (A•, d•) such that d2
• = 0 is called the category of chain complexes. Its

objects are called chain complexes and its morphisms are called chain maps.
This category is denoted by Ch•(A).

(2) The full subcategory of ∑A•∈GrZ(A) HomGrZ(A)(A•, A•[1]) generated by those pairs
(A•, d•) such that (d•)2 = 0 is called the category of cochain complexes. Its
objects are called cochain complexes and its morphisms are called cochain
maps. This category is denoted by Ch•(A).

Definition 2.4. Let A be an abelian category. A generalized chain complex con-
sists of the following data:

(1) An object A• ∈ GrZ(G(A)).
(2) A morphism d• ∈ HomGrZ(G(A))(A•, A•[−1]), called the generalized differential.
(3) For all i ∈ Z, we have gim(di+1) ⊆ gker(di).

Dually, a generalized cochain complex consists of the following data:
(1) An object A• ∈ GrZ(G(A)).
(2) A morphism d• ∈ HomGrZ(G(A))(A•, A•[1]), called the generalized differential.
(3) For all i ∈ Z, we have gim(di−1) ⊆ gker(di).
Definition 2.5. Let A• be a generalized chain complex with generalized differential d•

and i ∈ Z. We define its i-th homology as

Hi(A•) := gker(di)
gim(di+1) .

Dually, let A• be a generalized cochain complex with generalized differential d• and i ∈ Z.
We define its i-th cohomology as

Hi(A•) := gker(di)
gim(di−1) .

Remark 2.6. We depict a generalized cochain complex (A•, d•) as follows:

. . . Ai−1 Ai Ai+1 . . .di−1 di

Our goal is to assign to each generalized cochain complex (A•, d•) an ordinary cochain
complex. Since

def(di−1) ⊆ gim(di−1) ⊆ gker(di) ⊆ dom(di) ⊆ Ai,

we obtain a subquotient embedding



118 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

dom(di)
def(di−1) Ai

embi

and its corresponding subquotient projection

Ai
dom(di)

def(di−1) .
proji

Lemma 2.7. Let (A•, d•) be a generalized cochain complex. Then

dom(di)
def(di−1) Ai Ai+1 dom(di+1)

def(di)δi :=
diembi proji+1

is an honest morphism for all i ∈ Z.

Proof. By Remark II.1.67, the composition

dom(di) Ai Ai+1 Ai+1

def(di)α := diι ε

is honest. It remains to prove that α restricts properly. First, we compute

im(α) = gim(ε ◦ di ◦ ι) (Remark II.1.61)
⊆ gim(ε ◦ di) (Lemma II.1.70)

⊆ gim
(
ε ◦ emb(gker(di+1))

)
(gim(di) ⊆ gker(di+1))

= gker(di+1)
def(di) ⊆ dom(di+1)

def(di) .

Second, we compute

α(def(di−1)) = gim
(
ε ◦ di ◦ emb(def(di−1))

)
⊆ gim

(
ε ◦ di ◦ emb(gker(di))

)
(def(di−1) ⊆ gker(di))

= gim
(
ε ◦ emb(def(di))

)
(Lemma II.1.70)

= 0. �

The following theorem is used for a crucial step in the construction of the spectral
sequence associated to a descending filtration (see Construction II.2.17).

Theorem 2.8. The δi defined in Lemma II.2.7 give rise to a cochain complex

. . . dom(di−1)
def(di−2)

dom(di)
def(di−1)

dom(di+1)
def(di)

. . .δi−1 δi

in Ch•(A), which we call the associated honest cochain complex of (A•, d•).



2. DIAGRAM CHASES AND SPECTRAL SEQUENCES 119

Proof. By Remark II.1.61, is suffices to prove gim([δi−1]) ⊆ gker([δi]). Since (A•, d•)
is a generalized complex, and due to Lemma II.1.68, we have
(†) gim(di−1) ⊆ gker(di) = gim((di)−1 ◦ [0]).
Now, we compute

gim([δi−1]) = gim(proji ◦ di−1 ◦ embi−1)
⊆ gim(proji ◦ di−1) (Lemma II.1.70)
⊆ gim(proji ◦ (di)−1 ◦ [0]) (†)
⊆ gim(proji ◦ (di)−1 ◦ embi+1 ◦ [0]) (Lemma II.1.70)
= gker([δi]). (Lemma II.1.68)

�

Remark 2.9. Taking cohomology commutes with taking the associated cochain com-
plex, since for all generalized cochain complexes (A•, d•), we have

def(di−1) ⊆ gim(di−1) ⊆ gker(di) ⊆ dom(di) ⊆ Ai.

2.3. Spectral Sequence of a Filtered Complex. As described in the introduction
of Subsection II.2.2, our spectral sequence algorithm constructs as an intermediate step a
collection of generalized cochain complexes ∆ associated to a descending filtration F . In
this subsection we will see how this construction is carried out (Definition II.2.14) and why
it furthermore gives rise to a spectral sequence (Corollary II.2.18).

We recall the definition of the category of spectral sequences, which can be found in
[Wei94].

Definition 2.10. Let A be an abelian category. A cohomological spectral se-
quence starting at a ∈ Z consists of the following data: For all p, q ∈ Z, r ≥ a, we
have

(1) objects Ep,q
r ∈ A,

(2) morphisms ∂p,qr : Ep,q
r −→ Ep+r,q−(r−1)

r ∈ A,
(3) isomorphisms ιp,qr : Ep,q

r+1
∼−−→ ker(∂p,qr )

im(∂p−r,q+(r−1)
r )

,
(4) the equation ∂p+r,q−(r−1)

r ◦ ∂p,qr = 0 holds.
The isomorphisms ιp,qr identify Ep,q

r+1 with a subquotient of Ep,q
r , whose subquotient embed-

ding and corresponding subquotient projection are denoted by

Ep,q
r+1 Ep,q

r

embp,qr

and

Ep,q
r Ep,q

r+1
projp,qr

respectively. A morphism between two cohomological spectral sequences (Ep,q
r , ∂p,qr ) and

(E ′p,qr , ∂′p,qr ) starting at a consists of the following data: For all p, q ∈ Z, r ≥ a, we have



120 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

(1) morphisms fp,qr : Ep,q
r → E ′p,qr ,

(2) the equation ∂′p,qr ◦ fp,qr = fp+r,q−(r−1)
r ◦ ∂p,qr ,

(3) the equation of generalized morphisms
[fp,qr+1] = projp,qr ◦ [fp,qr ] ◦ embp,qr .

Definition 2.11. Let C be a category.
(1) The full subcategory of ∑C∈GrZ(C) HomGrZ(C)(C,C[1]) generated by those pairs

((Cp)p∈Z, (ιp)p∈Z) such that ιp is a monomorphism for all p ∈ Z is called the
category of ascending filtrations and denoted by Filt•(C). We set FpC := Cp.
An object in Filt•(C) can be depicted by a chain of successive subobjects

· · · ⊆ Fp−1C ⊆ FpC ⊆ Fp+1C ⊆ . . .

(2) The full subcategory of ∑C∈GrZ(C) HomGrZ(C)(C,C[−1]) generated by those pairs
((Cp)p∈Z, (ιp)p∈Z) such that ιp is a monomorphism for all p ∈ Z is called the
category of descending filtrations and denoted by Filt•(C). We set F pC :=
Cp. An object in Filt•(C) can be depicted by a chain of successive subobjects

· · · ⊇ F p−1C ⊇ F pC ⊇ F p+1C ⊇ . . .

Remark 2.12. Note that we defined the category of filtrations, and not the category
of filtered objects. This means that we do not consider a superobject S as part of our data,
i.e., an object such that F pC ⊆ S for all p ∈ Z. The reason is that such a superobject does
not play a role for the associated spectral sequence.

Remark 2.13. If A is an additive category, then so is Filt•(A). Furthermore, we have
an equivalence of categories

Filt•(Ch•(A)) ' Ch•(Filt•(A))
given by interpreting the diagram

...
...

. . . F p+1Ai F p+1Ai+1 . . .

. . . F pAi F pAi+1 . . .

...
...

row-wise or column-wise. We simply write (F •A•, d•,•) for objects in one of these categories.

From the collection ∆ of generalized differentials in the next definition, we will later be
able to read off the spectral sequence of a descending filtration.



2. DIAGRAM CHASES AND SPECTRAL SEQUENCES 121

Definition 2.14. Let A be an abelian category, (F •A•, d•,•) be a descending filtration
in Filt• (Ch•(A)). For r, p, i ∈ Z, the generalized differentials ∆p,i

r are defined by the
composition

F pAi

F p+1Ai F sAi F sAi+1 F p+rAi+1

F p+r+1Ai+1 ,
embp,i ds,i projp+r,i+1

where s is any index smaller or equal to p, and embp,i denotes the subquotient embedding,
projp+r,i+1 the subquotient projection.

Remark 2.15. Since

F sAi F sAi+1

F s−1Ai F sAi

ds,i

ds−1,i

commutes, Corollary II.1.54 implies that the definition of ∆p,i
r is independent of the choice

of s.

The following lemma is the key to the construction of spectral sequences associated
to filtered cochain complexes. First, it proves that the generalized differentials ∆p,i

r give
rise to generalized cochain complexes. More importantly, it states that the cohomology
groups of the generalized cochain complexes ∆r (which are of the form gker

gim ) are equal to
the objects in the associated honest cochain complexes of ∆r+1 (which are of the form
dom
def ).

Lemma 2.16. Let i ∈ Z. Then the following holds:
(1) gim(∆p,i

r ) ⊆ gker(∆p+r,i+1
r ),

(2) gim(∆p,i
r ) = def(∆p−1,i

r+1 ),
(3) gker(∆p,i

r ) = dom(∆p,i
r+1).

Proof. For sufficiently small s, we compute the four canonical subobjects of the gen-
eralized morphism ∆p,i

r . For our computation, we will use the subquotient embeddings

F pAi

F p+1Ai F sAi
embp,i

and

F p+rAi+1

F p+r+1Ai+1 F sAi+1embp+r,i+1

and their corresponding subquotient projections projp,i and projp+r,i+1, respectively.



122 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

Generalized image:

gim(∆p,i
r ) = gim

(
projp+r,i+1 ◦ [ds,i] ◦ embp,i

)
= gim

(
projp+r,i+1 ◦ (ds,i(F pAi) ↪→ F sAi+1)

)
. (Lemma II.1.70)

Defect:
def(∆p,i

r ) = gim(∆p,i
r ◦ [0]) (Lemma II.1.68)

= gim
(
projp+r,i+1 ◦ [ds,i] ◦ embp,i ◦ [0]

)
= gim

(
projp+r,i+1 ◦ (ds,i(F p+1Ai) ↪→ F sAi+1)

)
. (Lemma II.1.70)

Generalized kernel:
gker(∆p,i

r ) = gim
(
(∆p,i

r )−1 ◦ [0]
)

(Lemma II.1.68)

= gim
(
projp,i ◦ [ds,i]−1 ◦ embp+r,i+1 ◦ [0]

)
= gim

(
projp,i ◦ [ds,i]−1 ◦ (F p+r+1Ai+1 ↪→ F sAi+1)

)
. (Lemma II.1.70)

Domain:
dom(∆p,i

r ) = gim
(
(∆p,i

r )−1
)

(Lemma II.1.68)

= gim
(
projp,i ◦ [ds,i]−1 ◦ embp+r,i+1

)
= gim

(
projp,i ◦ [ds,i]−1 ◦ (F p+rAi+1 ↪→ F sAi+1)

)
. (Lemma II.1.70)

Now, we can read off the second and the third claim simply by substituting the indices.
For the first claim, note that
(†) ds,i(F pAi) ⊆ ker(ds,i+1) = (ds,i+1)−1(0) ⊆ (ds,i+1)−1

(
F p+2r+1Ai+2

)
as subobjects of F sAi+1. We compute

gim(∆p,i
r ) = gim

(
projp+r,i+1 ◦ (ds,i(F pAi) ↪→ F sAi+1)

)
⊆ gim

(
projp+r,i+1 ◦ [ds,i+1]−1 ◦ (F p+2r+1Ai+2 ↪→ F sAi+2)

)
(†)

= gker(∆p+r,i+1
r ). �

Construction 2.17. Now, we can construct the spectral sequence associated to a
descending filtration (F •A•, d•,•). First, we define

Ep,q
0 := Ep,q

0 (F •A•) := F pAp+q

F p+1Ap+q
.

For each triple p, q, r ∈ Z, the generalized differentials ∆p+•r,p+q+•
r (see Definition II.2.14)

give rise to a generalized cochain complex

. . . Ep,q
0 E

p+r,q−(r−1)
0 E

p+2r,q−2(r−1)
0

. . .
∆p,p+q
r ∆p+r,p+q+1

r



2. DIAGRAM CHASES AND SPECTRAL SEQUENCES 123

since gim(∆p,p+q
r ) ⊆ gker(∆p+r,p+q+1

r ) holds by the Key Lemma II.2.16. Since d• respects
the filtration, ∆p,p+q

0 is honest and thus equal to [∂p,q0 ] for a morphism ∂p,q0 in A. Note
that the indices of ∆•,•0 and ∂•,•0 differ by a shift. For r ≥ 1, we take the associated honest
cochain complex of ∆p+•r,p+q+•

r (see Theorem II.2.8), which gives us:

. . . Ep,q
r Ep+r,q−(r−1)

r Ep+2r,q−2(r−1)
r

. . .
∂p,qr ∂p+r,q−(r−1)

r

Corollary 2.18. The collection of objects Ep,q
r and morphisms ∂p,qr for p, q ∈ Z, r ≥ 0

are the data of a cohomological spectral sequence.
Proof. Due to Remark II.2.9, the cohomology of the sequence ∂p+•r,q−•(r−1)

r equals
the cohomology of the generalized cochain complex ∆p+•r,p+q+•

r . Now, the claim is a direct
consequence of the definition of the associated honest cochain complex (Theorem II.2.8)
and the Key Lemma II.2.16. �

Corollary 2.19. The association
(F •A•, d•,•) 7→ (Ep,q

r , ∂p,qr )p,q∈Z,r≥0

defines a functor from Filt• (Ch•(A)) to the category of cohomological spectral sequences
starting at 0.

