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This work proposes a new method for the estimation of the load torque in mechatronics 

systems that are equipped with electrical drives and are characterized by repetitive 

mechanical cycles. The procedure examined in this research allows an enhancement of 

the control quality by using a feedforward controller based on the estimated load torque. 

A harmonic speed controller is also used for improving the velocity control. Its structure 

can also be integrated in the procedure for the identification of the torque. A second 

important contribution of this research is the utilization of the estimated load torque for 

the detection of failures in rolling bearings. 

As the demanded load torque in many production machines is repetitive, and as such a 

periodic function of the shaft angle of the driven machine, it can be represented in terms 

of Fourier series. Hence, the estimation of the load torque can also be carried out through 

the calculation of the Fourier coefficients by using either a phenomenological approach 

or an empirical one. After sufficient online learning on the running mechatronics system 

at different operating speeds, sets of Fourier coefficients can be obtained by using a 

sliding-window method. The two methods allow the load torque estimation to be 

continuously conducted within the whole operational range of the repetitive mechanical 

system. 

The estimated load torque is used for two purposes. First, it is utilized as a compensation 

signal in a feedforward control scheme to improve the quality of the velocity control by 

canceling speed oscillations originated from the angle-dependent load torque. Second, 

it is adapted in a diagnostic procedure for the detection of bearing faults. Since a faulty 

bearing causes changes on the load torque, its spectrum contains information related to 

the bearing failures. A diagnostic procedure is proposed that does not require any 

additional sensors than the usually installed in an electrical drive, and it is capable of 

detecting the two most commonly found types of bearing faults including single-point 

defects and generalized roughness fault. 

Another approach examined in the frame of this work aims the enhancement of the 

control quality. This approach relies on the harmonic speed control. For this purpose, 

two structures for the speed control are proposed. One is known as harmonic speed 

control, where each harmonic in the spectrum of the speed error is regulated by a 
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proportional-integral (PI) controller. As previously mentioned, the proposed control 

structure can also be used for the online calculation of Fourier coefficients in the 

aforementioned load torque estimation procedure. 

The second scheme is called PI-R speed controller, where the conventional PI speed 

controller is augmented by resonant (R) parts to control specific harmonics of the speed 

error.  As the proposed speed controller separately manipulates harmonics of the speed 

error, it ensures a good dynamic tracking response of the speed control loop.  

An implementation of the control scheme without mechanical encoder, a so called 

sensorless control scheme, complements the proposed methods. In this way the 

estimation of the load torque, the detection of the bearing faults, and the harmonic speed 

control can be carried out without mechanical encoder. A signal injection technique and 

an enhanced voltage model are used to estimate the rotor position of the driven machine. 

The utilized machine is a permanent magnet synchronous machine (PMSM) that can be 

operated in the sensorless field-oriented control scheme in the low-speed as well as in 

the high-speed regions. A combined angle estimator which is based on the signal 

injection technique and on the enhanced voltage model was developed for obtaining a 

smooth speed transition between the two speed regions.
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In dieser Arbeit wird eine neue Methode zur online Schätzung des Momentanwertes des 

Lastmomentes in mechatronischen Systemen vorgestellt. Das Verfahren lässt sich bei-

Systemen anwenden, die mit elektrischen Antrieben ausgestattet sind und sich durch 

periodische mechanische Arbeitszyklen auszeichnen, wie sie in vielen 

Produktionsmaschinen vorzufinden sind. 

Das im Rahmen dieser Arbeit untersuchte Verfahren ermöglicht eine Verbesserung der 

Regelgüte mithilfe von einer Störgrößenaufschaltung oder einer harmonischen 

Regelung. Ein zweiter wichtiger Beitrag dieser Forschung ist die Nutzung des 

geschätzten Lastmoments für die Erkennung von Fehlern bei Wälzlagern. Da das 

geforderte Lastdrehmoment in vielen Produktionsmaschinen repetitiv ist und deshalb 

als eine periodische Funktion der Winkelposition von der Antriebsmaschine dargestellt 

werden kann, ist seine Darstellung als Fourier-Reihe naheliegend. Daher erfolgt die 

Schätzung des Lastmoments durch die Berechnung der entsprechenden Fourier-

Koeffizienten, die entweder nach einem phänomenologischen oder nach einem 

empirischen Ansatz gewonnen werden können. Nach genügenden online-Messungen 

bei verschiedenen Arbeitsgeschwindigkeiten des laufenden mechatronischen Systems 

erhält man Sätze von Fourier-Koeffizienten, die mit Hilfe einer Fensterintegration 

ermittelt werden. Die beiden Methoden erlauben die Schätzung des Lastmomentes 

kontinuierlich im gesamten Betriebsbereich des sich wiederholenden mechanischen 

Systems. 

Das geschätzte Lastmoment dient zwei Zwecken: Erstens,  kann es als 

Kompensationssignal in einer Störgrößenaufschaltung zur Verbesserung der Qualität 

der Geschwindigkeitsregelung verwendet werden. Auf diese Weise wird die durch die 

pulsierende Last hervorgerufene Welligkeit der Geschwindigkeit unterdrückt. Zweitens, 

kann es auch in einem Diagnoseverfahren zur Erkennung von Lagerfehlern genutzt 

werden. Da eine fehlerhafte Lagerung zu Veränderungen des Lastmomentes führt, 

enthält das Spektrum vom Drehmoment Informationen zu den Lagerschäden. Das 

vorgeschlagene Diagnoseverfahren erfordert keine zusätzlichen Sensoren, als die 

ohnehin in einem elektrischen Antrieb Installierten,  und  ist in der Lage, die zwei am 

häufigsten  anzutreffenden Arten von Lagerfehlern einschließlich singulärer und 

breitbandiger  Fehler zu erkennen. 

Zusammenfassung
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Ein weiterer im Rahmen dieser Arbeit untersuchter Ansatz zielt auf die Verbesserung 

der Regelgüte, allerdings nicht mit Hilfe einer Störgrößenaufschaltung sondern vielmehr 

mit Verwendung einer harmonischen Drehzahlregelung. Zu diesem Zweck werden zwei 

Strukturen für die Drehzahlregelung vorgeschlagen. Eine, bekannt als harmonische 

Drehzahlregelung, wo jede Harmonische im Spektrum des Geschwindigkeitssignals 

mittels eines Proportional-Integral (PI) Reglers unterdrückt wird. Wie die 

vorgeschlagene Struktur kann ebenfalls für die online-Berechnung, der für die 

Lastmomentidentifikation notwendigen, Fourier-Koeffizienten verwendet werden. 

Die zweite Struktur verwendet einen PI-R Regler, wo bei der herkömmliche PI-Regler 

durch einen Resonanten (R) Teil ergänzt wird, um die spezifischen Oberschwingungen 

des Fehlersignals  auszuregeln. Da in der Regelstruktur die vorgeschlagenen 

Drehzahlregler einzelne Oberschwingung separat behandeln, kann der Antrieb dem 

vorgegebenen Drehzahlprofil sehr gut folgen.  

Eine Implementierung der feldorientierten Antriebsregelung ohne Verwendung eines 

mechanischen Winkelgebers, eine sogenannte sensorlose Regelung ergänzt die 

vorgeschlagenen Methoden. Auf diese Weise kann die Schätzung des Lastmomentes, 

die Erkennung von Lagerfehlern und die harmonische Regelung ohne Verwendung 

eines mechanischen Gebers erfolgen. Eine Signal-Injektionstechnik und ein 

verbessertes Spannungsmodell werden verwendet, um die Rotorposition der 

Antriebsmaschine zu ermitteln. Die eingesetzte Maschine ist eine permanenterregte- 

Synchronmaschine (PMSM), die ohne mechanischen Geber, sowohl im unteren als auch 

im oberen Geschwindigkeitsbereich, feldorientiert geregelt betrieben werden kann. Eine 

kombinierte Winkelschätzung anhand der Injektionstechnik und des verbesserten 

Spannungsmodells wurde entwickelt, sodass ein reibungsloser Übergang zwischen den 

zwei Bereichen möglich wird. 
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Symbols 
 

|𝑟| Absolute value  

ห𝑟ห Magnitude of a space phasor  

𝐵 Magnetic flux density 

𝐷 Diode 

𝐹 Friction force 

𝑔 Gravitational acceleration 

𝐾, 𝑘 Gain or parameter of the slider crank mechanism  

𝑛 Number of ball pairs carrying the load in a bearing 

𝑝 Number of pole pairs 

𝑆 Power semiconductor switch 

S Sector 

𝑠 Laplace variable 

𝑖, 𝐼 Current 

𝑗 Imaginary unit (𝑗ଶ = −1) 