Proof. A morphism F •α• between descending filtered cochain complexes (F •A•, d•,•)
and (F •B•, d•,•) defines honest morphisms αp,q between the graded parts of the filtered
complexes:

Ep,q
0 (F •A•) F pAp+q F pBp+q Ep,q

0 (F •B•).emb F p(αp+q) proj

We denote by ∆p,p+q
r (A) and ∆p,p+q

r (B) the generalized differentials of (F •A•, d•,•) and
(F •B•, d•,•), respectively, which are defined in II.2.14 and whose domains and defects give
rise to the spectral sequences (see Corollary II.2.18). Since αp,q respects the domains of
∆p,p+q
r (A) and ∆p,p+q

r (B), and since it furthermore respects the defects of ∆p−r,p+q−1
r (A)

and ∆p−r,p+q−1
r (B), it restricts properly to the subquotients of all higher pages. Thus, αp,q

gives rise to a morphism between the spectral sequences. �

Remark 2.20. The spectral sequence Ep,q
r coincides with the one given in [Wei94],

where we can find a definition of spectral sequences associated to filtered chain complexes
in the case A = R-mod for a ring R. This can be checked by using the description of the
defect and domain in the special case of R-mod given in Definition II.1.6.

We close this subsection with a compatibility statement of spectral sequences with
homotopy, which is needed for our investigation of so-called spectral cohomology tables in
the next chapter.

Definition 2.21. A null homotopic morphism between descending filtered cochain
complexes (F •A•, d•,•A ) and (F •B•, d•,•B ) consists of the following data:

(1) Morphisms F •si : F •Ai → F •Bi−1 for all i ∈ Z.



124 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

(2) A morphism F •α• from (F •A•, d•,•A ) to (F •B•, d•,•B ) such that

F •αi = d•,i−1
B ◦ F •si + F •si+1 ◦ d•,iA

for all i ∈ Z.
Corollary 2.22. The association

(F •A•, d•,•) 7→ (Ep,q
r , ∂p,qr )p,q∈Z,r≥1

defines a functor from Filt• (Ch•(A)) modulo null homotopic morphisms to the category of
cohomological spectral sequences starting at 1.

Proof. We have to show that the functor of Corollary II.2.19, restricted to spectral
sequences starting at 1, maps null homotopic morphisms to zero. But since the subquo-
tients on the first page are given by the kernels and images of the differentials on the 0-th
page, any morphism of the form d•,i−1

B ◦ F •si + F •si+1 ◦ d•,iA clearly becomes zero when it
is restricted to these subquotients. �

2.4. Computing Spectral Sequences. In this subsection we describe algorithms
summarizing our constructive approach to spectral sequences. We work with an arbitrary
abelian category A. The correctness of our constructions follows from our discussion in
the preceding Subsection II.2.3.

Construction 2.23. Input: A descending filtration FA = (F •A•, d•,•) ∈ Filt•(Ch•A)
and integers p, q ∈ Z and r ≥ 0.

Output: The object Ep,q
r of the associated spectral sequence of FA, realized as a

subquotient of Ep,q
0 (see Definition II.1.55).

Algorithm:
(1) Realize the graded objects of the filtration as subquotients: Construct

the generalized monomorphism

F p+rAp+q+1

F p+r+1Ap+q+1 F p−rAp+q+1

F p+rAp+q+1.

embp+r

This represents a subquotient of F p−rAp+q+1 (see Remark II.1.57). Analogously,
construct

F pAp+q

F p+1Ap+q F p−rAp+q
embp

and

F p−rAp+q−1

F p−r+1Ap+q−1 F p−rAp+q−1.
embp−r

(2) Construct generalized differentials: Compute the two generalized morphisms



2. DIAGRAM CHASES AND SPECTRAL SEQUENCES 125

F p−rAp+q−1

F p−r+1Ap+q−1 F p−rAp+q−1 F p−rAp+q F pAp+q

F p+1Ap+q
embp−r [dp−r,p+q−1] (embp)−1

∆p−r

and

F pAp+q

F p+1Ap+q F p−rAp+q F p−rAp+q+1 F p+rAp+q+1

F p+r+1Ap+q
embp [dp−r,p+q] (embp+r)−1

∆p

For this computation, we use composition of generalized morphisms (Definition
II.1.9), pseudo-inversion of generalized morphisms (Definition II.1.27), and regard-
ing a morphism in A as a generalized morphism (Lemma II.1.26).

(3) Read off the result from canonical subobjects: Construct the domain of
∆p and the defect of ∆p−r (Definition II.1.59) as subobjects of F pAp+q

F p+1Ap+q . We have
inclusions

def(∆p−r) ⊆ dom(∆p) ⊆ F pAp+q

F p+1Ap+q
=: Ep,q

0 ,

and Ep,q
r := dom(∆p)

def(∆p−r) is the result of the construction.

Remark 2.24. Each of the three steps in Construction II.2.23 can be rewritten in terms
of primitives in the abelian category A.
1.Step: Constructs quotient objects in A. Thus, we have to compute cokernels in A.
2.Step: Uses composition in G(A). Thus, we need to compute pullbacks in A, which in

turn can be rewritten in terms of kernels and direct sums in A (see Construction
I.2.20).

3.Step: Constructs the defect and the domain of a generalized morphism. This can be
derived from the computation of an image embedding in A (see Construction
II.1.62 and Remark II.1.63).

Construction 2.25. We will use the notation of Construction II.2.23. Let

Ep,q
r Ep,q

0
ιp

and

Ep+r,q−(r−1)
r E

p+r,q−(r−1)
0

ιp+r



126 2. CONSTRUCTIVE HOMOLOGICAL ALGEBRA

denote the results of applying Construction II.2.23 to (p, q, r) and (p + r, q − (r − 1), r).
Then the differential ∂p,qr on the r-th page between Ep,q

r and Ep+r,q−(r−1)
r can be computed

as the following composition of generalized morphisms:

Ep,q
r Ep,q

0 E
p+r,q−(r−1)
0 Ep+r,q−(r−1)

r

ιp ∆p (ιp+r)−1

Construction 2.26. We will use the notation of Construction II.2.23. Let FB be
another filtered cochain complex and let f : FA → FB be a morphism between fil-
tered cochain complexes. Taking graded parts, f induces a morphism fp,q0 : Ep,q

0 (FA) →
Ep,q

0 (FB) between the objects of the 0-th page of the associated spectral sequences. Then
the composition of generalized morphisms given by

Ep,q
r (FA) Ep,q

0 (FA) E
p+r,q−(r−1)
0 (FB) Ep+r,q−(r−1)

r (FB)
ιpFA fp,q0 (ιpFB)−1

computes the morphism fp,qr : Ep,q
r (FA) → Ep,q

r (FB) given by the functoriality of taking
spectral sequences. Here, ιpFA and ιpFB are the outputs of construction II.2.23 applied to
FA, FB, respectively.

Since these algorithms only use the categorical constructions directly provided by the
axioms of A, we can use them in any “element-free” context (see for example Computation
III.3.21).



CHAPTER 3

Applications to Equivariant Sheaves

Cohomology tables are among the most important invariants for coherent sheaves on
projective space Pnk over a field k. In this chapter we generalize them in two different
ways: First, if a finite group G acts on a coherent sheaf, it also acts on its cohomology
groups and we can store the characters of these actions within an equivariant cohomology
table. As an example, we compute an excerpt of the equivariant cohomology table of the
famous Horrocks-Mumford bundle (see Subsection III.3.2.2). Second, we will read off from
the so-called Tate sequence of a coherent sheaf new numerical invariants. These numerical
invariants complement the numbers in the cohomology table to what we call a spectral
cohomology table, a concept that first appeared in [BLH17]. An excerpt of the spectral
cohomology table of the Horrocks-Mumford bundle is given in Figure III.4.

If a coherent sheaf has supernatural cohomology, its spectral cohomology table provides
the same information as the cohomology table (Theorem III.3.19). However, when we
consider coherent sheaves not having supernatural cohomology, spectral cohomology tables
are actually the stronger invariant. Using the Horrocks-Mumford bundle and the existence
of supernatural vector bundles (thanks to Boij-Söderberg theory), we will be able to prove
the existence of coherent sheaves having identical cohomology tables, but unequal spectral
cohomology tables (Theorem III.3.20).

Both generalizations of cohomology tables can be nicely joined, see Figure III.5 for
the equivariant spectral cohomology table of the Horrocks-Mumford bundle. Its computa-
tion is made possible due to our hard work in the previous chapters: The development
of constructive categorical G-equivariant methods in Chapter I and the description of a
constructive approach to spectral sequences in Chapter II.

Now, we describe the idea of spectral cohomology tables in full generality. Given an
abelian category A, there are sometimes canonical ways to equip every object A ∈ A with
a filtration which is automatically respected by all morphisms. We call such filtrations
natural. Equipping an abelian group with its torsion subgroup is an example of a natural
filtration. Whenever we have a natural filtration F for the objects in A, every cochain
complex C of A can automatically be regarded as a filtered cochain complex, and thus
gives rise to an associated spectral sequence S. Since the assignment C 7→ S is functorial,
this spectral sequence is an invariant of the cochain complex C, and whenever the cochain
complex C itself arises as an invariant of some object A ∈ A, the spectral sequence S
becomes an invariant of A as well. We can depict this process diagrammatically as follows:

A ∈ A Cochain complex C Associated spectral sequence S.7−→︸︷︷︸ 7−→︸︷︷︸
some functorial process using a natural filtration F

127



128 3. APPLICATIONS TO EQUIVARIANT SHEAVES

Special instances of this process will give us spectral cohomology tables (see Subsection
III.3.3) as well as spectral Betti tables (see Subsection III.1.2).

We turn to the concrete case where A is the category of finitely generated graded
modules over the exterior algebra E in n+ 1 indeterminates over k, denoted by E-grmod.
In this particular case, the grading of the objects in E-grmod induces a natural filtration
F (see Definition III.3.12). The functorial process (up to homotopy) we are interested in is
the so-called Tate resolution: Given M ∈ E-grmod, we concatenate a minimal projective
resolution P • � M and a minimal injective resolution M ↪→ I•. Following the process
described above, we get a spectral sequence S associated to M .

The significance of the functorial assignmentM 7→ S can be explained best in geometric
terms. Due to the Bernstein-Gel’fand-Gel’fand correspondence [BGG78], there exists
an exact equivalence between the stable category E-grmod (see Definition III.3.8) and
Db(Coh(Pnk)), the bounded derived category of coherent sheaves on projective space of
dimension n. In particular, to every F ∈ Coh(Pnk) there corresponds an M ∈ E-grmod (for
details see Subsection III.3.1). It follows that the spectral sequence S is also an invariant
of F . From the socles of the objects on the first page of S, we can read off the cohomology
groups Hq(F(p)) (see Subsection III.3.3). However, there is clearly more to S than only its
objects on the first page. The information provided by its higher pages assembles to what
we call a spectral cohomology table, the main object of investigation in this chapter.

The whole setup smoothly generalizes to a G-equivariant context for a finite group
G. Here, G-equivariant coherent sheaves on projective space correspond to G-equivariant
graded modules over the exterior algebra, and the G-action naturally extends to the Tate
resolution. So, what we need is a nice constructive model of the category of finitely
generated G-equivariant modules over the exterior algebra in order to keep track of the
G-actions in our computations.

For this let us recall the following notions: The k-algebra E equipped with a k-linear
G-action compatible with the ring multiplication is also called a G-equivariant k-algebra.
A G-equivariant E-module is given by an E-module M equipped with an extra datum,
namely a k-linear action of G on M satisfying

g(am) = g(a)g(m)

for all g ∈ G, a ∈ E,m ∈ M . Morphisms between G-equivariant E-modules are defined
as E-module homomorphisms which in addition are G-equivariant maps, and we obtain a
category (E oG)-mod.

If we used these definitions for a computer implementation of (E oG)-mod, we would
have to provide data structures for E-modules, and enhance them with the extra datum of
the G-action. It seems as if computing in (EoG)-mod means to compute with E-modules
while taking care of the G-action, but thanks to category theory, this does not have to be
seen as a burden. By passing to a category equivalent to (E o G)-mod, we can actually
benefit from the G-action: Let Repk(G) denote the category of k-linear representations of
G, equipped with its tensor product ⊗ := ⊗k of representations. The multiplication map
µ : E ⊗ E → E : (a, b) 7→ a · b and the unit map η : k → E : 1 7→ 1 are G-equivariant
and thus can be regarded as morphisms in Repk(G). We can summarize these facts by the



1. (CO)HOMOLOGICAL INVARIANTS 129

statement that the triple
(E, µ : E ⊗ E → E, η : k → E)

is a monoid object in Repk(G), or a monoid internal to the monoidal category (Repk(G),⊗).
Now, there is a purely categorical Definition III.2.4 of a module over a monoid object
which gives rise to a category (E, µ, η)-mod. In Subsection III.2.2 we will see the following
equivalence:

(E, µ, η)-mod ' (E oG)-mod

The objects in (E, µ, η)-mod do not provide easier data structures yet, so we have to
proceed one step further: In Chapter I we constructed a skeletal tensor category SRepk(G)
equivalent to Repk(G) as tensor categories (with some restrictions for k, see Subsection
I.3.3.7 for details). In particular, we can transfer the monoid (E, µ, η) from Repk(G) to
SRepk(G). The category of modules over this transfered monoid is still equivalent to
(E o G)-mod, and we finally get nice and concise data structures for our computations,
since objects in SRepk(G) can be simply modeled by group characters.

We close this introduction with a brief summary of each section: In the first section
we formally introduce the notions of a natural filtration and a spectral Betti table, a
concept motivating spectral cohomology tables. The second section provides an exposition
of modules over the exterior algebra E from a categorical point of view including the
computation of free and cofree resolutions. In the last section we investigate spectral
cohomology tables and compute examples.

1. (Co)homological Invariants

Notation 1.1. In this section A denotes an abelian category.

1.1. Natural Filtrations. Natural filtrations provide an easy tool to equip every
cochain complex with a filtration. We will apply this tool in Subsection III.3.3 to regard
every Tate sequence as filtered cochain complex.

Definition 1.2. The category of descending filtered objects of A is given by the
following data:

(1) Objects are pairs (A,F •A) consisting of an object A ∈ A and a descending filtra-
tion (see Definition II.2.11)

· · · ⊇ F p−1A ⊇ F pA ⊇ F p+1A ⊇ . . . ,

where each F pA is a subobject of A, and each inclusion F pA ⊇ F p+1A is an
inclusion of subobjects of A.

(2) Morphisms between (A,F •A) and (B,F •B) are given by morphisms α : A → B
in A such that for all p ∈ Z, there exist restrictions F pα : F pA→ F pB rendering
the diagram



130 3. APPLICATIONS TO EQUIVARIANT SHEAVES

A B

F pA F pB

α

F pα

commutative.
We denote this category by FiltObj•A. Furthermore, we denote the forgetful functor
mapping a pair (A,F •A) to its first component by

π : FiltObj•A→ A.
Analogously, we define the category of ascending filtered objects of A, which we
denote by FiltObj•A

Remark 1.3. The restrictions F pα are uniquely determined and can be computed as
honest representatives of the generalized morphisms

F pA A B F pB
α

Now, we come to the basic definition of this section.
Definition 1.4. A natural descending filtration is defined as a section of π, i.e., a

functor
F : A→ FiltObj•A

such that π ◦ F ' idA. Analogously, we define natural ascending filtrations.
We can think of natural filtrations as filtrations with which every object in A can be

equipped, and which is respected by every morphism in A.
Example 1.5. Equipping an abelian group A with its torsion subgroup

Atorsion ⊆ A

defines a natural filtration, since every group homomorphism A → B restricts to a mor-
phism between its torsion subgroups Atorsion → Btorsion.

Example 1.6. The purity (or grade) filtration of a module over a commutative noe-
therian ring [Bar09a] defines a natural filtration generalizing Example III.1.5.

Example 1.7. Let R be a ring and I ⊆ R be an ideal. Given an R-module M , the
submodules F pM := IpM ⊆M define a natural descending filtration.

Example 1.8. Let S be an N0-graded ring. For any graded moduleM = ⊕
d∈ZMd, the

submodules defined by F pM := ⊕
d≥pMd give rise to a natural descending filtration. We

obtain a natural ascending filtration by setting Fp(M) ⊆ M as the submodule generated
by ⊕d≤pMd.

Example 1.9. This example is dual to Example III.1.8. Let E be a (−N0)-graded
ring. For any graded module M = ⊕

d∈ZMd, the submodules defined by FpM := ⊕
d≤pMd

give rise to a natural ascending filtration. We obtain a natural descending filtration by
setting F p(M) ⊆M as the submodule generated by ⊕d≥pMd.



1. (CO)HOMOLOGICAL INVARIANTS 131

1.2. Spectral Betti Tables. As a motivational example for our construction of spec-
tral cohomology tables (see Subsection III.3.3), we briefly discuss spectral Betti tables in
the context of an abelian category A having enough projectives or injectives. We will see
in Example III.1.14 how spectral Betti tables generalize Betti tables of finitely generated
modules over the graded symmetric algebra.

Every natural descending filtration F : A → FiltObj•A automatically lifts to the
category of cochain complexes Ch•(A) by applying F to the diagram

. . . Ai−1 Ai Ai+1 . . .

. . . Bi−1 Bi Bi+1 . . .

di−1
A diA

di−1
B diB

αi−1 αi αi+1

representing a cochain map between cochain complexes. Furthermore, the resulting functor
Ch•(F ) : Ch•(A)→ FiltObj• (Ch•(A))

respects null homotopic maps, i.e., it sends a null homotopic map in Ch•(A) to a null
homotopic map in the sense of Definition II.2.21. This follows from applying F to the data
defining a null homotopy in Ch•(A).

Definition 1.10. Given a natural descending filtration F : A → FiltObj•A and a
cochain complex A ∈ Ch•(A), we define the induced spectral sequence of F and A
as the spectral sequence associated to the descending filtered cochain complex Ch•(F )(A).
We can define the induced spectral sequence of a natural ascending filtration and a chain
complex in a dual way.

Remark 1.11. For a given F , assigning to A the induced spectral sequence of F and
A is a functorial operation (see Corollary II.2.19). If we consider A up to homotopy, then
the assignment becomes functorial if we discard the 0-th page and only keep those pages
≥ 1 (see Corollary II.2.22).

If A has enough projectives, then every chain complex A with bounded below homology
admits a quasi-isomorphism A← P•, where P• is a bounded below chain complex consisting
of projectives. Dually, if A has enough injectives, then every cochain complex A with
bounded below cohomology admits a quasi-isomorphism A → I•, where I• is a bounded
below cochain complex consisting of injectives. Mapping A to P• (or I•) is a functorial
operation modulo null homotopy. Thus, the following notion is well-defined.

Definition 1.12. Let A be an abelian category.
(1) Assume A has enough injectives and let F : A → FiltObj•A be a natural de-

scending filtration. Let A ∈ Ch•(A) be a cochain complex with bounded below
cohomology. Then we define the spectral F -Betti table of A as the induced
spectral sequence of F and I• starting at page 1, where I• is a bounded below
cochain complex consisting of injectives admitting a quasi-isomorphism A→ I•.



132 3. APPLICATIONS TO EQUIVARIANT SHEAVES

(2) Assume A has enough projectives and let F : A → FiltObj•A be a natural
ascending filtration. Let A ∈ Ch•(A) be a chain complex with bounded below
homology. Then we define the spectral F -Betti table of A as the induced
spectral sequence of F and P• starting at page 1, where P• is a bounded below
chain complex consisting of projectives admitting a quasi-isomorphism A← P•.

In both cases we denote the spectral sequence by BettiF (A).
The following theorem can of course be restated for an abelian category with enough

projectives.
Theorem 1.13. Let A be an abelian category with enough injectives. The map

A 7→ BettiF (A)
defines a functor from D+(A) (the bounded below derived category of A) to the category
of spectral sequences starting at page 1.

Proof. It is well known that mapping a cochain complex A with bounded below
cohomology to a bounded below cochain complex I• consisting of injectives which resolves
A gives a functor fromD+(A) toK+(A), the category of bounded below cochain complexes
modulo null homotopy. Now, the claim follows from Remark III.1.11. �

Since spectral Betti tables are an invariant for objects in the derived category, it is
reasonable to call them a (co)homological invariant.

The following example shows how we reconstruct the classical notion of a Betti table
from the spectral one.

Example 1.14. Let k be a field, n ∈ N, and let S = k[x0, . . . , xn] be the N0-graded
polynomial ring with deg(xi) = 1 for all i = 0, . . . , n. Let F be the natural ascending
filtration of Example III.1.8. For any finitely generated Z-graded module M , denote the
objects on the first page of BettiF (M) by E1

p,q. Then

E1
p,q ' S(−p)βp+q,p ,

where βi,j ∈ N0 are the graded Betti numbers of M . To see this, consider a minimal
projective resolution M ← P•. Due to its minimality, the differentials on the 0-th page of
the induced spectral sequence of F and P• are all zero. Thus, the objects on the first page
coincide with the projective summands of the objects in P•, whose ranks give the Betti
numbers.

2. Equivariant Modules over the Exterior Algebra

2.1. Actions and Coactions. As explained in the introduction of Chapter III, we
want to model G-equivariant modules over the exterior algebra as modules internal to the
category SRepk(G). In this subsection we briefly present the theory of modules internal to
a monoidal category.

We have already encountered the categorification of the notion monoid (see Definition
I.3.14). Now, we turn to its internalization.



2. EQUIVARIANT MODULES OVER THE EXTERIOR ALGEBRA 133

Definition 2.1 ([ML71]). Let (A,⊗, 1, α, λ, ρ) be a monoidal category. A monoid
in A consists of the following data:

(1) An object A ∈ A.
(2) A morphism µ : A⊗ A→ A, called multiplication.
(3) A morphism η : 1→ A, called unit.
(4) The associativity law holds, namely, the diagram

A⊗ (A⊗ A) (A⊗ A)⊗ A

A⊗ A A⊗ AA

α

A⊗ µ µ⊗ A
µ µ

commutes.
(5) The unit constraints hold, namely, the diagram

1⊗ A A⊗ A A⊗ 1

A

η ⊗ A A⊗ η

λ ρµ

commutes.

We define the category of monoids as the full subcategory of
∑
A∈A

HomA(A⊗ A,A)× HomA(1, A)

generated by those objects satisfying the associativity law and the unit constraints.
For example, a monoid in the category of sets (where we set ⊗ = ×) is just an ordinary

monoid. Its dual notion comonoid is less interesting in the context of sets (actually, being
a comonoid in the category of sets is only a property every set satisfies, meaning that
every set can be turned into a comonoid in a unique way). But this notion becomes very
important in other categories (like k-vector spaces).

Definition 2.2 ([ML71]). Let (A,⊗, 1, α, λ, ρ) be a monoidal category. A comonoid
in A consists of the following data:

(1) An object A ∈ A.
(2) A morphism ∆ : A→ A⊗ A, called comultiplication.
(3) A morphism ε : A→ 1, called counit.
(4) The coassociativity law holds, namely, the diagram



134 3. APPLICATIONS TO EQUIVARIANT SHEAVES

A⊗ (A⊗ A) (A⊗ A)⊗ A

A⊗ A A⊗ AA

α

A⊗∆ ∆⊗ A
∆ ∆

commutes.
(5) The counit constraints hold, namely, the diagram

1⊗ A A⊗ A A⊗ 1

A

ε⊗ A A⊗ ε

λ−1 ρ−1∆

commutes.
We define the category of comonoids as the full subcategory of∑

A∈A
HomA(A,A⊗ A)× HomA(A, 1)

generated by those objects satisfying the coassociativity law and the counit constraints.

Remark 2.3. Monoidal functors map monoids to monoids. In particular, if A is a
rigid symmetric monoidal category, the dualization functor maps monoids to comonoids
and vice versa, giving rise to a contravariant equivalence between the category of monoids
and the category of comonoids in A.

The next step is an internalization of the notion of an action and a module, and their
corresponding duals.

Definition 2.4 ([ML71]). Let (A, µ, η) be a monoid in a monoidal category

(A,⊗, 1, α, λ, ρ)

and letM be an object in A. A right action of A on M is a morphism µM : M⊗A→M
such that the diagrams

M ⊗ (A⊗ A) (M ⊗ A)⊗ A

M ⊗ A M ⊗ AM

α

M ⊗ µ µM ⊗ A
µM µM

and



2. EQUIVARIANT MODULES OVER THE EXTERIOR ALGEBRA 135

M ⊗ A M ⊗ 1

M

M ⊗ η

ρµM

commute. A right A-module is a pair (M,µM) consisting of an object M ∈ A and a
right action µM of A on M . The category of right A-modules is the full subcategory
of ∑M∈A HomA(M ⊗ A,M) generated by the right modules. We denote this category by
mod-A. The definition of the category of left modules A-mod is completely analogous.

Definition 2.5. Let (A,∆, ε) be a comonoid in a monoidal category
(A,⊗, 1, α, λ, ρ)

and letM be an object in A. A left coaction of A onM is a morphism ∆M : M → A⊗M
such that the diagrams

A⊗ (A⊗M) (A⊗ A)⊗M

A⊗M A⊗MM

α

A⊗∆M ∆⊗M
∆M ∆M

and

A⊗M 1⊗M

M

ε⊗M

λ−1∆M

commute. A left A-comodule is a pair (M,∆M) consisting of an object M ∈ A and a
left coaction ∆M of A on M . The category of left A-comodules is the full subcategory
of ∑M∈A HomA(M,A ⊗ M) generated by the left comodules. We denote this category
by A-comod. The definition of the category of right comodules comod-A is completely
analogous.

Example 2.6. Consider the category of abelian groups Ab. The category of monoids
in Ab is equivalent to the category of rings. The category of modules over such a monoid
is equivalent to the category of modules over the corresponding ring. Similarly, monoids
in k-vec correspond to finite dimensional k-algebras, and the corresponding notions of
modules yield again equivalent categories.

In the case of a rigid symmetric monoidal category, modules and comodules are tightly
related, a fact which we use in our implementation of the category of modules over the
exterior algebra (see Computation III.3.11).



136 3. APPLICATIONS TO EQUIVARIANT SHEAVES

Lemma 2.7. Let A be a monoid in a rigid symmetric monoidal category A and let A∨
be its dual comonoid (see Remark III.2.3). The adjunction

HomA(M ⊗ A,M) ' HomA(M,A∨ ⊗M)
gives rise to an equivalence of categories

mod-A ' A∨-comod.

Proof. Being an adjunction for (− ⊗ A) a (A∨ ⊗ −) is equivalent to the fact that
morphisms in ∑M∈A HomA(M ⊗A,M) map to morphisms in ∑M∈A HomA(M,A∨ ⊗M).
The difficulty lies in proving that a right action is mapped to a left coaction, i.e., that
the appropriate diagrams in the definitions commute. But this can be done using string
diagrams. �

2.2. Equivariant Modules. Let G be a finite group and let A be a ring equipped
with an action of G on A by ring automorphisms. In this subsection we provide three
descriptions of the category of G-equivariant A-modules.

(1) A G-equivariant A-module is given by an A-module M equipped with an additive
action of G on M satisfying

g(am) = g(a)g(m)
for all g ∈ G, a ∈ A,m ∈ M . Morphisms between G-equivariant A-modules are
A-module homomorphisms which are in addition G-equivariant maps.

(2) We define the crossed product ring AoG as the ring whose underlying additive
group of elements is given by A⊗ZZ[G], and multiplication is given by the formula

(a⊗ g)(a′ ⊗ g′) = ag(a′)⊗ gg′.
The category of G-equivariant A-modules is now given by the category of AoG-
modules.

(3) The ring A equipped with an action of G by ring automorphisms gives rise to a
monoid in the category of Z[G]-modules (equipped with the usual tensor product
of Z[G]-modules): The multiplication map of the ring

µ : A⊗Z A→ A

actually lies in Z[G]-mod since
µ(g(a⊗ a′)) = µ(ga⊗ ga′)

= g(a)g(a′)
= g(aa′) = gµ(a⊗ a′)

for all g ∈ G, a, a′ ∈ A. The same holds for the unit map Z → A : 1 7→ 1.
The category of G-equivariant A-modules can now be defined as the category of
modules over the monoid in Z[G]-mod given by the triple

(A, µ : A⊗Z A→ A,Z→ A).



2. EQUIVARIANT MODULES OVER THE EXTERIOR ALGEBRA 137

It is easy to see that all three constructions yield equivalent categories. For example,
take an object in the category described in (3). It consists of a Z[G]-module M together
with a morphism µM : A⊗M → M satisfying (aa′)m = a(a′m) for all a, a′ ∈ A, m ∈ M .
So M already has a G-action and also an A-module structure. The fact that µM is also a
G-equivariant map yields

g(am) = g(µM(a⊗m))
= µM(g(a⊗m))
= µM(g(a)⊗ g(m))
= g(a)g(m)

for all g ∈ G, a ∈ A, m ∈M , which is the compatibility described in (1).

2.3. Internal Algebra. We have seen in Subsection III.2.1 how algebras and modules
can be modeled internal to a given monoidal category. But even more well-known con-
structions from classical algebra can be internalized: In this subsection, we deal with an
internalization of the exterior algebra, its dual coalgebra, free resolutions, and cofree reso-
lutions. All these concepts are realized in Cap and are concretely utilized in Computation
III.3.11 and III.3.21.

Let (A,⊗, 1, α, λ, ρ) be a tensor category over a field k. Note that since A is rigid, ⊗
is an exact functor. We assume that A admits an exact faithful braided monoidal functor

Fib : A→ k-vec
which we call fiber functor. We will use Fib to reduce the verification of the commutativity
of diagrams to simple familiar computations in k-vec.