𝐽 Moment of inertia 

Im൛𝑟ൟ Imaginary part  

Re൛𝑟ൟ Real part  

𝑑, 𝑞 Axis of a rotating coordinate system 

𝐿 Inductance 

𝑅 Resistance 

𝑠𝑔𝑛() Signum function 

𝑇 Torque 

T Period 

𝑢, 𝑈 Voltage 

𝑧 Number of balls in a ball bearing 

𝛼, 𝛽 Axis of a stationary coordinate system 

𝛼 Load angle 

𝛽 Angle between the two adjacent rolling elements 
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𝛾 Angle between the real axis of a fixed coordinate and the 

real axis of a rotating coordinate 

𝜓 Flux linkage 

𝜑 Angle between the connecting rod and the potential surface 

𝜔 Angular velocity 

𝜆 Parameter of the slider crank mechanism 

𝜇 Friction coefficient 

∆ Increment of a variable 

Matrices/ Vectors 
 

ൣ𝑟൧
௎௏ௐ

, ൣ𝑟൧
ఈఉ

,ൣ𝑟൧
ௗ௤

 Algebraic vectors of a space phasor in the 𝑈𝑉𝑊 −

 𝛼, 𝛽−; 𝑑, 𝑞 −coordinate systems, respectively 

[𝑇] Transformation matrix 

Subscripts 
 

′௘′ Variables related to the estimated rotating reference frame 

′௛′ Variables and parameters corresponding to a high-

frequency 

𝑎௞ , 𝑏௞ , 𝑐௞(𝑘 ∈ 𝑁) Fourier coefficients 

𝑑௕ , 𝑑௖ , 𝑑௜ , 𝑑௢ Diameters of the ball, the cage, the inner raceway, and the 

outer raceway of a ball bearing 

𝑒௖௢௦ , 𝑒௦௜௡ Signals corresponding to the cosine- and sine- components 

in the one-dimension synchronous transformation 

𝑒𝑥𝑐 Parameter of the horizontal slider-crank mechanism 

𝐹஼௢௨௟௢௠௕ , 𝐹௦௧௜௖௧௜௢௡ 

𝐹௩௜௦௖௢௨௦ , 𝐹ௌ௧௥௜௕௘௞,𝐹௧௢௧௔௟ 

Friction forces 

𝑓௔௥௘௦, 𝑓௥௘௦ Anti-resonant and resonant frequencies, respectively 

𝑓ூோி Inner raceway characteristic fault frequency 

𝑓௠௔௫ Maximum frequency 

𝑓௡ Rotational frequency of the inner raceway 

𝑓ைோி Outer raceway characteristic fault frequency 

𝑓ோ Characteristic frequency of the resonant part 

𝐺௖ , 𝐺௖௥௢ௗ Centers of gravity of the crank and the connecting rod, 

respectively 
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𝐺௖ି௜ௗ(𝑠), 𝐺௖ି௜௤(𝑠) Transfer functions of the closed current control loops 

corresponding to 𝑖ௗ and 𝑖௤, respectively 

𝐺௖ିఠ(𝑠) Transfer function of the closed speed control loop 

ℎ௖ , ℎ௖௥௢ௗ Position of the centers of gravity of the crank and the 

connecting rod with respect to the potential surface 

𝐽௧௢௧௔௟ , 𝐽௠௔௖௛௜௡௘ , 

 𝐽௖௢௨௣௟௜௡௚, 𝐽௠௘௖௛௔௡௜௦௠ 

Total moment of inertia, moment of inertia of the machine, 

the coupling shaft and the slider crank mechanism 

𝐾௖  Coulomb constant 

𝐾௘௥௥ Induction error coefficient 

𝐾௜_௜ , 𝐾௜_ఠ Gains of the PI current and speed controllers, respectively 

𝐾ோ Gain of the resonant part 

𝐾௩ Viscous constant 

𝑘௣, 𝑘௜ Gains of the PI-controller in the phase-locked loop 

𝐿ௗ , 𝐿௤ Inductance in the d- and q- axis of the machine 

𝑙 Parameter of the horizontal slider-crank mechanism 

𝑚௔ , 𝑚௕ , 𝑚௖ Equivalent masses in the horizontal slider-crank mechanism 

𝑚௖௥௔௡௞ , 𝑚௦௟௜ௗ௘௥ Masses of the crank and the slider, respectively 

𝑁 Number of sections in one period 2𝜋 

𝑃௜(𝑖 ∈ 𝑁∗) Load exerted on a rolling element 

𝑃௠௔௫ Maximum ball load 

𝑃௥ Applied radial load torque 

𝑟ଵ, 𝑟ଶ Parameters of the horizontal slider-crank mechanism 

𝑟ௗ , 𝑟௤ Real and imaginary parts of a space phasor in a rotational 

reference frame 

𝑟௎ , 𝑟௏ , 𝑟ௐ Variables of a space phasor in the 𝑈𝑉𝑊 coordinate system 

𝑟ఈ , 𝑟ఉ Real and imaginary parts of a space phasor in a stator-fixed 

coordinate system 

𝑆௧ Stribek coefficient 

𝑇஽ Time delay of an inverter 

𝑇௜_௜ , 𝑇௜_ఠ Time constants of the PI current and speed controllers, 

respectively 

𝑇௘ Electromagnetic torque 

𝑇௚,𝑇ఠ,𝑇௙ Time constants of the low-pass filters 

𝑇௅,𝑇௟௢௔ௗ Load torque 

𝑇஼௢௨௟௢௠௕ , 𝑇௜௡௘௥௧௜௔ Load torque components 
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𝑇௣, 𝑇௩௜௦௖௢௨௦ 

𝑇௣ Cycle time of the space vector modulation 

𝑣௖ , 𝑣௜ , 𝑣௢ Tangential velocity of the cage, the inner raceway and the 

outer raceway 

𝑣ோெௌ RMS value of the vibration velocity 

𝑇ఙ Delay due to the inverter and the current low-pass filter 

𝑇௦ , 𝑇௦ௗ , 𝑇௦௤ Time constants of the machine 

𝑈ௗ௖  DC-link voltage 

𝑥௎ Phase U 

𝑥௏ Phase V 

𝑥ௐ Phase W 

𝑊଴ Weighted coefficient 

𝑊௣, 𝑊௣,௖௥௔௡௞ , 𝑊௣,௖௥௢ௗ Potential energy 

𝑧ௗ , 𝑧௤ Impedances in the d- and q- axis, respectively 

𝛽௟௣ Bandwidth of a low-pass filter 

Ω௖ , Ω௜ , Ω௢ Mechanical angular speed of the cage, the inner raceway, 

and the outer raceway of a ball bearing 

𝜔௠ Mechanical velocity of the machine 

𝜔௧௥௔௡௦ Transition angular velocity 

𝛾௠ Mechanical angle of the machine 

𝜑௞ Initial phase of the 𝑘௧௛ harmonic of the speed error 

𝜓௣ Pole flux 

∆𝛾௠ Window resolution 

Superscripts 
 

[𝐴]ିଵ Inverse of a matrix 

[𝐴]் Transpose of a matrix 

𝑥∗ Reference value 

𝑥௞ The 𝑘௧௛ 

Δ𝑓ௌ஻ The width of the sideband 

𝑢ො௛ The amplitude of the injected high-frequency voltage 
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𝐴𝐶 Alternating Current 
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𝐴𝐷𝐶 Analog to Digital Converter 

𝐵𝑃𝐹 Band Pass Filter 

𝐷𝐴𝐶 Digital to Analog Converter 

𝐷𝐶 Direct Current 

DFT Discrete Fourier Transform 

𝐷𝑁 Decoupling Network 

𝐹𝑂𝐶 Field-Oriented Control 

𝐹𝐹𝑇 Fast Fourier Transform 

𝐿𝑃𝐹 Low Pass Filter 

𝑃𝐶 Personal Computer 

𝑃𝐼 Proportional-Integral 

𝑃𝐼 − 𝑅 Proportional-Integral Resonant 

𝑃𝐿𝐿 Phase-Locked Loop 

𝑃𝑀𝑆𝑀 Permanent Magnet Synchronous Machine 

𝑆𝑃𝑀 Space Phasor Modulation 

𝑉𝑆𝐼 Voltage Source Inverter 



 

 

 

 

1.1 Motivation of the work 

The term “mechatronics” was introduced in 1971 by Tetsuro Mori, an engineer of 

Yaskawa Electric Corporation, to indicate a system that includes a combination of 

mechanical and electrical parts [1]. The mechanical system, which can perform physical 

tasks, is driven by electric drives included in the electrical system. In such electric 

drives, alternating current (AC) machines are often selected due to their high power 

density, high efficiency over wide speed and torque ranges, flexible control algorithm 

and compactness [2]. The interaction between the mechanical system and the electric 

drives decides the operational qualities of the whole mechatronics system.  

Nowadays, mechatronics systems are widely found in production machines and 

handling processes with a variety of mechanical configurations. The mechanical system 

is often designed in a unique way aiming to execute particular tasks. The operation of a 

high automatized production system is based on the distribution of the whole process in 

a sequential repetitive work schedule. The understanding of the mechanical 

configuration helps to improve the performance of the mechatronics drive, which then 

enhances the productivity of the production process. 

In terms of control, a frequent requirement for the self-commission of the drive is the 

permanently updated quantitative information about the mechanical system parameters. 

In mechatronics systems, the information of the load torque is essential in the process 

of designing controllers because the load torque acts as a disturbance and needs to be 

rejected. The adverse effects of the load torque on the control quantities is noticeable 

especially in case it is changeable like that to be found in mechanical configuration  

characterized by repetitive cycles. In such systems, the load torque changes periodically 

according to the position of the shaft of the driven machine and results in oscillations in 

the speed response. The undesired speed oscillations diminish the quality of the position 

control loop and also the productivity of the processes. If the information about the load 

torque is available, it can be used as a compensation signal in the speed control loop to 

improve the speed response quality. Therefore, the estimation of the load torque is a 

crucial demand for the control of the mechatronics systems. 

1 Introduction 
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All components in a mechatronics system have their own lifetime. The components 

should be replaced if they do not offer normal functionalities; otherwise, they can cause 

serious failures. The failures can lead to an interruption of the process, an increase of 

investment and efforts for repair. To avoid these unwanted effects, condition monitoring 

should be conducted permanently or periodically to observe the physical states of 

components in the industrial installation. If a failure is detected in the early stage, the 

faulty component should be removed before causing an abrupt and costly shutdown. 

There are different sources of failures in a mechatronics system, some of them come 

from the electrical parts while others relate to the mechanical systems. In a review on 

condition monitoring and fault diagnosis of electrical motors [3], bearing, stator and 

rotor are the three major components causing failures, where bearing is responsible for 

up to 40% -50% of all machine malfunctions. Hence, it is necessary to detect the bearing 

faults in an early stage to ensure a desirable reliability of the electric drives.  

The detection of the bearing faults was exhaustively researched and validated by using 

different methods like those as proposed in [4][5][6]. Some of the available diagnostic 

methods require additional sensors rather than the usually installed in an electrical drive 

[5][7], while others can be conducted without demanding additional sensors. It is clear 

that the use of an additional sensor increases the cost for investment and effort for 

implementation. Therefore, this work is motivated by developing a new diagnostic 

method to detect bearing faults without demanding any complementary sensors. 

In addition to the requirement of good operational quality, cost-reduction, reliability, 

and safety are also important factors when they come to the installation and operation 

of the drives. It is clear that the fewer components used to achieve a specific task, the 

more robustness of the control system and the greater the benefit-to-cost of the 

investment. This is one of the reasons why sensorless control has motivated extensive 

researches. The elimination of the angular transducer used for the measurement of the 

rotor position reduces installation and cables, decreases the need for maintenance and 

increases the robustness of the control systems, especially those being used in harsh 

environments. 

This work also discusses how the sensorless control can be adapted for the electric drives 

to achieve the benefits obtained by the elimination of the angular transducers as already 

mentioned.  
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1.2 State of the art 

The information about the load torque can be used for either mechanical analysis or 

performance improvement of mechatronics systems. In [8], it is considered as an input 

known a priori for an identification procedure, from which the mechanical parameters 

of a two-mass system are determined. Later, these parameters are used in an automatic 

tuning rule for a two degrees of freedom state-space speed controller. The load torque 

is also utilized to increase the robustness of the speed controller. In [9], it is used as a 

compensation signal in a feedforward control scheme designed for an induction 

machine. It was proven that the conventional PI speed controller augmented with the 

load torque compensation signal is not affected by the variation of the motor and 

mechanical parameters. 

There are numerous ways to obtain the information about the load torque. The load 

torque can be measured by using sensors, however, these sensors lead to a higher overall 

cost and less robustness of the system. Alternatively, it can be estimated by using a 

disturbance observer whose gain selection can be done by applying a pole-placement 

method [10][11]. In [10], the authors developed a so-called fast disturbance observer by 

which the load torque in a two-inertia system can be estimated and used as a 

compensation signal in the speed control loop. The pole-placement method ensures good 

estimation accuracy if noise buried in the measurement is low and parameters of the 

system are well known. Otherwise, the estimation accuracy may be unsatisfactory.  

The gain selection for the disturbance observer can also be done by using Kalman filter 

[12][13]. By this technique, the load torque is considered as a state variable and obtained 

as an output of the Kalman filter. The Kalman filter method is more robust against the 

noise in the measurement and the variation in the system parameters than the pole-

placement method. However, it has a disadvantage related to the selection of the 

covariance matrixes, as there is no general rule for the matrixes selection. 

As aforementioned, the feedforward control, where the load torque is added to the output 

of the speed controller, is often used to make the speed response free of negative effects 

from disturbances. Another approach that can be used to improve the speed response 

quality is the utilization of a new structure of the speed controller rather than the 

conventional PI controller. For example, in the case of the two-mass system, a two 

degrees of freedom state-space speed controller augmented with a pre-filter can be 
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adapted to give good reference tracking for step and dynamic commands as well as 

robust and fast load-torque rejection [14].  

In the research area pertaining to the detection of bearing faults, there are two main 

groups of diagnostic methods: with and without the use of acceleration sensor. The 

sensor is used to measure vibration velocity on the bearing housing or machine frame, 

whose RMS value can be used to categorize the working condition of the bearing to be 

one of the four levels according to the ISO 10816 standard [15]. The vibration velocity 

can be further processed to obtain its spectral content to detect characteristic fault 

frequencies created by single-point defects or broadband effect generated by the 

generalized roughness fault [4][5]. This is an accurate and reliable diagnostic method, 

but it has a big disadvantage associated with the costly sensor.  

Without the use of the acceleration sensor, the second diagnostic method relies on either 

the analysis of stator currents or frequency response. The stator currents based method 

was proposed and presented in [4]. The authors show that if there is a failure in the 

bearing of the machine, the air gap flux is modulated and the stator currents are 

generated at predictable frequencies, which are known as characteristic fault 

frequencies. By looking at the spectra of the stator currents, a failure in the bearing can 

be detected if there are considerable harmonics at the characteristic fault frequencies. 

This method was proven successful by detecting single-point defects. 

For the case of generalized roughness fault, the method proposed in [4] is not applicable 

because it is only able to detect characteristic fault frequencies while the generalized 

roughness causes broadband effect at unpredictable frequencies. An alternative solution 

to this problem introduced in [16] uses the autoregressive model of the stator currents. 

In this method, the stator currents are first filtered to remove most of the significant 

frequency content unrelated to the bearing faults, then the frequency content of the 

filtered currents is modeled. A baseline is obtained while a healthy bearing is used. As 

the bearing health degrades, the deviation in the spectral content from its based line is 

reflexed in the mean spectral deviation. The value of the mean spectral deviation is used 

as a fault index. The authors shows that the fault index obtained by using the 

autoregressive model is a reliable indicator of a developing bearing fault. The 

autoregressive model method is capable of detecting both generalized roughness fault 

and single-point defects. 
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A few years ago, the Institute of Electric Drives and Power Electronics at the University 

of Siegen developed a diagnostic procedure based on frequency response [6]. This 

method has been applied in a non-rigid multi-mass system whose frequency response 

has to be calculated during the commissioning of the plant for reasons of safety and 

control. The method was proven to be able to detect both single-defects and generalized 

roughness faults without requiring additional sensors. Since the measurement of the 

required signals used for the calculation of frequency response can be carried out during 

the normal operation of the plant, the frequency response based method can serve as an 

online bearing fault diagnosis.  

Due to the benefits resulting from the elimination of the angular transducer as already 

mentioned in section 1.1, sensorless control today is an interesting research area. 

Excellent papers concerning the sensorless control of electric drives can be found in 

literature. In summary, there are two categories of methods for the sensorless algorithm. 

The first category comprises the methods that model the machine by its state equations 

and is applicable for medium- and high-speed regions, where the operating speed is 

larger than 3% the rated speed. This approach is based on fundamental field wave model 

that can be implemented either open-loop structure, like the stator voltage model, or as 

closed loop observers [17][18][19]. The second category depends on the saliency in the 

spatial impedance of the motor; it is suitable for operating the machine at low-speed 

region and standstill [20][21]. A combined method to obtain a wide-speed range 

sensorless control was already studied and presented in [22].   

1.3 Objectives of this work 

This work focuses on the optimum control and diagnosis of mechanical failures of a 

drive characterized by repetitive cycles of production. One of the objectives of the work 

is dedicated to the identification of the load torque in such a drive by taking into account 

the periodicity of inherent to the system. As the load torque changes periodically, it can 

be represented in the form of Fourier series. After sufficient understanding on the 

repetitive phenomenon by using an identification-run algorithm, the load torque can be 

continuously estimated via the calculation of the Fourier coefficients. The estimated 

load torque can be used as a compensation signal in a feedforward control scheme to 

ensure the speed response free of oscillations. 