2.3.1. Exterior Algebra. In order to define the exterior algebra internally, we will as-
sume char(k) 6= 2.

Construction 2.8. Let V ∈ A. We are going to construct objects ∧iV ∈ A and
morphisms mi+1 : ∧iV ⊗ V → ∧i+1V for all i ∈ N0. We set

∧0V := 1,
∧1V := V,

m1 := λ : 1⊗ V → V.

Next, we construct ∧i+1V and mi+1 from the data (mi,∧i−1V ). Denote the following
morphism by τ (standing for transposition):

(∧i−1V ⊗ V )⊗ V ∧i−1V ⊗ (V ⊗ V )

∧i−1V ⊗ (V ⊗ V ) (∧i−1V ⊗ V )⊗ V

α−1
∧i−1V,V,V

∧i−1V ⊗ γV,V

α∧i−1V,V,V



138 3. APPLICATIONS TO EQUIVARIANT SHEAVES

We define mi+1 as the cokernel projection of ri := (mi ⊗ V ) ◦
(
τ + id(∧i−1V⊗V )⊗V

)
. This

yields an exact sequence:

(∧i−1V ⊗ V )⊗ V ∧iV ⊗ V ∧i+1V 0
(mi ⊗ V ) ◦

(
τ + id(∧i−1V⊗V )⊗V

)
mi+1

Remark 2.9. The objects ∧iV are mapped via Fib to the quotient spaces

(∧i−1FibV ⊗FibV )
/〈

(v1∧· · ·∧vi−2∧vi−1)⊗vi+(v1∧· · ·∧vi−2∧vi)⊗vi−1 | v1, . . . , vi ∈ FibV
〉

which identify readily with the i-th exterior power of the vector space FibV (since we
assumed char(k) 6= 2). The morphisms mi map via Fib and this identification to the
multiplication

(v1 ∧ · · · ∧ vi)⊗ v 7→ v1 ∧ · · · ∧ vi ∧ v.

Remark 2.10. Deligne defines the objects ∧iV in [Del90] as the images of the anti-
symmetrization morphisms

∑
π∈Si

sgn(π)π :
i⊗
V →

i⊗
V.

But the inductive Construction III.2.8 is easier to compute since it avoids the summation of
i! morphisms (by using the fact that the transpositions (1, 2), (2, 3), . . . , (i− 1, i) generate
the group Si). Remark III.2.9 justifies that in our context, working with the inductive
construction really yields what we are aiming for, namely an internalization of the exterior
algebra.

Since ∧jFibV ∼= 0 for j > dim(FibV ), the same is true for ∧jV . We therefore define the
object E := ⊕dim(FibV )

i=0 ∧iV together with the 0-th summand inclusion as unit η : 1 ↪→ E.
Construction 2.11. Our goal is to equip E with a multiplication µ : E ⊗ E → E

turning it into a monoid in A. We proceed by induction. We set

µ0
E := ρE : E ⊗ 1→ E

and

µ1
E E ⊗ V

⊕
i(∧iV ⊗ V ) E:=

σ−⊗V ((∧iV )i)
⊕

im
i+1

where σ denotes the natural isomorphism of Lemma I.2.10. Now, we construct

µiE : E ⊗ ∧iV → E

as a colift along an epimorphism in the following diagram:



2. EQUIVARIANT MODULES OVER THE EXTERIOR ALGEBRA 139

E ⊗ ∧iV E

E ⊗ (∧i−1V ⊗ V ) (E ⊗ ∧i−1V )⊗ V E ⊗ V

µiE

E ⊗mi

αE,∧i−1V,V µi−1
E ⊗ V

µ1
E

To see that this colift exists, note that E ⊗ mi is the cokernel of the morphism E ⊗ ri

(see Construction III.2.8). The composition of the other morphisms in the above diagram
yield a test morphism for E ⊗ ri, which can readily be verified after applying the fiber
functor and computing with finite dimensional vector spaces.

Adding up the µiE yields a multiplication morphism µ : E ⊗ E → E:

µE E ⊗ E
⊕
i(E ⊗ ∧iV ) E:=

σE⊗− ((∧iV )i)
⊕
i µ

i
E

Checking the associativity law and the unit constraints can also be done after the applica-
tion of Fib.

Definition 2.12. Given V ∈ A, we call the monoid constructed in III.2.11 the exte-
rior algebra of V and denote it by ∧V .

2.3.2. Dual of Exterior Algebra. This subsection simply states the dual results of Sub-
section III.2.3.1 and thus can safely be skipped. The constructions provided by this subsec-
tion will be used in the computation of the Tate sequence of an E-module (see Computation
III.3.11). We assume char(k) 6= 2. We are going to describe how to construct the comonoid
structure of ⊕i ∧iW ' (⊕i ∧iV )∗ = (∧V )∗ (see Remark III.2.3), where we set W := V ∗.

Construction 2.13. This construction is the dual of Construction III.2.8. LetW ∈ A.
We are going to construct objects ∧iW ∈ A and morphisms ci+1 : ∧i+1W → W ⊗∧iW for
all i ∈ N0. We set

∧0W := 1,
∧1W := W,

c1 := ρ−1
W : W → W ⊗ 1.

Next, we construct ∧i+1W and ci+1 from the data (ci,∧i−1W ). Denote the following
morphism by τ (standing for transposition):

W ⊗ (W ⊗ ∧i−1W ) (W ⊗W )⊗ ∧i−1W

(W ⊗W )⊗ ∧i−1W W ⊗ (W ⊗ ∧i−1W )

αW,W,∧i−1W

γW,W ⊗ ∧i−1W

α−1
W,W,∧i−1W



140 3. APPLICATIONS TO EQUIVARIANT SHEAVES

We define ci+1 as the kernel embedding of ri := (τ + idW⊗(W⊗∧i−1W )) ◦ (W ⊗ ci), which
yields an exact sequence:

W ⊗ (W ⊗ ∧i−1W ) W ⊗ ∧iW ∧i+1W 0ci+1(τ + idW⊗(W⊗∧i−1W )) ◦ (W ⊗ ci)

We define ωE := ⊕dim(FibW )
i=0 ∧iW together with the 0-th summand projection as counit

ε : ωE � 1.
Construction 2.14. This construction is dual to Construction III.2.11. Our goal is

to equip ωE with a comultiplication ∆ : ωE → ωE ⊗ ωE turning it into a comonoid in A.
We proceed by induction. We set

∆0
ωE

:= λ−1
ωE

: ωE → 1⊗ ωE
and

∆1
ωE

ωE
⊕
i(W ⊗ ∧iW ) W ⊗ ωE:=

⊕
i c
i+1 σW⊗− ((∧iW )i)

Now, we construct ∆i
ωE

: ωE → ∧iW ⊗ωE as a lift along a monomorphism in the following
diagram:

∧iW ⊗ ωE ωE

(W ⊗ ∧i−1W )⊗ ωE W ⊗ (∧i−1W ⊗ ωE) W ⊗ ωE

∆i
ωE

ci ⊗ ωE
α W ⊗∆i−1

ωE

∆1
ωE

This lift exists since the colift exists in the dual Construction III.2.11.
Adding up the ∆i

ωE
yields a comultiplication morphism ∆ : ωE → ωE ⊗ ωE:

∆ωE
ωE

⊕
i(∧iW ⊗ ωE) ωE ⊗ ωE:=

⊕
i ∆i

ωE σ−⊗ωE ((∧iW )i)

2.3.3. Internal Free Resolutions. The goal of this subsection is to give a purely cate-
gorical construction of free resolutions. First, we introduce free modules w.r.t a forgetful
functor.

Definition 2.15. Let (A, µ : A⊗ A→ A, η : 1→ A) be a monoid in A. The functor
| · | : mod-A→ A : (M,µM) 7→M

is called the forgetful functor.
Construction 2.16. Given an object N ∈ A, we construct the object N⊗A equipped

with the right action

µN⊗A (N ⊗ A)⊗ A N ⊗ (A⊗ A) (N ⊗ A).:=
α−1
N,A,A N ⊗ µ



2. EQUIVARIANT MODULES OVER THE EXTERIOR ALGEBRA 141

The verification of the action axioms can readily be checked after the application of Fib.
Furthermore, mapping N to (N ⊗ A, µN⊗A) is a functorial operation.

Definition 2.17. The right A-modules (N⊗A, µN⊗A) constructed in III.2.16 are called
free modules relative to | · |.

Free modules have a universal property: Given any right A-module (M,µM), there is
an isomorphism

HomA(N,M) ' Hommod-A((N ⊗ A, µN⊗A), (M,µM)).

natural in N and (M,µM). The next construction makes this natural isomorphism explicit.
Construction 2.18. Given N ∈ A, (M,µM) ∈ mod-A and a morphism φ : N → M

in A, the morphism

φ] (N ⊗ A) (M ⊗ A) M.:=
φ⊗ A µM

defines an A-module morphism between (N⊗A, µN⊗A) and (M,µM) (this can be checked af-
ter the application of Fib). Conversely, given an A-module morphism ψ : (N⊗A, µN⊗A)→
(M,µM), we get a morphism |ψ| ◦ (N ⊗ η) ◦ ρ−1

N : N → M in A. Both constructions are
mutually inverse.

For computing free resolutions, we have to understand an appropriate categorical con-
cept of generators.

Definition 2.19. Let (M,µM) ∈ mod-A. We say an object (N, φ : N → M) of the
category ∑N∈A HomA(N,M) generates M if φ] : N ⊗ A → M is an epimorphism. A
dependent function mapping a module (M,µM) to (N, φ : N →M) generating M is called
a generator function.

Since ⊗ is right exact, (N, φ) generates M if and only if the image embedding
(im(φ), im(φ) ↪→M) generates M , just as we would expect from classical module theory.

Example 2.20. The natural dependent functionM 7→ (M, idM) is trivially a generator
function.

Example 2.21. Given a module (M,µM) over the exterior algebra of V ∈ A (see
Definition III.2.12), consider any section σ of the cokernel projection of µ1

M : M ⊗ V →M
in A. Then σ generates M . To see this, we apply Fib. The cokernel of µ1

FibM is then given
by FibM/ rad(FibM), and any section FibM/ rad(FibM)→ FibM yields generators of the
module FibM . Note that there is no subspace of smaller dimension than FibM/ rad(FibM)
which generates FibM . If every epimorphism in A splits, then this construction gives rise
to a generator function which is in general not natural since the choice of a split is in
general not natural.

Now, we give a categorical construction of free resolutions that we are going to apply
in Computation III.3.11.



142 3. APPLICATIONS TO EQUIVARIANT SHEAVES

Construction 2.22. Let
g : (N,µN) 7→ (gN gN−→ N)

be a generator function for mod-A and let (M,µM) ∈ mod-A. In the following diagram,
every morphism can be constructed from its predecessor where we start at M :

gK1 ⊗ A gK0 ⊗ A gM ⊗ A M

. . . K1 := ker(g]K0) K0 := ker(g]M)

g]M

g]K1 g]K0

Composing the epimorphisms with the monomorphisms yields an exact sequence

. . . gK1 ⊗ A gK0 ⊗ A gM ⊗ A M
g]M

Again, exactness can be checked after the application of Fib.
2.3.4. Internal Cofree Resolutions. This subsection simply states the dual results of

Subsection III.2.3.3 and thus can safely be skipped. The constructions provided by this
subsection will be used for facilitating the construction of a cofree resolution of an E-module
(needed for constructing Tate sequences, see Computation III.3.11). These constructions
are all valid since their duals are.

Definition 2.23. Let (C,∆ : C → C⊗C, ε : C → 1) be a comonoid in A. The functor
| · | : C-comod→ A : (M,∆M) 7→M

is called the forgetful functor.
Construction 2.24. Given an object N ∈ A, we construct the object C⊗N equipped

with the left coaction

∆C⊗N C ⊗N (C ⊗ C)⊗N C ⊗ (C ⊗N).:= ∆⊗N α−1

Furthermore, mapping N to (C ⊗N,∆C⊗N) is a functorial operation.
Definition 2.25. The left C-comodules (C ⊗ N,∆C⊗N) constructed in III.2.24 are

called cofree comodules relative to | · |.
Cofree comodules have a universal property: Given any left C-comodule (M,∆M),

there is an isomorphism
HomA(M,N) ' HomC-comod((M,∆M), (C ⊗N,µC⊗N)).

natural inN and (M,∆M). The next construction makes this natural isomorphism explicit.
Construction 2.26. Given N ∈ A, (M,∆M) ∈ C-comod and a morphism φ : M → N

in A, the morphism



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 143

φ[ M C ⊗M C ⊗N:=
∆M C ⊗ φ

defines a C-comodule morphism between (M,∆M) and (C⊗N,∆C⊗N). Conversely, given a
C-comodule morphism ψ : (M,µM)→ (C⊗N,∆C⊗N), we get a morphism λN◦(ε⊗N)◦|ψ| :
M → N in A. Both constructions are mutually inverse.

Definition 2.27. Let (M,∆M) ∈ C-comod. We say an object (N, φ : M → N) of the
category ∑N∈A HomA(M,N) cogenerates M if φ[ : M → C ⊗N is a monomorphism. A
dependent function mapping a comodule (M,∆M) to (N, φ : M → N) cogenerating M is
called a cogenerator function.

Example 2.28. Given a comodule (M,∆M) over the dual of the exterior algebra of
V ∈ A, consider any retraction r of the kernel embedding of ∆1

M : M → V ∗ ⊗M in A.
Then r cogenerates M . To see this, we apply Fib. The kernel of ∆1

FibM is then given by
soc(FibM), and any retraction FibM � soc(FibM) cogenerates the comodule FibM .

Now, we are going to construct a cofree resolution of a given comodule.
Construction 2.29. Let

g : (N,∆N) 7→ (N gN−→ gN)
be a cogenerator function for C-comod and let (M,∆M) ∈ C-comod. In the following
diagram, every morphism can be constructed from its predecessor where we start at M :

C ⊗ gK1 C ⊗ gK0 C ⊗ gM M

. . . K1 := coker(g[K0) K0 := coker(g[M)

g[M

g[K1 g[K0

Composing the epimorphisms with the monomorphisms yields an exact sequence

C ⊗ gK1 C ⊗ gK0 C ⊗ gM M
g[M

3. Computations with Equivariant Sheaves

3.1. BGG Correspondence. In this subsection we give a short introduction to the
Bernstein-Gel’fand-Gel’fand correspondence (BGG). We refer the reader to [BGG78],
[EFS03], and the appendix of [OSS11] for the proofs.