Another solution to deal with the speed oscillations is the use of a new structure of the 

speed controller. The second objective of the work is to develop a so-called harmonic 
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speed controller where each harmonic in the spectrum of the speed error, i.e. the 

difference between the reference speed and the actual speed, is manipulated by a PI 

controller. An alternative scheme is proposed with a PI resonant speed controller, where 

resonant components are added to the conventional PI speed controller to remove 

specific harmonics of the speed error.  

The third major objective of this work focuses on the detection of bearing faults by the 

identification of the load torque. As the movement of bearing balls over damaged areas 

located on one of the four main components of a bearing including an outer raceway, an 

inner raceway, a cage and balls creates load torque pulses, the spectrum of the load 

torque contains information associated with the bearing defects. Therefore, the analysis 

of the load torque can reveal the presence of a bearing failure. The diagnostic procedure 

does not require complementary sensors and is expected to be able to detect both single-

point defects and generalized roughness fault. 

The last objective of the work concerns the sensorless control of the drive to complement 

the proposed methods on the estimation of the load torque, the detection of the bearing 

faults and the harmonic speed control algorithm. A signal injection technique and an 

enhanced voltage model based method are used to drive a permanent magnet 

synchronous machine (PMSM) in the low- and high-speed regions, respectively. A 

combined field angle estimator from the injection technique and the enhanced voltage 

model method is developed to obtain a wide speed-range sensorless control. 

1.4 Outline of the chapters 

The structure of the dissertation is as follows. The motivation and the objectives of the 

work are described in Chapter 1. Theoretical fundamentals of the space phasor, 

coordinate transformations, mathematical model of a PMSM, two-level voltage source 

inverter (VSI), and space phasor modulation (SPM) are presented in Chapter 2. In 

chapter 3, field-oriented control (FOC) for the PMSM is presented. First, the principle 

of the FOC algorithm along with the design of the current and speed controllers is 

summarized. After that, harmonic speed control is presented. Chapter 4 focuses on the 

sensorless control of the drive. Chapter 5 is dedicated to the calculation of the load 

torque in a horizontal slider-crank mechanism, an example of mechatronics systems 

characterized by the repetitive phenomenon. From the load torque calculation, two 

methods for the estimation of the load torque, including a phenomenological method 

and an empirical one, are proposed. Chapter 6 deals with the diagnosis of the rolling 
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bearing faults. The causes and effects of the bearing failures as well as a novel diagnostic 

procedure are presented. Chapter 7 contains experimental results that are used to 

validate the operation of the proposed methods on the load torque estimation, the 

harmonic speed control, the sensorless control and the detection of the bearing faults. 

Equation Section (Next)Equation Section (Next)



 

 

 

 

2.1 The space phasor 

The history of the space phasor dates back to the 1950’s. It was first introduced by K. 

P. Kovács [23] and then developed further by J. Stepina [24] and I. Serrano [25]. The 

space phasor is a powerful tool used to describe the working of the three-phase systems, 

e.g. three-phase AC machines.  

Under the assumption that there is no zero component in a three-phase system, i.e. the 

three instantaneous values 𝑟௎(𝑡), 𝑟௏(𝑡), and 𝑟ௐ(𝑡) of a three-phase quantity 𝑟 satisfy 

      0U V Wr t r t r t    (2.1) 

the quantity 𝑟 can be represented in a space phasor 𝑟(𝑡) defined by 

        22

3
ij

U V Wr t r t a r t a r t e         (2.2) 

where
2 4

2 23 31 3 1 3
1; ; .

2 2 2 2

j j
j a e j a e j

 

           (2.3) 

It is still necessary to define the angle 𝛾௜  to complete the space phasor representation 

(2.2). For stator quantities, the angle 𝛾௜ = 𝛾ଵ is the position of the axis of the stator 

winding phase 𝑈 with respect to a given reference frame. Normally 𝛾ଵ = 0 is chosen, 

and (2.2) can be rewritten as 

        22

3 U V Wr t r t a r t a r t      (2.4)  

The instantaneous value in each phase can be obtained by making projection of the space 

phasor on the corresponding axis  

     1 2Re ; Re ; ReU V Wr r r r a r r a       (2.5)  

2 Theoretical Fundamentals
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In the three-dimension coordinate system 𝑈𝑉𝑊, the variable 𝑟 can be represented in the 

form of a three-element algebraic vector as follows 

   , ,
T

U V WUVW
r r r r  (2.6) 

Fig 2.1 shows an example of the space phasor 𝑟 in a symmetric three-phase sinusoidal 

system. In this case, the phase of 𝑟 with respect to the axis of the stator winding phase 

U is 𝜀 = 40଴.  

 

Fig 2.1. Representation of a space phase 𝑟 with 𝜀 = 40଴ 

The space phasor can also be described in two-dimension coordinate systems. The first 

type of the two-dimension systems is known as 𝛼, 𝛽 stationary coordinate, where the 𝛼- 

axis is in alignment with the 𝑈- axis of the 𝑈𝑉𝑊 coordinate system.   

The representation of the space phasor 𝑟 in the stationary coordinate system is as follows 

 22

3 U V Wr r a r a r r j r          (2.7) 

with 
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   22
Re Re

3

2 1 3 1 3
Re

3 2 2 2 2

U V W

U V W

U

r r r a r a r

r j r j r

r


       
 

                          



 (2.8) 

and 

   

 

22
Im Im

3

2 1 3 1 3
Im

3 2 2 2 2

1

3

U V W

U V W

V W

r r r a r a r

r j r j r

r r


       
 

                          

 

 (2.9) 

The second type of the two-dimension coordinate systems is known as 𝑑, 𝑞 rotating 

reference frame. As shown in Fig 2.2, the 𝑑-axis of the rotating reference frame is shifted 

by a time-varying angle 𝛾(𝑡) from the 𝛼-axis of the 𝛼, 𝛽 coordinate system. 

The 𝑑, 𝑞 reference frame owns a crucial advantage over the 𝑈𝑉𝑊- and the 𝛼, 𝛽-

coordinate systems; that is, if the rotational velocity 𝛾̇ = 𝑑𝛾/𝑑𝑡 is properly selected, i.e. 

𝛾̇ is identical to the angular velocity of the space phasor 𝑟, the space phasor 𝑟 is observed 

in steady state as a DC-quantity in the 𝑑, 𝑞 reference frame . As a result, the space phasor 

𝑟 can be conveniently manipulated within control schemes. In the 𝑑, 𝑞 coordinate 

system, the space phasor 𝑟 can be written as: 

   ( ) Re ( ) Im ( ) ( ) ( )d qr t r t j r t r t j r t     (2.10) 

It is well worth noting that the space phasor representation as aforementioned is valid 

for any electrical and magnetic quantities, for example, current 𝑖, voltage 𝑢, magnetic 

flux density 𝐵, flux linkage 𝜓, etc.  
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Fig 2.2. Representation of a space phasor 𝑟 in the 𝛼, 𝛽 − and the 𝑑, 𝑞 − coordinate systems 

2.2 Coordinate transformations 

As presented in section 2.1, the space phasor 𝑟 can be described in one of the three 

coordinate systems: the 𝑈𝑉𝑊-, the 𝛼, 𝛽- and the 𝑑, 𝑞- coordinate systems. It is necessary 

to draw transformations between them. 

According to (2.8) and (2.9) the transformation from the 𝑈𝑉𝑊- to the 𝛼, 𝛽- coordinate 

systems is as follows:  

1 0 0

3 3
0

3 3

U

V

W

r
r

r
r

r





                  

 (2.11) 

Inversely, the transformation from the 𝛼, 𝛽 - to the 𝑈𝑉𝑊- coordinate systems is given 

by: 

1 0

1 3

2 2

1 3

2 2

U

V

W

r
r

r
r

r





 
 

   
                 

    

 (2.12) 
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The block diagram representation of the transformations between the 𝛼, 𝛽- and the 

𝑈𝑉𝑊- coordinate systems is depicted in Fig 2.3. 