Let k be a field, n ∈ N0, and V an (n + 1)-dimensional graded k-vector space con-
centrated in degree −1 with basis e0, . . . , en. We denote by W the graded k-dual of V
(necessarily concentrated in degree 1), and by x0, . . . , xn the dual basis associated to the
ei. We further set E := ∧

V , S := Sym(W ), and ωE := Homk(E, k) (as an E-E-bimodule).
We write E-grMod and S-grMod for the categories of graded E-modules and S-modules,



144 3. APPLICATIONS TO EQUIVARIANT SHEAVES

respectively, and denote their full subcategories generated by finitely generated graded
modules by E-grmod and S-grmod, respectively. Let further Pnk := Proj(S) be the projec-
tive space and Coh(Pnk) the category of coherent sheaves on Pnk .

Construction 3.1. Given a graded S-moduleM = ⊕
d∈ZMd, we construct the follow-

ing cochain complex of graded E-modules:

. . .R(M) : Mi−1 ⊗k ωE Mi ⊗k ωE . . .

m⊗ φ m (∑n
i=0 xi ⊗ ei)φ

µi−1

7→

Given a morphism of graded S-modules α : M → N , the family of maps (αi ⊗ ωE)i∈Z
defines a cochain map from R(M) to R(N). Thus, we obtain a functor

R : S-grMod −→ Ch•(E-grMod)
Construction 3.2. If we are given a cochain complex of graded S-modules

. . .M• : M j−1 M j . . .dj−1

then applying R yields a cochain complex of cochain complexes (i.e., a double cochain
complex with commutative squares)

. . . R(M j−1) R(M j) . . .
R(dj−1)

By taking its total cochain complex, we can extend R to a functor

R : Ch•(S-grMod) −→ Ch•(E-grMod)

and the objects in the resulting cochain complex can be described as

R(M•)l =
⊕
i+j=l

M j
i ⊗k ωE

for l ∈ Z.
We want to add one remark on the total cochain complex construction: In the category

of graded E-modules, the direct product of a family of objects is given by taking the direct
product in each degree. In particular, the direct product ∏i+j=lM

j
i ⊗k ωE taken in the

category of graded E-modules is actually isomorphic to ⊕i+j=lM
j
i ⊗k ωE, a fact which is

horribly wrong in the non-graded case. From this observation, it follows that it does not
matter whether we apply Tot⊕ or TotΠ in our construction of R.

Theorem 3.3. IfM• is a finite cochain complex of finitely generated graded S-modules,
then R(M•) is eventually exact.

Proof. This theorem holds for a finitely generated graded S-modules M due to The-
orem 2.3 in [EFS03]. If M• is a finite cochain complex, then R(M•) is given by a total
cochain complex associated to a bicomplex with eventually exact rows (see Construction



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 145

III.3.2). Since the spectral sequence associated to this bicomplex converges to the coho-
mology of R(M•), and since the complex is finite, the cohomology of R(M•) is eventually
zero. �

Definition 3.4. The full subcategory of the homotopy category of cochain complexes
Ch•(E-grmod) generated by exact cochain complexes only consisting of free objects is called
the category of Tate sequences and denoted by Tate(E). Objects in this category are
called Tate sequences. A Tate sequence is called minimal if tensoring with the trivial
E-E-bimodule k only yields zeros as differentials. Note that Tate(E) inherits the structure
of a triangulated category from the homotopy category of cochain complexes.

Remark 3.5. The objects of a minimal Tate sequence are uniquely determined up to
isomorphism.

Construction 3.6. Given a finite cochain complex M• of finitely generated graded
S-modules, let c ∈ Z be an index such that Hi(R(M•)) = 0 for i > c (Theorem III.3.3).
Let µi denote the i-th differential of R(M•). Combining a free resolution of ker(µc+1) in
E-grmod with the brutal truncation σ>cR(M•) defines a Tate sequence which we denote
by Tate(M•).

Theorem 3.7. Construction III.3.6 gives rise to an exact equivalence

Tate : Db(Coh(Pnk)) ' Tate(E)

Here, an object in Db(Coh(Pnk)) has to be represented by the sheafification of a finite cochain
complex of finitely generated graded S-modules.

Definition 3.8. Let I be the ideal of E-grmod given by

I(A,B) := {φ ∈ HomE-grmod(A,B) | φ factors over a free E-module}

for A,B ∈ E-grmod. The stable module category is defined as the quotient category

E-grmod := E-grmod/I.
Sending a cochain complex in Tate(E) to its 0-th syzygy object (i.e., to the kernel of

its zeroth differential) yields a functor

Syz : Tate(E)→ E-grmod

We also get a functor the other way around using the following construction.
Construction 3.9. LetM ∈ E-grmod. Construction III.2.22 gives us a free resolution

P • � M , where we use cohomological indices. Construction III.2.29 gives us a cofree
resolution M ↪→ I•. Joining both resolutions with the differential

P 0 �M ↪→ I0

yields an exact complex of free objects, thus a Tate sequence. IfM is a reduced E-module,
i.e., if it has no proper free module as a direct summand, then choosing minimal free and
cofree resolutions yields a minimal Tate sequence.



146 3. APPLICATIONS TO EQUIVARIANT SHEAVES

We end up with a chain of equivalences

Db(Coh(Pnk)) ' Tate(E) ' E-grmod

to which we also refer as the BGG correspondence.
Now, we describe how the BGG correspondence can be used for an effective computation

of sheaf cohomology.
Theorem 3.10. Under the BGG correspondence, a coherent sheaf F ∈ Coh(Pnk) ⊆

Db(Coh(Pnk)) corresponds to a minimal Tate sequence of the form

. . .
(⊕n

i=0 Hi(F(−i))
)
⊗k ωE

(⊕n
i=0 Hi(F(−i+ 1))

)
⊗k ωE . . .d0

where the cohomology groups Hi(F(j)) are regarded as graded k-vector spaces concentrated
in degree j. Thus, from this cochain complex, we can read off the cohomology groups of F
as the socles of the objects.

Proof. This is Theorem 4.1 in [EFS03]. We present an alternative proof which di-
rectly uses the BGG correspondence:

Hi(F) ' ExtiCoh(Pn
k

)(OPn
k
,F)

' HomDb(Coh(Pn
k

))(OPn
k
,F [i])

' HomTate(E)
(
Tate(OPn

k
),Tate(F [i])

)
' HomTate(E)

(
Tate(OPn

k
),Tate(F)[i]

)
' HomE-grmod

(
Syz(Tate(OPn

k
)), Syz(Tate(F)[i])

)
' HomE-grmod (k, Syz(Tate(F)[i]))

Now, if we choose Tate(F) as a minimal Tate resolution, its syzygy objects are reduced
E-modules. From this, we conclude

HomE-grmod (k, Syz(Tate(F)[i])) ' HomE-grmod(k, Syz(Tate(F)[i]))
' soc(Tate(F)i)0

where we use that elements in the socle of an E-module M correspond to E-module
homomorphisms k →M . Substituting F(j) for F gives the result in the general case. �

3.2. Equivariant Cohomology Tables.
3.2.1. Equivariant BGG Correspondence. In the author’s master’s thesis [Pos13], the

setup of the BGG correspondence is generalized to the case where V is equipped with a
k-linear action of a finite group G such that char(k) - |G|. We get a full and faithful functor

Coh(Pk(V ) oG)→ Tate(E oG)

sending a G-equivariant coherent sheaf F ∈ Coh(Pk(V ) o G) to its corresponding G-
equivariant Tate sequence. The equivalence between the stable module category and the



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 147

category of Tate sequences also generalizes to the G-equivariant setup:

Tate(E oG) ' (E oG)-grmod.

Forgetting the G-action yields the classical BGG correspondence. In particular, the mini-
mal G-equivariant Tate sequence associated to F is nothing but the classical Tate sequence
equipped with an action of G on every object such that the differentials respect this action.
By Theorem III.3.10, it follows that G acts on the cohomology groups of F . The collection
of k-vector spaces

(
Hi(F(j))

)
ij
equipped with their G-actions is called the G-equivariant

cohomology table of F .
3.2.2. Equivariant Cohomology Table of the Horrocks-Mumford Bundle.
Computation 3.11. In Subsection I.3.3.11 we constructed a subgroup H of the au-

tomorphism group of the Horrocks-Mumford bundle EHM. Now, we will see that the com-
putation of its H-equivariant cohomology table is feasible with the constructive methods
developed in this thesis. We start with the construction of SRepZ

k (H), the skeletal category
of Z-graded representations of H, using the methods developed in Subsection I.3.3. These
are implemented in the Cap package GroupRepresentationsForCAP.

Defining SRepZ
k (H)

gap> SRepH := RepresentationCategoryZGraded( 1000, 93 );
The Z-graded representation category of Group( [ f1, f2, f3,
f4, f5, f6 ] )

Here, the pair (1000, 93) is the identification number of H in GAP’s SmallGroups library.
gap> H := UnderlyingGroupForRepresentationCategory( RepH );
<pc group of size 1000 with 6 generators>

In order to be able to construct objects in SRepZ
k (H), first we define the set of irreducible

characters of H.
Defining Irr(H)

gap> irr := Irr( H );;

Computing | Irr(H)|

gap> Length( irr );
28

The set Irr(H) consists of 28 irreducible characters which we denote by χ1, . . . , χ28. Each
simple object in SRepZ

k (H) is given by a pair (χi, d) consisting of an irreducible character
χi and an (internal) degree1 d ∈ Z. We denote such an object by χid. An arbitrary object
in SRepZ

k (H) can be simply described as a formal N0-linear combination of simple objects.

1not to be confused with the degree of a group character, i.e., the dimension of a corresponding
representation



148 3. APPLICATIONS TO EQUIVARIANT SHEAVES

Defining v := 1 · χ6
−1 ∈ SRepZ

k (H)

gap> v := RepresentationCategoryZGradedObject( -1, irr[6], RepH );
1*(x_[-1, 6])

We can ask for the dimension of the representation corresponding to v.

gap> Dimension( v );
5

We set the Z-degree of v to −1 because we will identify v with the 5-dimensional (H-
equivariant) degree −1 part 〈e0, . . . , e4〉 of the exterior algebra.

With the next command, we construct the category of right E = ∧
v modules, which

is implemented in the Cap package InternalExteriorAlgebraForCAP.

Defining mod-E

gap> modE := EModuleActionCategory( v );
Module category of the internal exterior algebra modeled via
right actions of 1*(x_[-1, 6])

We can think of the realization of this category in Cap as follows: From the object v ∈
SRepZ

k (H), Cap constructs ∧ v as a monoid internal to SRepZ
k (H), as it is described in

Subsection III.2.3.1. Then Cap models ∧ v-modules via right actions of this internal
monoid, as it is described in Subsection III.2.1. In particular, since v is a Z-graded and
H-equivariant object, we actually end up with the category of Z-graded H-equivariant
modules over ∧ v in this way (see Subsection III.2.2 for the equivariance), which is exactly
what we want for our purpose of computing equivariant cohomology tables via the BGG
correspondence.

We need to define one more object in SRepZ
k (H).

Defining h := 1 · χ5
4 ∈ SRepZ

k (H)

gap> h := RepresentationCategoryZGradedObject( 4, irr[5], SRepH );
1*(x_[4, 5])

We take a look at the dimension of the representation corresponding to h.

gap> Dimension( h );
2

So, we now have two objects v, h ∈ SRepZ
k (H) of dimension 5, 2, respectively (for a list of

all the dimensions of irreducible characters of H, see Subsection I.3.3.11).
As a next step, we are going to construct the free right module h ⊗ E (by means of

Construction III.2.16). This object will later become part of a minimal Tate resolution.



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 149

Defining F := h⊗ E

gap> F := FreeEModule( h, Emod );
<An object in Module category of the internal exterior
algebra modeled via actions of 1*(x_[-1, 6])>

Let us take a look at the head and the socle of h⊗ E.
gap> Head( F );
1*(x_[4, 5])
gap> Socle( F );
1*(x_[-1, 5])

Clearly, we have head(h⊗E) = h. And since E is the exterior algebra in 5 indeterminates,
we have deg(soc(h⊗ E)) = deg(head(h⊗ E))− 5.

The next command displays the decomposition of h ⊗ E, regarded as an object in
SRepZ

k (H), into simple objects.

h⊗ E = χ5
−1 + χ28

0 + (χ8
1 + χ12

1 + χ16
1 + χ20

1 ) + (χ7
2 + χ11

2 + χ15
2 + χ19

2 ) + χ25
3 + χ5

4

gap> ActionDomain( F );
1*(x_[-1, 5]) + 1*(x_[0, 28]) + 1*(x_[1, 8]) + 1*(x_[1, 12]) + 1*(x_[1,

16]) + 1*(x_[1, 20]) + 1*(x_[2, 7]) + 1*(x_[2, 11]) + 1*(x_[2,
15]) + 1*(x_[2, 19]) + 1*(x_[3, 25]) + 1*(x_[4, 5])

We learn that there are no higher multiplicities in this decomposition. With the following
commands, we pick out the object χ7

2 from h⊗E and construct the inclusion c : χ7
2 ↪→ h⊗E

as a morphism in SRepZ
k (H).

Defining c : χ7
2 ↪→ h⊗ E

gap> chi := Support( ActionDomain( F ) )[7];
<x_[2, 7]>
gap> c := ComponentInclusionMorphism( ActionDomain( F ), chi );
<A morphism in The Z-graded representation category of Group( [ f1, f2,

f3, f4, f5, f6 ] )>
gap> Display( c );
Component: (x_[2, 7])

[1]

A morphism in Category of matrices over Q[e]
------------------------

Invoking the universal property of χ7
2⊗E, we can create from the homomorphism of graded

representations c : χ7
2 ↪→ h⊗ E an E-module homomorphism χ7

2 ⊗ E → h⊗ E (by means
of Construction III.2.18).