 

Fig 2.3. Symbol for the transformation of coordinates between the 𝛼, 𝛽- and the 𝑈𝑉𝑊- 
coordinates 

Fig 2.2 shows that 𝑟ఈ + 𝑗 ∙ 𝑟ఉ = ห𝑟ห ∙ 𝑒௝ఌ and 𝑟ௗ + 𝑗 ∙ 𝑟௤ = ห𝑟ห ∙ 𝑒௝(ఌିఊ). Therefore, the 

transformation from the 𝛼, 𝛽 coordinate system to the 𝑑, 𝑞 reference frame is as follows: 

 
  
   

cos sin

cos sin sin cos

j
d q

d q

d q d q

r j r r j r e

r j r j

r r j r r


 

 

   

     

    

        

 (2.13) 

Comparing the real and the imaginary terms in (2.13) yields: 

  d

q

rr
T

rr




  
    

   
 (2.14) 

where   cos sin

sin cos
T

 
 

 
  
 

   

The inverse transformation of (2.14) is: 

  1cos sin

sin cos
d

q

r r r
T

r r r
 

 

 
 

      
               

 (2.15) 

Fig 2.4 shows the symbolical representation of the transformations between the 𝛼, 𝛽 

coordinate system and the 𝑑, 𝑞 reference frame. 
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Fig 2.4. Symbol for the transformation of coordinates between the 𝛼, 𝛽- and the 𝑑, 𝑞- 
coordinates 

2.3 Mathematical model of the Permanent Magnet Synchronous Machine  

In recent years, synchronous machine equipped with permanent magnets has been 

selected for many industrial servo-drive applications due to the development of 

magnetic materials, digital signal processing units and power electronics. PMSM brings 

many advantages, such as high efficiency, high torque density, high overloading 

capabilities and a good dynamic performance because of low inertia and linear 

relationship between the electromagnetic torque and the current [26]. 

In this research work, a surface-mounted PMSM is selected for the electric drive. The 

mathematical description of the PMSM based on the fundamental field wave is 

presented in the following section for the purposes of modeling and control of the 

machine. Since permanent magnets are assembled on the rotor of the PMSM, the 

modeling relates to the stator quantities, including the stator voltage space phasor 𝑢, the 

stator current space phasor 𝑖  and the stator flux space phasor 𝜓. The stator voltage 

equation in the 𝛼, 𝛽-coordinate system is as follows: 

d
u R i

dt


    (2.16) 

where 𝑅 is the resistance of each one of the stator windings. 

In the rotating 𝑑, 𝑞- reference frame, the real axis is chosen as the position of the rotor 

pole flux, i.e. with an angular displacement 𝛾 with regard to the 𝛼-axis of the stationary 

coordinate system as it is shown in Fig 2.5. This 𝑑, 𝑞 rotating frame is known as the 

rotor-fixed one.  
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Fig 2.5. Rotor-fixed coordinate system 

The stator flux in the rotor-fixed coordinate system is given by: 

d d d p

q q q

L i

L i

 



  

 
 (2.17)   

where 𝜓௣ is the magnitude of the flux produced by the permanent magnets; 𝐿ௗ and 𝐿௤ 

are the direct- and quadrature-axis inductances of the machine, respectively. 

By combining (2.16) and (2.17), the stator voltage equations of the PMSM in the rotor-

fixed reference frame become: 

d
d d d q q

q
q q q d d p

di
u R i L L i

dt
di

u R i L L i
dt



  

      

        
 (2.18) 

where 𝜔 = 𝑑𝛾/𝑑𝑡  is the field angular velocity. 

The electromagnetic torque is generally calculated by the following equation [27]: 

 *3
Im

2eT p i     (2.19) 

where 𝑖 is the stator current space phasor,  𝜓∗ denotes the conjugated space phasor of 

𝜓, and 𝑝 is the number of pole pairs of the machine. 
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Since 𝜓 = 𝜓ௗ + 𝑗 ∙ 𝜓௤, (2.19) can be rewritten as: 

    
 

  

3
Im

2
3

2
3

2

e d q d q

d q q d

p q d q d q

T p j i j i

p i i

p i i i L L

 

 



       

     

       

 (2.20) 

It can be seen in (2.20) that the electromagnetic torque consists of a main component 

given by 3/2 ∙ 𝑝 ∙ 𝜓௣ ∙ 𝑖௤ and a reluctance component defined by 3/2𝑝 ∙ 𝑖ௗ ∙ 𝑖௤ ∙

൫𝐿ௗ − 𝐿௤൯. In a surface-mounted PMSM, the direct and quadrature-axis inductances are 

approximately equal, 𝐿ௗ ≈ 𝐿௤ , since the permeability of the path that the flux crosses 

between the stator and the rotor is equal all around the stator circumference [28]. 

Therefore, the reluctance component can be ignored. Equation (2.20) can be rewritten 

as: 

3

2e p qT p i     (2.21) 

The relationship between the mechanical system and the electrical system provides a 

complete description of the machine. 

2

2

1m
e L

d d
T T J J

dt p dt


       (2.22) 

where 𝑇௅ is the load torque; 𝐽 is the total inertia referred to the shaft of the machine; Ω௠ 

is the mechanical angular velocity of the shaft. 



2.4 Voltage source inverter 16

 

 

2.4 Voltage source inverter 

Fig 2.6. Three-phase power inverter connected to AC-motor 

The PMSM is fed by a voltage-source inverter (VSI). Fig 2.6 shows the topology of a 

two-level VSI. The VSI consists of three half bridges of power semiconductors, 

commonly Insulated Gate Bipolar Transistors (IGBTs), which are denoted by 

𝑆௎ା |𝑆௎ି, 𝑆௏ା |𝑆௏ି, 𝑆ௐା |𝑆ௐି corresponding to phase 𝑈, 𝑉 and 𝑊, respectively. The 

IGBTs have antiparallel free-wheeling power diodes with the notation 

𝐷௎ା |𝐷௎ି, 𝐷௏ା |𝐷௏ି, 𝐷ௐା |𝐷ௐି. The VSI is fed by a voltage source with the DC-link 

voltage 𝑈ௗ௖ . The VSI can convert the DC-link voltage into three-phase AC voltages by 

controlling the states of the power switches. The switching state of each phase is defined 

as [29]: 

(−), if the phase winding is connected to the negative potential, or 

(+), if the phase winding is connected to the positive potential of the DC-link voltage. 

By combining the possible switching states of each phase, eight voltage space phasors 

𝑢଴, 𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ, 𝑢ହ, 𝑢଺, 𝑢଻ can be obtained. The space phasor 𝑢଴, where all outputs are 

connected to the negative potential, and 𝑢଻, where all outputs are connected to the 

positive potential, are called zero voltage space phasors because their amplitudes are 

zero. The six remaining voltage space phasors divide the space into six equal sectors 

𝑆ଵ ⋯ 𝑆଺ as shown in Fig 2.7. 
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Fig 2.7. Voltage space phasors 𝑢
଴

⋯ 𝑢
଻
  provided by a two-level VSI 

2.5 Space phasor modulation 

Some control schemes for electrical machines, which do not directly command the 

switching-states of a VSI (for example the field-oriented control), need to modulate the 

control output voltage signals. A common modulation method is the so-called space 

phasor modulation (SPM). The space phasor modulation technique applies the space 

phasor theory to each voltage phasor inside the hexagon-voltage-limits of the VSI. 

As presented in section 2.4, six active and two zero voltage space phasors are possible 

in a two-level VSI. The space phasor modulation can synthetize a voltage space phasor 

𝑢௦ located inside one of the six sectors (𝑆ଵ to 𝑆଺) using the three nearest voltages space 

phasors of the VSI (two active space phasors and one zero space phasor). 

Fig 2.8 shows as an example where the voltage space phasor 𝑢௦ is located in sector 𝑆ଵ, 

and the generation of the SPM using the nearest voltage space phasors 𝑢ଵ, 𝑢ଶ and 𝑢଴ or 

 𝑢଻. So, 𝑢௦ can be calculated by means of: 

0,71 2
1 2 0,7s

p p p

TT T
u u u u

T T T
       (2.23) 
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 (2.24) 

 2 2
sin

3
s

p dc

uT

T U
  (2.25) 

0,7 1 2pT T T T    (2.26) 

where 𝑇௣ =
ଵ

௙ೞ
 with 𝑓௦ is the switching frequency; 𝑇ଵ 𝑇௣⁄ , 𝑇ଶ 𝑇௣⁄  and 𝑇଴,଻ 𝑇௣⁄  are the duty 

cycles of the respective space phasors  𝑢ଵ and  𝑢ଶ,  and 𝑢଴ or  𝑢଻. 

 

Fig 2.8. Example for the space phasor modulation 

The selection of the zero phasors  𝑢଴ or  𝑢଻ is carried out by taking into account the 

switching losses; that is, the favorable sequence is to change every IGBT pair only one 

time within a period as depicted in Fig 2.9. 

The procedure of the SPM is similar in the other five sectors. Details on the SPM can 

be found in [27]. 
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Fig 2.9. Switching patterns of the SPM in sector S1  

2.6 Summary of the chapter 

This chapter provided the fundamental concepts used for this work. The chapter started 

out by introducing the space phasor, then the coordinate transformations. The 

mathematical model of a PMSM utilized in the electric drive was derived with respect 

to the fundamental field wave. The PMSM was supplied by a two-level VSI whose 

topology as well as a control algorithm technique known as the space phasor modulation 

were also presented.      Equation Section (Next)



 

 

3.1 Field-oriented control of PMSM 

Torque, or force, is the basic quantity of all drive applications. Torque depends on a 

product of a current and magnetic flux. The magnetic flux can be generated by 

permanent magnets or by a flux producing current. In separately excited DC machines, 

the control of the torque and the flux producing currents is independent and decoupled. 