150 3. APPLICATIONS TO EQUIVARIANT SHEAVES

Defining u : χ7
2 ⊗ E → h⊗ E

gap> u := UniversalMorphismFromFreeModule( F, c );
<A morphism in Module category of the internal exterior
algebra modeled via actions of 1*(x_[-1, 6])>
gap> Display( UnderlyingMorphism( u ) );
Component: (x_[-1, 5])

[1/2]

A morphism in Category of matrices over Q[e]
------------------------
Component: (x_[0, 28])

[1/4*(-e^7 + e^5 - e^3 + 2*e)]
[1/4*(-e^7 + e^6 - e^4 + e^3)]
[ 1/2]

A morphism in Category of matrices over Q[e]
------------------------
Component: (x_[1, 12])

[1/2*(-e^7 + e^5 - e^3 + 2*e)]

A morphism in Category of matrices over Q[e]
------------------------
Component: (x_[1, 16])

[-1]

A morphism in Category of matrices over Q[e]
------------------------
Component: (x_[1, 20])

[1/2*(-e^7 + e^3)]

A morphism in Category of matrices over Q[e]
------------------------
Component: (x_[2, 7])

[1]

A morphism in Category of matrices over Q[e]
------------------------



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 151

So, the whole morphism u : χ7
2⊗E → h⊗E regarded without its E-action can be encoded

in 5 matrices of size 1× 1 and 1 matrix of size 3× 1 over Q[e], where e is a 20-th root of
unity. From the display command we can read off the non-zero components of u:

Component Dimension Matrix
χ5
−1 2

(
1
2

)

χ28
0 10


1
4(−e7 + e5 − e3 + 2e)
1
4(−e7 + e6 − e4 + e3)

1
2


χ12

1 5
(

1
2(−e7 + e5 − e3 + 2e)

)
χ16

1 5
(
−1
)

χ20
1 5

(
1
2(−e7 + e3)

)
χ7

2 5
(
1
)

This rather compact data structure for such a morphism is due to the H-equivariance and
the Z-grading. For example, the 3×1 matrix of the χ28

0 component encodes a 30×10 matrix
(since χ28

0 has a 10-dimensional underlying vector space). Omitting the H-equivariance and
the Z-grading, the underlying vector space homomorphism of u has to be given by a single
matrix with dim(χ7

2 ⊗ E) = 5 · 25 = 160 rows and dim(h⊗ E) = 2 · 25 = 64 columns. So,
we can really see how the very rigid structure in our situation helps us to encode a single
big matrix with the help of a few small ones. This effect becomes even more important for
the next steps of our computation, where we are going to compute stepwise a minimal free
resolution of ker(u) (by means of Construction III.2.22).

Step of a minimal free resolution u2 : G(ker(u))⊗ E � ker(u) ↪→ χ7
2 ⊗ E

gap> u2 := StepOfMinimalFreeResolutionOfKernel( u );
<A morphism in Module category of the internal exterior
algebra modeled via actions of 1*(x_[-1, 6])>

The source of u2 is the next object to the left in our Tate sequence. We compute its head,
socle, and its socle’s dimension.
gap> Head( Source( u2 ) );
1*(x_[1, 27])
gap> Socle( Source( u2 ) );
1*(x_[-4, 27])
gap> Dimension( last );
10

It follows that our Tate sequence is so far of the form



152 3. APPLICATIONS TO EQUIVARIANT SHEAVES

χ27
1 ⊗ E χ7

2 ⊗ E h⊗ E
u2 u

Enlisting the socle dimensions in a table gives us an excerpt of a cohomology table (The-
orem III.3.10):

H4 : ? ? ? ?
H3 : ? 10 5 ? ? ?
H2 : ? ? 2 ? ?
H1 : ? ? ? ?
H0 : ? ? ? ?
p −5 −4 −3 −2 −1 0 1

We see that it coincides with an excerpt of the cohomology table of the Horrocks-Mumford
bundle. We resolve one step further.

Step of a minimal free resolution u3 : G(ker(u2))⊗ E � ker(u2) ↪→ χ27
1 ⊗ E

gap> u3 := StepOfMinimalFreeResolutionOfKernel( u2 );
<A morphism in Module category of the internal exterior
algebra modeled via actions of 1*(x_[-1, 6])>

We compute the socle of Source(u3) for the next diagonal entries in the cohomology table.

gap> soc3 := Socle( Source( u3 ) );
1*(x_[-6, 1]) + 1*(x_[-6, 2]) + 1*(x_[-6, 3]) + 1*(x_[-6, 4])
+ 1*(x_[-5, 28])

The socle is supported in degree −6 and −5. We compute its dimension in degree −6.

gap> DegreePart( soc3, -6 );
1*(x_[-6, 1]) + 1*(x_[-6, 2]) + 1*(x_[-6, 3]) + 1*(x_[-6, 4])
gap> Dimension( last );
4

We compute its dimension in degree −5.

gap> DegreePart( soc3, -5 );
1*(x_[-5, 28])
gap> Dimension( last );
10



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 153

So due to the Z-grading, we could properly read off the dimensions of the corresponding
cohomology groups and now enlist them in the next diagonal of our table:

H4 : 4 ? ? ? ?
H3 : ? 10 10 5 ? ? ?
H2 : ? ? 2 ? ?
H1 : ? ? ? ?
H0 : ? ? ? ?
p −6 −5 −4 −3 −2 −1 0 1

Now, we would like to fill in the entries of the table to the right. Using Cap, we can
fulfill this task in the following way: First, we interpret the morphism u : χ7

2⊗E → h⊗E of
the Tate sequence not as an E-module morphism, but as an ωE-comodule morphism, where
ωE is the coalgebra E∗ (see Subsection III.2.3.2). This transformation of data structures
is justified by the duality of modules and comodules in the context of rigid symmetric
monoidal categories (see Lemma III.2.7).
Defining uco ∈ ωE-comod, the morphism corresponding to u ∈ mod-E

gap> u_co := EModuleActionCategoryMorphismAsCoactionCategoryMorphism( u );
<A morphism in Module category of the internal exterior
algebra modeled via left coactions of 1*(x_[1, 9])>

Note that the coacting object is now given by v∗ = (χ6
−1)∗ = χ9

1. In the context of
comodules, we can speak about minimal cofree resolutions, and we are in the position to
compute them by employing Construction III.2.29.
Step of a minimal cofree resolution (uco)2 : h⊗ E � coker(u) ↪→ ωE ⊗G(coker(u))

gap> u_co2 := StepOfMinimalCofreeResolutionOfCokernel( u_co );
<A morphism in Module category of the internal exterior
algebra modeled via coactions of 1*(x_[1, 9])>

We investigate the socle of Range ((uco)2).
gap> Socle( Range( u_co2 ) );
1*(x_[1, 8])
gap> Dimension( last );
5

So, we can fill in the next diagonal to the right.
H4 : 4 ? ? ? ?
H3 : ? 10 10 5 ? ? ?
H2 : ? ? 2 ? ?
H1 : ? ? ? 5 ?
H0 : ? ? ? ?
p −6 −5 −4 −3 −2 −1 0 1 2

We compute one more step of the cofree resolution.



154 3. APPLICATIONS TO EQUIVARIANT SHEAVES

gap> u_co3 := StepOfMinimalCofreeResolutionOfCokernel( u_co2 );
<A morphism in Module category of the internal exterior
algebra modeled via coactions of 1*(x_[1, 9])>
gap> Socle( Range( u_co3 ) );
1*(x_[2, 26])
gap> Dimension( last );
10

This computation yields the next diagonal.

H4 : 4 ? ? ? ?
H3 : ? 10 10 5 ? ? ?
H2 : ? ? 2 ? ?
H1 : ? ? ? 5 10 ?
H0 : ? ? ? ?
p −6 −5 −4 −3 −2 −1 0 1 2 3

Since we worked all the way in an H-equivariant context, we can also enlist characters of
H instead of dimensions in our table, giving an example of an excerpt of an equivariant
cohomology table:

H4 : ∑4
i=1 χi ? ? ? ?

H3 : ? χ28 χ27 χ7 ? ? ?
H2 : ? ? χ5 ? ?
H1 : ? ? ? χ8 χ26 ?
H0 : ? ? ? ?
p −6 −5 −4 −3 −2 −1 0 1 2 3

3.3. Spectral Cohomology Tables.
3.3.1. Definition. In this subsection we work with a modification of the natural de-

scending filtration defined in Example III.1.9.
Definition 3.12. We define a natural descending filtration F on E-grmod as fol-

lows: for M = ⊕
d∈ZMd ∈ E-grmod, we set F p(M) as the submodule of M generated by⊕

d≥pMd+n+1.

Remark 3.13. The shift by n+1 in Definition III.3.12 is necessary since the cohomology
groups of a coherent sheaf are naturally encoded in the socles of the objects in the Tate
resolution, and not in the heads.

Let F be a coherent sheaf on Pnk and let T • be its corresponding Tate sequence. The
induced spectral sequence of F (the natural descending filtration defined above) and T •

(see Definition III.1.10) starting at page 1 is an invariant of coherent sheaves, since its
assignment is a functorial process (see Remark III.1.11).



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 155

Using the same argumentation as in Example III.1.14, we see that the objects on the
first page are the summands of the minimal Tate sequence described in Theorem III.3.10:

Ep,q
1 ' Hq(F(p))⊗k ωE

So in particular, these objects encode the cohomology table of F as(
dimk(soc(Ep,q

1 ))
)
p,q

But since the whole spectral sequence is an invariant of F , the objects on all of its pages
are invariants as well, and in particular their associated Hilbert series:

Definition 3.14. Let M = ⊕
d∈ZMd ∈ E-grmod. Its Hilbert series is given by the

finite sum
HS(M) :=

∑
d∈Z

dimk(Md)td ∈ Z[t, t−1]

So, we get more numerical invariants by considering additionally(
HS(Ep,q

r )
)
r>1,p,q

Enhancing the cohomology table of F with these new invariants is what we call the spec-
tral cohomology table of F .

3.3.2. Spectral Cohomology Table of ΩP2
k
. We are going to answer the question whether

the spectral cohomology table really carries more information than the cohomology table,
i.e., if there exists coherent sheaves F and G having the same cohomology tables but not
the same spectral cohomology tables. We start our investigation with an example for which
the spectral cohomology table does not provide new information, namely the cohomology
table of the cotangent bundle ΩP2

k
on projective space of dimension 2:

H2 : 48 35 24 15 8 3
H1 : 1
H0 : 3 8 15 24 35 48
p −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

The shape of the first page of the spectral sequence from which we compute the spectral
cohomology table of ΩP2

k
can be read off from the cohomology table:

E−4,2
1 E−3,2

1 E−2,2
1 · · · · · ·

· · · · E0,1
1 · · · ·

· · · · · · E2,0
1 E3,0

1 E4,0
1

p

q

Since the differentials pointing to and going from E0,1
1 ' H1(ΩP2

k
) ⊗ ωE are zero, this

object won’t change by passing to the next page, and its Hilbert series simply is a shifted



156 3. APPLICATIONS TO EQUIVARIANT SHEAVES

multiple of the Hilbert series of the exterior algebra. Furthermore, we know that the Tate
sequence is exact, and thus the spectral sequence converges to 0. Since the differentials
pointing to and going from Ep,2

r for r > 1 and p < −2 are all zero, we conclude that these
objects have to be zero. The same is true for Ep,0

r with r > 1 and p > 2. So, we are left
with the following task: Given the truncated Tate sequence
. . . H2(ΩP2

k
(−4))⊗k ωE H2(ΩP2

k
(−3))⊗k ωE H2(ΩP2

k
(−2))⊗k ωE 0

. . . E−4,2
1 E−3,2

1 E−2,2
1 0,

' ' ' =

compute the Hilbert series of its cohomology. In our example the Hilbert series of each
object are given as follows:

. . . ωE ⊗k H2(ΩP2
k
(−4)) ωE ⊗k H2(ΩP2

k
(−3)) ωE ⊗k H2(ΩP2

k
(−2)) 0

HS : 15t−4 + 45t−3 + 45t−2 + 15t−1 8t−3 + 24t−2 + 24t−1 + 8 3t−2 + 9t−1 + 9 + 3t

Taking the alternating sum of these Hilbert series for at least i ≥ 2 summands, we get
3t+ 1 plus a term which is of degree −i+ 1. Due to Theorem III.3.16 (stated and proven
in the next section), we can conclude that 3t + 1 is the Hilbert series of the cohomology.
So, the second page of the spectral cohomology table has to look as follows:

Epq
2 :

2 3t+ 1
1 t3 + 3t2 + 3t+ 1
0 t3 + 3t2
q/p −3 −2 −1 0 1 2 3

The other term t3 + 3t2 can be either computed in the same way as 3t+ 1, or by using the
fact that the third page has to become 0. So, we were really able to compute the spectral
cohomology table of ΩP2

k
only using its cohomology table.

3.3.3. Hilbert Series of Unbounded Cochain Complexes. We now use the standard for-
malism of topological groups in commutative algebra (see for example [AM69]) which
allows us to reason with infinite alternating sums of Hilbert series (as it was needed in
Subsection III.3.3.2).

Definition 3.15. Let Z[t, t−1] denote the abelian group of Laurent polynomials, i.e.,
the underlying abelian group of the localization of the polynomial ring Z[t] at t. We define
a sequence of subgroups

Z[t, t−1] = Z[t, t−1]0 ⊇ Z[t, t−1]1 ⊇ · · · ⊇ Z[t, t−1]n ⊇ . . .

by setting Z[t, t−1]n := {∑i∈Z ait
i ∈ Z[t, t−1] | ai = 0 for |i| < n}. Taking these subgroups

as a fundamental system of neighborhoods of 0 defines a topological group structure on
Z[t, t−1], whose completion is denoted by Ẑ[t, t−1]. Since ⋂n≥0 Z[t, t−1]n = 0, which implies
that Z[t, t−1] is Hausdorff, the natural map

Z[t, t−1] ↪→ Ẑ[t, t−1]



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 157

is injective. Thus, we can identify a Hilbert series of a finitely generated graded E-module
with an element of Ẑ[t, t−1].

Theorem 3.16. Let (C•, d•) ∈ Ch•(E-grmod) be a cochain complex with the following
properties.

(1) There exists an l ∈ N such that for all i > l and i < −l, we have ker(di) ⊆ rad(Ci).
(2) It has bounded cohomology.

Then the finite alternating sum ∑
i∈Z(−1)iHS(Hi(C•)) is equal to∑

i∈Z
(−1)iHS(Ci) := lim

j→∞

∑
|i|<j

(−1)iHS(Ci) ∈ Ẑ[t, t−1].

Proof. For any finite cochain complex D•, it is well known that∑
i∈Z

(−1)iHS(Hi(D•)) =
∑
i∈Z

(−1)iHS(Di).

So, we analyze the partial sums ∑|i|<j(−1)iHS(Ci) and see that they equal

(−1)−(j−1)HS(ker(d−(j−1))) +
∑
i∈Z

(−1)iHS(Hi(C•)) + (−1)j−1HS(coker(dj−2))

for j sufficiently large, since C• has bounded cohomology. Thus, it suffices to prove
limj→∞HS(ker(d−(j−1))) = 0 and limj→∞HS(coker(dj−2)) = 0.

To prove the first limit, we introduce the following quantity: For M ∈ E-grmod, we
define ν(M) := max{d ∈ Z | Md 6= 0}, where we set max(∅) = −∞, so that we have
ν(M) = −∞ ⇔ M ' 0. Furthermore, we have ν(M) = ν(M/ rad(M)), and if M 6= 0,
then ν(rad(M)) < ν(M).