As a result, very simple control algorithms were developed for the operation of 

separately excited DC machines installed in high performance quality systems already 

in the last century. However, separately excited DC machines have become less 

attractive in recent decades due to the considerable disadvantages associated with their 

brushes, sizes and maintenances, resulting in the widespread use of AC machines. In 

terms of control, it is difficult to have a complete separation between the torque and the 

flux producing current components in an AC machine like that in a DC machine, because 

the AC machine has multi-phase windings and voltage systems. The purpose of the 

field-oriented control (FOC) is to reestablish the decoupling of the torque and the flux 

producing current components. The theory of the FOC was introduced in [30][31]. 

Currently, the FOC is one of the most commonly used control algorithms in AC drives. 

3.1.1 Principle of the field-oriented control 

The principle of the FOC of a PMSM relies on the advantages obtained by representing 

electric and magnetic space phasors of the PMSM in the rotor-fixed coordinate system. 

As explained in section 2.3, if the real component of the stator current is kept at zero, 

the electromagnetic torque given by 𝑇௘ = 3/2 ∙ 𝑝 ∙ 𝜓௣ ∙ 𝑖௤ is directly proportional to the 

permanent pole-flux 𝜓௣ and the imaginary component 𝑖௤ of the stator current. 

Because 𝜓௣ is a constant, the electromagnetic torque can be controlled via the current 

component 𝑖௤.  

The mathematical description of the PMSM given by (2.18) shows that the stator 

voltages in the 𝑑- and 𝑞- axis are coupled without the exception of standstill (𝜔 = 0). 

In fact, the voltage coupling has some drawbacks in particular for the design of current 

controllers. A more favorable rewritten form of (2.18) is commonly used by defining 

𝑢ௗ଴ and 𝑢௤଴ as follows [32]: 

3 Field-oriented Control of the Permanent Magnet 

Synchronous Machine 
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 (3.1) 

A possible realization of a FOC-scheme according to the mathematical model (3.1) is 

depicted in Fig 3.1. Normally, the control is operated with a zero flux producing current 

component, i.e. 𝑖ௗ
∗ = 0. 

 

Fig 3.1. Field-oriented control scheme for the PMSM 

The actual measured phase currents are transformed to the rotor-fixed coordinate system 

and are compared to the corresponding demanded current components. The rotor 

position angle 𝛾 is used for the coordinate transformations and can be obtained by 

utilizing either an angular transducer installed in the machine or an angle observer. With 

regard to the 𝑑- and 𝑞- axis separation, the output voltages 𝑢ௗ଴ and 𝑢௤଴ from the PI 

current controllers are considered as fictive quantities as shown in Fig 3.1, from which 

the decoupling circuit depicted in Fig 3.2 calculates the real demanded voltage 

components 𝑢ௗ and 𝑢௤. The demanded stator voltage phasor is then generated by the 

space phasor modulation technique and is fed to the stator windings.  
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Fig 3.2. Decoupling network (DN) 

The FOC of the PMSM can be extended with a superimposed velocity control as 

depicted in Fig 3.3. The control has cascade structure with two control loops. The outer 

cascade allows for the control of the actual mechanical speed Ω௠ to track the reference 

speed Ω௠
∗ , where a PI speed controller is usually adopted. The speed controller has a 

moderate sampling rate and determines the reference torque producing current 

component  𝑖௤
∗ . 

 

Fig 3.3. Block diagram of the velocity control of the PMSM with an under-layered FOC 

3.1.2 Current control loop 

As shown in Fig 3.1, the FOC scheme of the PMSM contains the current control loop. 

Fig 3.4 depicts the simplified current control loop using PI current controllers. The 

modeling of the PMSM is based on equation (3.1). The transfer functions from the stator 
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current components on the 𝑑- and 𝑞-axis to the corresponding voltage components by 

assuming a perfect decoupling of the equation (3.1) are given by: 

0 0

( )( )
;

( ) 1 ( ) 1
qd e e

d sd q sq

i si s K K

u s T s u s T s
 

   
 (3.2) 

where 𝐾௘ = 1 𝑅, 𝑇௦ௗ = 𝐿ௗ 𝑅⁄⁄ , 𝑇௦௤ = 𝐿௤ 𝑅⁄ ; 𝑠 is the Laplace variable. 

 

Fig 3.4. Block diagram of the current control loop 

As aforementioned, the inductances on the 𝑑- and 𝑞-axis at fundamental frequency of 

the surface-mounted PSMS are identical, i.e. 𝐿ௗ = 𝐿௤ = 𝐿௦. The transfer functions (3.2) 

can be rewritten as: 

0 0

( )( )

( ) ( ) 1
qd e

d q s

i si s K

u s u s T s
 

 
 (3.3) 

where 𝑇௦ = 𝐿௦ 𝑅⁄  is the dominant time constant of the machine, i.e. the stator time 

constant determined by the inductance and resistance of the machine. 

The inverter is modeled as a first order lag with a time constant 𝑇ఙ = 𝑇௦௔௠௣௟௜௡௚, where 

𝑇௦௔௠௣௟௜௡௚ is the sampling time of the control algorithm. The transfer functions from the 

reference voltages to the actual voltages can be expressed as follows: 

00
* *

0 0

( )( ) 1

( ) ( ) 1
qd

d q

u su s

u s u s T s

 
 

 (3.4) 
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The terms 𝑢ௗ଴
∗ , 𝑢௤଴

∗  are the reference voltages on the 𝑑- and 𝑞- axis, respectively; 

𝑢ௗ଴, 𝑢௤଴ are the generated voltages on the 𝑑- and 𝑞- axis by the inverter.   

The parameters of the PI controllers can be calculated according to the magnitude 

optimum criterion, by which the PI controllers are designed to keep the closed-loop 

transfer functions close to one in as large bandwidth as possible. The parameters of the 

current controller are calculated as [33] : 

_

_ 2

i i e

s
p i

T T

L
K

T






 (3.5) 

where 𝐾௣_௜ and 𝑇௜_௜ are the gain and the time-constant of the PI current controllers. 

By designing the current controllers in this way, the transfer function from the reference 

current to the actual current can be approximated as a first order lag: 

_ _ 2 2

1 1
( ) ( )

2 2 1 2 1c id c iqG s G s
T s T s T s  

  
        

 (3.6) 

where 𝐺௖ି௜ (𝑠) and 𝐺௖ି௜௤(𝑠) are the transfer functions of the closed current control loop 

corresponding to 𝑖ௗ and 𝑖௤, respectively. 

3.1.3 Speed control loop 

In the cascade structure, the speed control loop is superposed to the current control loop. 

By assuming the approximation model of the current loop given in (3.6), the speed 

control loop can be simplified as illustrated in the block diagram in Fig 3.5. 
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Fig 3.5. Block diagram of the speed control loop 

To ensure both the speed reference tracking and the load torque rejection in electric 

drives, symmetric optimum criterion delivers a commonly used design [34]. It is carried 

out by finding the maximum damping of the control system, which corresponds to the 

largest phase margin of the open loop transfer function. Accordingly, the parameters of 

the PI speed controller are given by [35]:  
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 (3.7) 

where 𝐽 is the moment of inertia of the mechanical load referred to the shaft of the 

machine. 

The transfer function of the closed speed control loop is then defined by: 

 _ * 2 2 3 3

1 8

1 8 32 64
m

c
m

T s
G s

T s T s T s



  

   
 
         

 (3.8) 

3.2 Harmonic speed control 

The function of the speed control loop is to ensure that the velocity of the drive follows 

its reference speed and rejects disturbances from the load torque. The conventional PI 

speed controller designed based on the symmetric optimum criterion can handle normal 

technical demands, for example, a constant or step-change of the load torque. Yet in 

cases where the drive is required to accomplish specific shapes of the load torque, the 

conventional speed controller may provide inadequate reference speed tracking 

capability [14][36]. In such cases, the structure of the speed controller should be 

modified in order to ensure the demanded operational quality.  
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In many industrial installations, the electric drives are desired to be able to work with 

repetitive mechanical systems, where the load torque changes periodically according to 

the position of shaft of the driven machine. Because of the variable load torque, the 

velocity control loop is always working in dynamic modes. The changing load torque 

yields oscillations in the velocity even for a constant reference value. To cope with this 

problem, harmonic speed control can be utilized. The idea behind the design of the 

harmonic speed controller is that each harmonic in the spectrum of the speed error is 

manipulated by an individual controller. In principle, there are two different approaches 

for achieving this objective. One is the use of a resonant controller and the other is the 

utilization of a PI controller. These two solutions will be explained in details in the 

following section. 