Now, we use our first assumption on C• to compute for all i < −l:
ν(Ci−1) = ν(Ci−1/ rad(Ci−1))

= ν(Ci−1/ ker(di−1))
= ν(im(di−1))
≤ ν(rad(Ci)) ≤ ν(Ci),

where the last inequality is strict if and only if Ci 6' 0. Thus, either the cochain complex
is bounded to the left, or the highest degree of each Ci strictly decreases when i decreases.
Since the sequence (ν(ker di))i<−l is bounded by (ν(Ci))i<−l, it also approaches −∞. And
since HS(ker di) ∈ Z[t, t−1]ν(ker di), we conclude limj→∞HS(ker(d−(j−1))) = 0. Dualizing C•
yields the claim for the second limit. This completes the proof. �

3.3.4. Spectral Cohomology Tables of Supernatural Sheaves. We are going to generalize
the example computation of Subsection III.3.3.2 to the case of sheaves with supernatural
cohomology. The following definitions come from Boij-Söderberg theory, in which vector
bundles with supernatural cohomology play a crucial role (for a survey of Boij-Söderberg
theory, see [Flø12]).



158 3. APPLICATIONS TO EQUIVARIANT SHEAVES

Definition 3.17. For s ∈ N0, a root sequence of length s is a sequence of strictly
decreasing integers

z : z1 > z2 > · · · > zs.

For our convenience, we will expand every such sequence by zi :=∞ for i < 1 and zi := −∞
for i > s. We set its associated Hilbert polynomial as

HPz(t) := 1
s!

s∏
i=1

(t− zi)

and its associated cohomology table as

γz(p, q) :=
{
|HPz(p)| zq > p > zq+1

0 otherwise
Definition 3.18. Let z be a root sequence. A coherent sheaf F ∈ Coh(Pnk) has su-

pernatural cohomology of type z if the cohomology table of F is given by
Hq(F(p)) = Degree(F) · γz(p, q)

In particular, the Hilbert polynomial of F equals Degree(F) · HPz(t).
Theorem 3.19. Assume F ∈ Coh(Pnk) has supernatural cohomology. Then the spectral

cohomology table of F is determined by its cohomology table.

Proof. Let (Ep,q
r )r≥1 be the family of objects of the spectral sequence defining the

spectral cohomology table of F . Let further z = z1 > · · · > zs be the root sequence of F .
If s = 0, then the pages r > 1 are all zero. If s > 0, let P := ({(p, q) | Ep,q

2 6' 0}, <), where
(p, q) < (p′, q′) :⇔ p < p′. By supernaturality, < is a well-order with least element given by
(zs − 1, s). For each (p, q) ∈ P , there is exactly one page τpq ∈ Z such that the differential
pointing to Ep,q

τpq is non-trivial, and exactly one page φpq ∈ Z such that the differential going
from Ep,q

φpq
is non-trivial.

We start determining HS(Ezs−1,s
r ) for all r > 1, i.e., the Hilbert series of the objects in

the least position. We can compute
HS(Ezs−1,s

2 ) =
∑
p∈Z

(−1)pHS(Ep,s
1 )

as a limit due to Theorem III.3.16. Furthermore,

HS(Ezs−1,s
r ) =

{
HS(Ezs−1,s

2 ) r = 2, . . . , out(zs − 1, s)
0 otherwise.

Thus the Hilbert series of all objects at (zs− 1, s) are determined. This was the base case.
Now we do the inductive step: Let (p, q) ∈ P such that for all predecessors (p′, q′) ∈

P , we have already computed HS(Ep′,q′
r ) for all r > 1. Then Ep,q

r ' Ep,q
1 for r =

2, . . . ,min{τpq, φpq}. We further distinguish three cases.
First case (τpq = φpq): Then Ep,q

r ' 0 for r > τpq, since the spectral sequence converges
to 0.

Second case (τpq < φpq): Let



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 159

0 Ep−lr,q+l(r−1)
τpq

. . . Ep−r,q+(r−1)
τpq

Ep,q
τpq 0

be the cochain complex C• on the τpq-th page (of length l). We are interested in the Hilbert
series of the cohomology at the right border position. C• is everywhere exact except for
the left and right border position. So when we compute HS(C•) as an alternating sum of
the Hilbert series of the objects in C•, we get (−1)lHS(Ep−lr,q+l(r−1)

τpq+1 ) + HS(Ep,q
τpq+1). Since

by the inductive hypothesis, we know the value of HS(Ep−lr,q+l(r−1)
τpq+1 ), we can also compute

HS(Ep,q
τpq+1). Again, this value stays constant until it gets 0 for r > φpq.

Third case (τpq > φpq): Let

0 Ep−lr,q+l(r−1)
τpq

. . . Ep−2r,q+2(r−1)
τpq Ep−r,q+(r−1)

τpq 0

be the cochain complex C• on the τpq-th page (of length l), where we omit the object
Ep,q
τpq . The object Ep,q

τpq ' Ep,q
φpq+1 is isomorphic to the cohomology of C• at the right border

position. For the computation of its Hilbert series, we can proceed like in the second case.
This finishes the proof. �

3.3.5. Spectral Cohomology Tables vs. Cohomology Tables.
Theorem 3.20. The spectral cohomology table is a stronger invariant than the coho-

mology table, i.e., there exist vector bundles F and G having equal cohomology tables, but
unequal spectral cohomology tables.

Proof. We will use main results of Boij-Söderberg theory. The first main result states
that for every root sequence z of length n = dimPnk , there exists a vector bundle Ez having
supernatural cohomology of type z. The second main result states that every cohomology
table of a vector bundle on Pnk is a positive rational linear combination of cohomology
tables of supernatural bundles. Both main results are proven in [ES09]. For example, the
cohomology table γEHM of the Horrocks-Mumford bundle can be decomposed as

γEHM = 2
9γ

(5,0,−2,−5) + 7
45γ

(4,0,−2,−5) + 56
45γ

(4,0,−2,−6) + 7
45γ

(3,0,−2,−6) + 2
9γ

(3,0,−2,−7).

Now, we can build up a vector bundle F as an appropriate direct sum of the supernatural
vector bundles E (5,0,−2,−5), E (4,0,−2,−5), E (4,0,−2,−6), E (3,0,−2,−6), and E (3,0,−2,−7), such that the
cohomology table of F is a multiple of the cohomology table of the Horrocks-Mumford
bundle EHM. We set G := m · EHM, where m ∈ N is that multiple. Note that in the rest of
the proof, an exact value for m is irrelevant.

By definition, F and G have equal cohomology tables. Assume that they have equal
spectral cohomology tables. Since the spectral cohomology table is additive, and since

F = a1E (5,0,−2,−5) ⊕ a2E (4,0,−2,−5) ⊕ a3E (4,0,−2,−6) ⊕ a4E (3,0,−2,−6) ⊕ a5E (3,0,−2,−7),

where (a1, a2, a3, a4, a5) is a multiple of (2
9 ,

7
45 ,

56
45 ,

7
45 ,

2
9), we can use the constructive proof

of Theorem III.3.19 for computing the second page of F . By assumption, dividing the



160 3. APPLICATIONS TO EQUIVARIANT SHEAVES

elements on this page by m has to yield the second page of the Horrocks-Mumford bundle.
But an excerpt of the result of this computation is

1 2t4 + 10t3 + 14t2 + 5t 146
135t

7 + 2533
540 t

6 + 781
108t

5 + 4t4
0
q/p 1 2

which is absurd since the coefficients of the Hilbert series are not integral (see Figure III.4
for the actual spectral cohomology table of the Horrocks-Mumford bundle). �

3.3.6. Spectral Cohomology Table of the Horrocks-Mumford Bundle.
Computation 3.21. This is a continuation of Computation III.3.11. This time, we

are aiming at the spectral cohomology table of the Horrocks-Mumford bundle EHM. Again,
we start with the differential u : χ7

2⊗E → h⊗E and construct its associated Tate sequence
(i.e., its extension by a free resolution of ker(u) to the left and by a cofree resolution of
coker(u) to the right). This can be done with a single command.
gap> T := FilteredTateResolution( u );
<An object in Cocomplex category of Descending filtered
object category of The Z-graded representation category of Group( [ f1,

f2, f3, f4, f5, f6 ] )>

Note that Cap outputs a descending filtered cochain complex in SRepZ
k (H). The formal

definition of this filtration is given in Definition III.3.12. Here is an illustration of the
resulting filtration on one differential d of the Tate sequence of EHM:

(k35(7)⊗ ωE)⊕ (k2(6)⊗ ωE) (k4(6)⊗ ωE)⊕ (k10(5)⊗ ωE)

(k2(6)⊗ ωE)

0

0

(k4(6)⊗ ωE)⊕ (k10(5)⊗ ωE)

(k10(5)⊗ ωE)

0.

−7

−6

−5

−4

deg
d

=

=

So, this filtration turns the Tate sequence into a decreasing filtered complex, which
raises the question of how its associated spectral sequence looks like, or for which triples
p, q, r ∈ Z can we expect non-trivial objects Ep,q

r ? We have already seen that the objects
on the first page are free E-modules whose socles encode the cohomology groups. We also
know that since the Tate sequence is exact, the spectral sequence will converge to 0. Note
that Ep,q

2 can only be non-trivial if Ep,q
1 ' Hq(EHM(p))⊗ ωE is non-trivial, so we only look

at those p, q such that Hq(EHM(p)) 6' 0. From the cohomology table of EHM, we can read



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 161

off all such p, q:
H4 : 100 35 4
H3 : 2 10 10 5
H2 : 2
H1 : 5 10 10 2
H0 : 4 35 100
p −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

To the left and to the right, the table extends only by non-trivial values for H4, H0,
respectively, and Ep,q

2 for p < −8 or p > 6 is zero for all q (by the exactness of the Tate
sequence).

For all the remaining cases, we let Cap do the computations. We start with E−1,2
2 .

gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -1, 2 );
<A morphism in Generalized morphism category of The Z-graded
representation category of Group( [ f1, f2, f3, f4, f5, f6 ] )>

gap> E2_m1_2 := UnderlyingHonestObject( Source( s ) );;

The first command constructs the generalized morphism

E−1,2
2 E−1,2

0

as it is described in Construction II.2.23. So, in order to get E−1,2
2 , we have to take the

source of this generalized morphism and consider it as an object in SRepZ
k (H). Next, we

compute its Hilbert series, both its equivariant and its classical version.
gap> DegreeDecomposition( E2_m1_2 );
[ [ -1, 1*(x_[-1, 5]) ], [ 0, 1*(x_[0, 28]) ], [ 1, 1*(x_[1,

8]) + 1*(x_[1, 12]) + 1*(x_[1, 16]) + 1*(x_[1, 20]) ],
[ 2, 1*(x_[2, 7]) + 1*(x_[2, 11]) + 1*(x_[2, 15]) + 1*(x_[2,
19]) ], [ 3, 1*(x_[3, 25]) ], [ 4, 1*(x_[4, 5]) ] ]

gap> HilbertSeries( E2_m1_2 );
2*t^4+10*t^3+20*t^2+20*t+10+2*t^-1

As no surprise, we see the Hilbert series of a free object, since no differential pointed to
or from E−1,2

1 on the first page. Now, we follow the table to the left and compute more
and more of these Hilbert series in the same manner. The result of this and the next
computation is summarized in Figure III.4.
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -3, 3 );;
gap> E2_m3_3 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m3_3 );
5*t^2+15*t+10+2*t^-1
gap> s :=



162 3. APPLICATIONS TO EQUIVARIANT SHEAVES

> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -4, 3 );;
gap> E2_m4_3 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m4_3 );
4*t^-1
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -5, 3 );;
gap> E2_m5_3 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m5_3 );
15*t^-2+35*t^-3+20*t^-4
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -6, 3 );;
gap> E2_m6_3 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m6_3 );
2*t^-6
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -6, 4 );;
gap> E2_m6_4 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m6_4 );
4*t^-1
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -7, 4 );;
gap> E2_m7_4 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m7_4 );
15*t^-2+35*t^-3+20*t^-4
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, -8, 4 );;
gap> E2_m8_4 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_m8_4 );
2*t^-6

Analogously, we can follow the table to the right.

gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 1, 1 );;
gap> E2_1_1 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_1_1 );
2*t^4+10*t^3+15*t^2+5*t
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 2, 1 );;
gap> E2_2_1 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_2_1 );
4*t^4
gap> s :=



3. COMPUTATIONS WITH EQUIVARIANT SHEAVES 163

> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 3, 1 );;
gap> E2_3_1 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_3_1 );
20*t^7+35*t^6+15*t^5
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 4, 1 );;
gap> E2_4_1 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_4_1 );
2*t^9
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 4, 0 );;
gap> E2_4_0 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_4_0 );
4*t^4
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 5, 0 );;
gap> E2_5_0 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_5_0 );
20*t^7+35*t^6+15*t^5
gap> s :=
> SpectralSequenceEntryOfDescendingFilteredCocomplex( T, 2, 6, 0 );;
gap> E2_6_0 := UnderlyingHonestObject( Source( s ) );;
gap> HilbertSeries( E2_6_0 );
2*t^9

From the third page on, all objects Ep,q
r are zero, so we are done with the computation of

the spectral cohomology table. But note that since we never omitted the H-equivariant
structure, we actually got an equivariant version of the spectral cohomology table, which
we also wrote down in Figure III.5.

The algorithm for computing spectral sequences is implemented in Cap for arbitrary
abelian categories. In particular, it can be also applied in the context of graded modules
over the graded symmetric algebra S (which is also available in Cap, see [Gut17] for
implementation details). So, we can also use the computational capabilities of Cap in
the future for constructing and investigating spectral Betti tables, with special regard to
a possible relation between spectral Betti tables and spectral cohomology tables inspired
by Boij-Söderberg theory.



164
3.

A
P

P
LIC

AT
IO

N
S

T
O

E
Q

U
IVA

R
IA

N
T

SH
E

AV
E

S

Figure 4. Second page of the spectral cohomology table of the Horrocks-Mumford bundle.

4 2t−6 a 4t−1

3 2t−6 a 4t−1 b
2 b+c
1 c 4t4 d 2t9
0 4t4 d 2t9
q/p −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

where
a := 15t−2 + 35t−3 + 20t−4,

b := 5t2 + 15t+ 10 + 2t−1,

c := 2t4 + 10t3 + 15t2 + 5t,
d := 20t7 + 35t6 + 15t5.



3.
C

O
M

P
U

TAT
IO

N
S

W
IT

H
E

Q
U

IVA
R

IA
N

T
SH

E
AV

E
S

165

Figure 5. Second page of the equivariant spectral cohomology table of the Horrocks-Mumford bundle.

4 χ5t
−6 a σt−1

3 χ5t
−6 a σt−1 b

2 b+ c
1 c σt4 d χ5t

9

0 σt4 d χ5t
9

q/p −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
where

σ :=
4∑
i=1

χi

a := (χ10 + χ14 + χ18)t−2 + (2χ7 + χ11 + χ15 + χ19 + χ27)t−3 + (2χ27)t−4,

b := χ7t
2 + (χ12 + χ16 + χ20)t+ χ28t

0 + χ5t
−1,

c := χ5t
4 + χ25t

3 + (χ11 + χ15 + χ19)t2 + χ8t,

d := (2χ26)t7 + (2χ8 + χ12 + χ16 + χ20)t6 + (χ13 + χ17 + χ21)t5.