Without the loss of generality, the theoretical analysis is conducted under an assumption 

that the driven machine completes one cycle of the load torque in one revolution. 

3.2.1 Proportional-integral resonant speed control 

Proportional-integral resonant (PI-R) controllers are widely used for current control loop 

in grid-connected systems with the aim of harmonic compensation [37][38][39]. In such 

systems, the current responses contain considerably undesirable harmonics, which are 

multiples of the grid frequency. These undesirable harmonics have to be canceled. For 

this purpose, one possible solution is to use a resonant component whose transfer 

function is given by:  

  2 2R R
R

s
F s K

s 
 


 (3.9) 

where 𝐾ோ is the gain and 𝜔ோ is the characteristic frequency of the resonant component. 

As depicted in Fig 3.6 the velocity control loop of the PMSM is modified, where the 

conventional PI controller is augmented by the resonant part connected in parallel [40]. 

For simplicity, one resonant component with 𝜔ோ = 10𝜋 𝑟𝑎𝑑/𝑠 is taken into account. 

In this case, the transfer function of the PI-R speed controller is: 
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As the speed oscillations come from the angle-dependent load torque, the PI-R speed 

controller is considered in terms of disturbance rejection. The closed-loop transfer 

function from the load torque 𝑇௅ to the mechanical speed Ω௠ is: 
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The closed-loop transfer function from the load torque 𝑇௅ to the mechanical speed Ω௠ 

corresponding to the conventional PI speed controller is 

2
2

2

2
2 _ _

3 2
2 _ _ _ _ _

( ) ( )
( )

( ) ( )

( ) 2

( ) 2

m
L

L

i i

i i p i p

s num s
G s

T s den s

num s T T s T s

den s pJT T s pJT s K T s K

  

     

 
 

   

      

 (3.12) 

 

Fig 3.6. Block diagram of the speed control loop with a PI-R controller 

The Bode diagrams of 𝐺ଵ௅(𝑠) and 𝐺ଶ௅(𝑠) are shown in Fig 3.7 and Fig 3.8, respectively.  

The frequency response from the load torque to the mechanical speed is used for the 

purpose of theoretical analysis. The magnitude of the harmonic at frequency 𝜔 in the 

spectrum of the mechanical speed can be defined according to (3.11) . 

1( ) ( ) ( )m L Lj G j T j       (3.13) 
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Fig 3.7. Bode diagrams of 𝐺௅(𝑠) with PI-R speed controller 

 
Fig 3.8. Bode diagrams of 𝐺௅(𝑠) with the conventional speed controller  

Fig 3.7 shows that the PI-R speed controller results in very low magnitude |𝐺ଵ௅(𝑗𝜔)| at 

𝜔ோ . This means that the harmonic corresponding to 𝜔ோ  in the spectrum of the load 

torque has low effect on the mechanical speed Ω௠. Frequency 𝜔ோ  can be regarded as an 

anti-resonant frequency of the speed control loop (𝜔௔௥௘௦ = 𝜔ோ ).  
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In the Bode diagram, it is observed that the PI-R controller has a side effect as it 

introduces a new resonant frequency (𝜔௥௘௦), at which the magnitude of the closed-loop 

transfer function increases considerably compared to that of the conventional PI speed 

controller. However, the effects of the new resonant frequency on the speed control loop 

can be neglected. The reason is, in spite of the increase of |𝐺ଵ௅(𝑗𝜔)| at 𝜔 = 𝜔௥௘௦, the 

magnitude |𝑇௅(𝑗𝜔)| at 𝜔௥௘௦ is small as 𝜔௥௘௦ is not a dominant harmonic of the load 

torque. Thus, according to (3.13) the magnitude of the mechanical speed  Ω௠ is not 

significant at 𝜔௥௘௦. The phase diagrams corresponding to the two controllers differ from 

each other only at the anti-resonant frequency 𝜔ோ . 

The next step concerns the design of the resonant filter, which is characterized by the 

characteristic frequency 𝜔ோ and the gain 𝐾ோ. While 𝜔ோ directly depends on the velocity 

of the driven machine, 𝐾ோ should be chosen relatively high but within stable limit to 

ensure small steady-state speed error. To get an insight into the effect of 𝐾ோ to the speed 

control loop, the root-locus of the transfer function 𝐺ଵ௅(𝑠) from the load torque to the 

mechanical speed with a PI-R speed controller is plotted and analyzed. The 

characteristic equation of 𝐺ଵ௅(𝑠) given by 
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can be rearranged in the conventional from (3.15) for the root-loci plot. 
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Fig 3.9 depicts the root-locus of the speed control loop with a PI-R speed controller with 

respect to the change of 𝐾ோ. Equation (3.14) shows that the characteristic equation has 

the order of five, therefore there are five segments of the root loci as shown in Fig 3.9 

(a). The dominant poles are on segment 1 and segment 2, which are located near the 
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imaginary axis. A zoom of segment 1 and segment 2 is shown in Fig 3.9 (b). The gain 

𝐾ோ = 28.4 is selected to ensure a desirable damping of the speed control loop. 

 
(a) 

 
(b) 

Fig 3.9. Root-loci of the speed control loop with regard to the gain 𝐾ோ: a) the whole root-
locus; b) the dominant roots lying on segment 1 and segment 2 
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Fig 3.10. Block diagram of the peed control loop with five resonant blocks 

 

Fig 3.11. Bode diagram of the speed control loop with five resonant blocks 

Usually the periodic disturbances contain more than a single harmonic. Therefore, 

additional resonant components can be implemented in parallel, where each one is 

dedicated to a harmonic contained in the spectrum of the disturbance load. Fig 3.10 
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depicts the speed control loop with a PI-R speed controller, where harmonic up to the 

5th of the speed error is considered. The Bode diagram of 𝐺ଵ௅(𝑠) in this case is shown 

in Fig 3.11. The design of each resonant filter can be conducted separately by the root-

loci analysis as already presented.  

It is important to mention again that the characteristic frequency 𝜔ோ of each resonant 

filter depends on the mechanical speed Ω௠. Hence, the PI-R speed controller has to be 

implemented as an adaptive one that changes characteristic frequency 𝜔ோ according to 

the variable speed. 

3.2.2 Harmonic speed control 

Another solution to deal with specific harmonics appeared in the controlled variables is 

the use of a harmonic controller. The harmonic controller was developed for different 

applications, such as power factor control for a boost rectifier [41] or current control for 

a transverse flux machine [42]. In the present work, the harmonic controller is applied 

to the speed control loop [40]. Unlike the PI-R speed controller, where each harmonic 

is controlled by a resonant filter, in the new approach, each harmonic is manipulated by 

a PI-controller. 

The harmonic controller is based on a single-phase synchronous reference frame control 

[41]. Since one revolution of the driven machine completes one cycle of the load torque, 

oscillations in the velocity are related to the mechanical position angle 𝛾௠ of the driven 

machine. Thus, the speed error, which is the difference between the speed response Ω௠ 

and a constant reference speed Ω௠
∗ , is a periodic function of rotor angle 𝛾௠ . The 

representation of the speed error in terms of infinite Fourier series is given by equation 

(3.16).  
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sinm m m m n m k
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e e k  




         (3.16) 

where 𝑒 is the speed error; 𝑒௞ and (𝑘 ∙ 𝛾௠ + 𝜑௞) are the magnitude and phase of the 𝑘௧௛ 

harmonic of the speed error 𝑒.  

The idea of the harmonic controller is now that the error signal is modulated with the 

frequencies of the harmonic that have to be rejected by the control. This procedure 

corresponds to the transformation of each harmonic to a frame of coordinates in which 
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it becomes constant. Two PI-controllers manipulate each harmonic of the modulated 

signal and the manipulated variables are demodulated and are added for the calculation 

of the reference torque. Fig 3.12 shows the structure of the 𝑘௧௛ controller designed for 

the 𝑘௧௛ harmonic of the speed error. 

 

Fig 3.12. Speed controller for the 𝑘𝑡ℎ harmonic 

The transformation results in two signals 𝑒௖௢௦
௞  and 𝑒௦௜௡

௞  as follows [42]: 
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 (3.18) 

Equations (3.17) and (3.18) show that the transformation makes the 𝑘௧௛ controller work 

with constant variables associated with the 𝑘௧௛ harmonic of ∆Ω௠. The remaining sine 

and cosine components have mean values of zero over one period of 𝛾௠. It is well worth 

noting that the controller for the DC component does not contain a sine part. The output 
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𝑇௞
∗ of the 𝑘௧௛controller corresponds to the 𝑘௧௛ harmonic of the reference torque 𝑇∗. 

Furthermore, each PI-controller is equipped with a saturation and an anti-windup 

algorithm in order avoid the overshoot due to the nonlinear behavior of the limits. The 

priority of the anti-windup procedures is set based on the magnitude of the 

corresponding harmonic of the load torque.  