List of Figures

1 A diamond with epimorphisms and monomorphisms. 99
2 There exist six paths from A to B. 100
3 A Hasse diagram depicting subobjects and quotient objects associated to a

generalized morphism γ. 109

4 Second page of the spectral cohomology table of the Horrocks-Mumford bundle. 164
5 Second page of the equivariant spectral cohomology table of the Horrocks-Mumford

bundle. 165

167





Bibliography

[AM69] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Pub-
lishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802 156

[Bar09a] Mohamed Barakat, The homomorphism theorem and effective computations, Habilitation the-
sis, Department of Mathematics, RWTH-Aachen University, April 2009. 85, 130

[Bar09b] Mohamed Barakat, Spectral filtrations via generalized morphisms, submitted
(arXiv:0904.0240) (v2 in preparation), 2009. 85, 109

[BCP97] Wieb Bosma, John J. Cannon, and Catherine Playoust, The Magma algebra system. I. The
user language, JSC 24 (1997), no. 3–4, 235–266, Computational algebra and number theory
(London, 1993). MR 1 484 478 81

[BGG78] I. N. Bernštĕın, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on Pn and problems
of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67. MR MR509387
(80c:14010a) 9, 128, 143

[BLH11] Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homo-
logical algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2,
269–293, (arXiv:1003.1943). MR 2795737 (2012f:18022) 11, 81

[BLH14] Mohamed Barakat and Markus Lange-Hegermann, Gabriel morphisms and the computability
of Serre quotients with applications to coherent sheaves, (arXiv:1409.2028), 2014. 85, 104

[BLH17] Mohamed Barakat and Markus Lange-Hegermann, A constructive approach to the module of
twisted global sections on relative projective spaces, Algorithmic and Experimental Methods in
Algebra, Geometry, and Number Theory, Springer, 2017, To appear, arXiv:1409.6100. 127

[BP69] Hans-Berndt Brinkmann and Dieter Puppe, Abelsche und exakte Kategorien, Korrespondenzen,
Lecture Notes in Mathematics, Vol. 96, Springer-Verlag, Berlin-New York, 1969. MR 0269713
85

[Dab11] V. Dabbaghian, Repsn, a gap4 package for constructing representations of finite groups, Version
3.0.2, http://www.sfu.ca/~vdabbagh/gap/repsn.html, Aug 2011, Refereed GAP package.
56

[Day74] Brian Day, On closed categories of functors. II, Category Seminar (Proc. Sem., Sydney,
1972/1973), Springer, Berlin, 1974, pp. 20–54. Lecture Notes in Math., Vol. 420. MR 0360747
(50 #13194) 56

[Del90] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math.,
vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195. MR 1106898 (92d:14002) 54,
138

[Dix93] John D. Dixon, Constructing representations of finite groups, Groups and computation (New
Brunswick, NJ, 1991), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 11, Amer.
Math. Soc., Providence, RI, 1993, pp. 105–112. MR 1235797 70

[EFS03] David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free reso-
lutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426 (elec-
tronic). MR MR1990756 (2004f:14031) 9, 143, 144, 146

[EG01] Pavel Etingof and Shlomo Gelaki, Isocategorical groups, Internat. Math. Res. Notices (2001),
no. 2, 59–76. MR 1810480 60

169

http://www.mathb.rwth-aachen.de/~barakat/habil/habil.pdf
http://arxiv.org/abs/0904.0240
http://arxiv.org/abs/1003.1943
http://arxiv.org/abs/1409.2028
http://arxiv.org/abs/1409.6100
http://www.sfu.ca/~vdabbagh/gap/repsn.html


170 BIBLIOGRAPHY

[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Math-
ematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI,
2015. MR 3242743 18

[ES09] David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of
vector bundles, J. Amer. Math. Soc. 22 (2009), no. 3, 859–888. MR 2505303 (2011a:13024) 159

[Flø12] Gunnar Fløystad, Boij-Söderberg theory: introduction and survey, Progress in commutative
algebra 1, de Gruyter, Berlin, 2012, pp. 1–54. MR 2932580 157

[FS90] Peter J. Freyd and Andre Scedrov, Categories, allegories, North-Holland Mathematical Library,
vol. 39, North-Holland Publishing Co., Amsterdam, 1990. MR 1071176 (93c:18001) 84

[GAP14] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.5, 2014, (http:
//www.gap-system.org). 9

[Gut17] Sebastian Gutsche, Constructive category theory with applications to algebraic geometry, Ph.D.
thesis, University of Siegen, 2017. 11, 163

[Hil66] Peter Hilton, Correspondences and exact squares, Proc. Conf. Categorical Algebra (La Jolla,
Calif., 1965), Springer, New York, 1966, pp. 254–271. MR 0204487 85

[HM73] G. Horrocks and D. Mumford, A rank 2 vector bundle on P4 with 15, 000 symmetries, Topology
12 (1973), 63–81. MR 0382279 (52 #3164) 80

[hom17] homalg project authors, The homalg project – Algorithmic Homological Algebra, (http://
homalg-project.github.io), 2003–2017. 81

[Joh02] Peter T. Johnstone, Sketches of an elephant: a topos theory compendium. Vol. 1, Oxford Logic
Guides, vol. 43, The Clarendon Press, Oxford University Press, New York, 2002. MR 1953060
(2003k:18005) 84, 90, 91

[Kel05] G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005),
no. 10, vi+137, Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714].
MR 2177301 17, 22, 35

[Mit65] Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic
Press, New York-London, 1965. MR 0202787 83

[ML71] Saunders Mac Lane, Categories for the working mathematician, Graduate Texts in Mathemat-
ics, no. 5, Springer-Verlag, 1971. 19, 23, 47, 50, 51, 52, 53, 83, 133, 134

[OSS11] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective
spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2011, Corrected
reprint of the 1988 edition, With an appendix by S. I. Gelfand. MR 2815674 (2012d:14073)
143

[Pos13] Sebastian Posur, G-equivariant coherent sheaf cohomology, Master’s thesis, RWTH Aachen
University, March 2013. 146

[Pup62] Dieter Puppe, Korrespondenzen in abelschen Kategorien, Math. Ann. 148 (1962), 1–30.
MR 0141698 85

[Sel11] P. Selinger, A survey of graphical languages for monoidal categories, New structures for physics,
Lecture Notes in Phys., vol. 813, Springer, Heidelberg, 2011, pp. 289–355. MR 2767048
(2012j:18011) 53, 65

[SR72] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265,
Springer-Verlag, Berlin-New York, 1972. MR 0338002 (49 #2769) 50, 51, 58, 61, 63

[Sta16] The Stacks Project Authors, stacks project, http://stacks.math.columbia.edu, 2016. 83
[Uni13] The Univalent Foundations Program, Homotopy type theory: Univalent foundations of mathe-

matics, http://homotopytypetheory.org/book, Institute for Advanced Study, 2013. 17
[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced

Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR MR1269324
(95f:18001) 15, 83, 119, 123

http://www.gap-system.org
http://www.gap-system.org
http://homalg-project.github.io
http://homalg-project.github.io
http://stacks.math.columbia.edu
http://homotopytypetheory.org/book


Index

G-equivariant cohomology table of F , 147
Z-graded representations of G, 69
Cap category, 13

Ab-category, 34
Ab-functor, 34
Ab-natural transformation, 34
Ab-product category, 45
abelian category, 39
additive category, 35
additive relation, 85
associated Z-graded category of C, 117
associated honest cochain complex of (A•, d•),

118
associated morphism of γ, 111
associated relation, 89
associator, 48

BGG correspondence, 146
bicartesian, 96
bifunctors, 44
bilinear bifunctor, 44
braided monoidal functor, 52
braiding, 51

category, 19
category having cokernels, 12
category of 3-arrows from A to B, 100
category of 4-arrows from A to B, 101
category of ascending filtered objects of A, 130
category of ascending filtrations, 120
category of chain complexes, 117
category of cochain complexes, 117
category of comonoids, 134
category of cospans from A to B, 100
category of descending filtered objects of A, 129
category of descending filtrations, 120
category of diamonds from A to B, 101
category of elements, 24

category of left A-comodules, 135
category of monoids, 133
category of relations, 86
category of reversed 3-arrows from A to B, 101
category of reversed 4-arrows from A to B, 101
category of right A-modules, 135
category of spans from A to B, 87
category of spans of A, 88
category of Tate sequences, 145
category with bifunctor, 44
chain complexes, 117
chain maps, 117
closed category, 53
cochain complexes, 117
cochain maps, 117
codefect of γ, 109
codomain of γ, 108
cofree resolution, 143
cogenerator function, 143
cohomological spectral sequence, 119
coimage, 27
cokernel of α, 37
colift of τ along ε, 39
comma category, 25
comonoid in A, 133
compact closed category, 53
components of a natural transformation, 20
coproduct category, 41
coslice category, 25
crossed product ring, 136

defect of γ, 109
dependent function, 19
dependent sum category, 24
dependent type, 19, 22
diagonal difference, 40
dinatural transformation, 23
direct sum, 35

171



172 INDEX

discrete natural family, 21
domain of γ, 108
dual object, 53
dual object of A, 53

epi factorization, 27
epi-mono factorization of α : A→ B, 27
epimorphism, 26
equivalence, 21
equivalence of categories with bifunctor, 45
exact functor, 38
exact pairing, 53
exterior algebra of V , 139

forgetful functor, 140, 142
free resolutions, 141
full codomain, 110
full domain, 111
functor, 20
functor between categories with bifunctor, 44

generalized chain complex, 117
generalized cochain complex, 117
generalized coimage of γ, 109
generalized cokernel of γ, 109
generalized differential, 117
generalized image of γ, 109
generalized kernel of γ, 109
generalized morphism, 91
generalized morphism category of A, 90
generator function, 141
graph, 85

Hilbert series, 155
honest, 111
horizontal composition, 21

image, 26
induced spectral sequence of F and A, 131
initial object, 23
injection, 35
interchange law, 44
internal Hom, 53
isomorphism, 20

kernel of α, 37

left A-comodule, 135
left coaction of A on M , 135
left unitor, 48
lift of τ along ι, 39
limit of D, 29

mono factorization of α, 26
monoid in A, 133
monoidal category, 47
monoidal equivalence, 50
monoidal functor, 49
monoidal natural transformation, 50
monomorphism, 26

natural ascending filtrations, 130
natural dependent function, 22
natural descending filtration, 130
natural isomorphism, 21
natural transformation, 20
null homotopic morphism, 123

pre-abelian category, 38
projection, 35
pseudo-inverse, 86, 94
pullback computation rule, 95
pushout computation rule, 95

quotient object of A, 28

representation category of G, 55
right A-module, 135
right action of A on M , 134
right unitor, 48
rigid symmetric monoidal category, 53
root sequence of length s, 158
row convention, 36

single-valued, 110
skeletal, 69
slice category, 25
source, 29
spectral F -Betti table of A, 131, 132
spectral cohomology table of F , 155
stable cospan, 103
stable diamonds, 102
stable module category, 145
stable span, 92
stably equivalent, 89
string diagrams, 53
subobject of A, 28
subquotient embedding, 108
subquotient of A, 107
subquotient projection, 108
supernatural cohomology of type z, 158
symmetric monoidal category, 53

Tate sequences, 145



INDEX 173

tensor category over k, 54
tensor unit, 47
total, 111
type, 19, 22

universal epi-mono factorization of α : A→ B,
27

vertical composition, 20

zero object, 35


	Title
	Summary
	Zusammenfassung
	Contents
	Introduction
	The Cap Project
	1. Syntax
	2. Semantics

	Chapter 1. Constructive Category Theory
	1. Preliminaries
	1.1. Categories, Functors, Natural Transformations
	1.2. Naturality
	1.3. Images
	1.4. Limits

	2. Additive, Abelian, and Coproduct Categories
	2.1. Additive Categories
	2.2. Abelian Categories
	2.3. Coproduct Categories

	3. Constructing Tensor Categories
	3.1. Bilinear Bifunctors
	3.2. Monoidal Categories
	3.3. Skeletal Tensor Categories
	3.3.1. Representation Category of Finite Groups
	3.3.2. Defining a Bifunctor
	3.3.3. Defining an Associator
	3.3.4. Defining a Braiding
	3.3.5. Defining Unitors
	3.3.6. Defining Duals
	3.3.7. Skeletal Representation Category of Finite Groups
	3.3.8. Graded Group Representations
	3.3.9. Example: S3
	3.3.10. Example: D8 and Q8
	3.3.11. Example: Subgroup of Order 1000 of the Automorphism Group of the Horrocks-Mumford Bundle



	Chapter 2. Constructive Homological Algebra
	1. Generalized Morphisms
	1.1. Additive Relations
	1.2. Categorification of Additive Relations
	1.3. Computation Rules for Generalized Morphisms
	1.4. Data Structures for Generalized Morphisms
	1.5. Epi-Mono Factorizations of Generalized Morphisms
	1.6. Attributes and Properties of Generalized Morphisms
	1.6.1. Canonical Objects in the Underlying Abelian Category
	1.6.2. Honest Morphisms

	1.7. Reasoning with the Canonical Objects

	2. Diagram Chases and Spectral Sequences
	2.1. Constructive Diagram Chases
	2.2. Generalized Cochain Complexes
	2.3. Spectral Sequence of a Filtered Complex
	2.4. Computing Spectral Sequences


	Chapter 3. Applications to Equivariant Sheaves
	1. (Co)homological Invariants
	1.1. Natural Filtrations
	1.2. Spectral Betti Tables

	2. Equivariant Modules over the Exterior Algebra
	2.1. Actions and Coactions
	2.2. Equivariant Modules
	2.3. Internal Algebra
	2.3.1. Exterior Algebra
	2.3.2. Dual of Exterior Algebra
	2.3.3. Internal Free Resolutions
	2.3.4. Internal Cofree Resolutions


	3. Computations with Equivariant Sheaves
	3.1. BGG Correspondence
	3.2. Equivariant Cohomology Tables
	3.2.1. Equivariant BGG Correspondence
	3.2.2. Equivariant Cohomology Table of the Horrocks-Mumford Bundle

	3.3. Spectral Cohomology Tables
	3.3.1. Definition
	3.3.2. Spectral Cohomology Table of Pk2
	3.3.3. Hilbert Series of Unbounded Cochain Complexes
	3.3.4. Spectral Cohomology Tables of Supernatural Sheaves
	3.3.5. Spectral Cohomology Tables vs. Cohomology Tables
	3.3.6. Spectral Cohomology Table of the Horrocks-Mumford Bundle



	List of Figures
	Bibliography
	Index