The design of the harmonic speed controller is necessary to complement the theoretical 

analysis. It was proven that the harmonic speed controller is equivalent to a combination 

of a resonant filter and a proportional controller [39]. Therefore, for a single harmonic 

the integral gains of the PI controllers can be selected in the same way applied to the PI-

R controller. The proportional gains can be combined to form a single proportional part 

whose value is identical to that of the PI speed controller designed based on the 

symmetric optimum criteria.  

 

Fig 3.13. A full harmonic speed controller 

A full harmonic speed controller is illustrated in Fig 3.13 where harmonics up to the 

𝑁௧௛  are considered. The increase of 𝑁, the more harmonics to be controlled, and the 

smaller oscillations the speed response. However, the higher the value of 𝑁, the more 
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complex the speed controller and the more calculation to microprocessor or DSP. The 

selection of 𝑁 is carried out according to a tradeoff between the algorithm complexity 

and the desirable quality of the speed response. 

3.3 Summary of the chapter  

This chapter explained the principle of the FOC for the PMSM, including a general 

block diagram and criteria for designing current and speed controllers. 

The chapter also elaborated on a new method for designing the speed controller. To 

reduce undesirable harmonics in the speed response originated from an angle-dependent 

load torque, either a proportional-integral resonant controller or a harmonic speed 

controller can be used. The former controller relies on resonant parts to compensate for 

specific predefined harmonics. The latter type refers to an individual PI-controller for 

each harmonic in the spectrum of the speed response.   Equation Section (Next)  



 

 

4.1 Introduction 

The field-oriented control requires information of the field angle for the coordinate 

transformations and the mechanical speed for the speed control loop as it is shown in 

Fig 3.1. The field angle is usually obtained by using an angular transducer installed in 

the shaft of the machine. However, the sensor is sensitive to the influences of the 

environment, such as dirt, temperature and etc. The sensor also increases the cost of 

investment and maintenance, the cables and interface card for installation and 

commissioning. In the following sections, the sensorless control of the PMSM is 

presented, where an enhanced voltage model based method is utilized to drive the 

machine at medium and high-speed speed region while signal injection technique is 

adopted for the low-speeds including standstill. Finally, a combined field angle observer 

is introduced to obtain a wide speed-range sensorless control of the machine.  

4.2 High-speed sensorless control of the drive 

In the sensorless control scheme of a PMSM in medium- and high speed region, i.e. the 

operating speed is larger than 3% the rated speed,  a fundamental field wave model is 

usually used. The methods utilize either a voltage model [18][27], state observers 

[19][43] or Kalman filters [44][45] for the estimation of the field angle. In the voltage 

model based methods, the voltages and the measured currents are used to estimate the 

position of the rotor from the voltage equations. Parameter variations due to temperature 

and saturation strongly affect the performance of the estimation algorithm. The state 

observers and the Kalman filters based methods are less sensitive to parameter 

variations. However, it is difficult to define covariance matrixes for the Kalman filters 

or design the state observers. Even though the three approaches differ from each other 

in the way to estimate the field angle, they share a common characteristic of not being 

able to work at low and zero stator frequency [17].  

A sensorless control can be built in a conventional FOC scheme by substituting the angle 

measurement by an observer or estimation algorithm. In practical applications, the 

sensorless scheme should be simple, reliable and easy to be configured. An enhanced 

4 Sensorless Control of the Permanent Magnet 

Synchronous Machine 
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voltage model based method is used in this work because it fulfills the aforementioned 

requirements [18]. 

The enhanced voltage model is derived from the mathematical description of the PMSM 

in the rotor-fixed reference frame given by (2.18). Equation (2.18) is restated hereafter 

for the purpose of theoretical analysis.  

d
d d d q q

d
q q q d d p

di
u R i L L i

dt
di

u R i L L i
dt



  

      

        
 (4.1) 

In the sensorless operation mode, the estimated rotor-fixed reference frame is used since 

the actual reference frame is unknown. Fig 4.1 represents both the estimated and the 

actual rotor-fixed reference frames, in which the subscript ' 'e  indicates variables 

associated with the estimated coordinate system.  

 

Fig 4.1. Estimated and actual rotor reference frames 

The voltage equation (4.1) in regard to the estimated reference frame is given in (4.2) 

[46]: 
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 (4.2) 

The error angle ∆𝛾 = 𝛾௘ − 𝛾  is the difference between the estimated field angle 𝛾௘  and 

the true field angle 𝛾. The inductance difference is defined by ∆𝐿 = ൫𝐿ௗ − 𝐿௤൯ 2⁄ . 

At fundamental frequency, the PMSM ensures ∆𝐿 ≪ 𝐿ௗ ≈ 𝐿௤ . If the error angle ∆𝛾 is 

sufficiently small, all terms related to the multiplication of two small variables including 

∆𝐿, 𝑠𝑖𝑛∆𝛾 , and 𝑠𝑖𝑛(2∆𝛾) in (4.2) can be ignored. As a result, (4.2) can be rewritten as: 
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 (4.3) 

Because 𝑠𝑖𝑛∆𝛾 ≈ ∆𝛾, 𝑐𝑜𝑠∆𝛾 ≈ 1, the two delta voltages defined by (4.4) contain 

information about the speed error and position error. They can be used for a tracking 

algorithm to estimate the position and the speed of the rotor. 
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 (4.4) 

In (4.4), the electrical speed error ∆𝜔 = 𝜔௘ − 𝜔 is the difference between the estimated 

speed 𝜔௘  and the actual speed 𝜔. 

Fig 4.2 shows the block diagram of the sensorless control algorithm based on the 

enhanced voltage model. The motor model was built according to (4.1). The two 

artificial voltage components given by (4.4) are utilized in a tracking algorithm, which 

contains two tracking loops. The inner loop and the outer loop provide the estimates of 

the electrical angular velocity and the field position angle, respectively. The inner loop 

depends on a parameter 1 𝑇ఠ⁄ , which is the corner frequency of the controller response 
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in the Bode diagram. The estimated speed should be low-pass filtered before using as a 

feedback signal for the speed control loop. As the field angle tracking loop already 

contains an integral, only a proportional part characterized by parameter 𝑘௣ is required 

to ensure a zero error angle in the steady state. In many cases, the gain 𝑘௣ can be chosen 

in the range [0,75; 1.25].    

The enhanced voltage model depicted in Fig 4.2 has a disadvantage associated with the 

time derivative of the currents expressed by the two expressions 𝐿ௗ ∙
ௗ௜೏೐

ௗ௧
 and 𝐿௤ ∙

ௗ௜೜೐

ௗ௧
 . 

The time derivative makes the sensorless control algorithm less applicable. To overcome 

this drawback, instead of adding the time-derivative components to the delta voltages 

∆𝑢ௗ and ∆𝑢௤, they are moved to the output of the inner tracking loop as shown in Fig 

4.3. The mathematical descriptions of the two voltage models are identical, but the 

model without the time derivative is more reliable [18]. 

It is necessary to mention that the sensorless control method based on the enhanced 

voltage model still depends on the accuracy of the machine parameters. If the parameters 

are well known, the rotor position and the rotor speed can be precisely estimated; 

otherwise, the tracking algorithm fails to provide sufficiently precise estimates. To 

ensure a good performance of the sensorless drive, an online parameter adaption is 

crucial. It is well known that the permanent magnet flux and the stator resistance are 

temperature-dependent, while the inductance is not influenced by temperature, but by 

the stator currents. A look-up table that demonstrates the relationship between the 

inductance and the currents can be used for an inductance tuning rule. To deal with the 

temperature dependency of the permanent magnet flux and the stator resistance, an 

online adaptive parameters identification tuning can be utilized [29][47]. 

In experiments carried out in our laboratory, the enhanced voltage model method was 

proven to be able to work at the lowest frequency of 3 𝐻𝑧 corresponding to 3% rated 

frequency under no load. The enhanced voltage model based method is used in this work 

to drive the PMSM at 100 𝐻𝑧 to emulate faulty bearings according to the ISO 10816 

standard. In the normal operation of the electric drive, the machine is operated at low 

speed range, including zero speed. The signal injection technique is utilized in this case 

and is presented in the following section.  
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Fig 4.2. Block diagram of the sensorless control of PMSM with an enhanced voltage model 

 

Fig 4.3. Block diagram of the modified enhanced voltage model  
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4.3 Low-speed sensorless control of the drive    

Sensorless control for the PMSM at low-speed region requires signal injection 

techniques that explore the anisotropic properties of the machine  [21][46][48]. In such 

schemes, extra signals are injected to the motor, then corresponding signals are 

measured and processed to detect the position of the rotor. The injection techniques 

differ from each other in the types of the injected signals and in the structure of the field 

angle tracking procedures. 

Generally, a high-frequency voltage vector is used as the excitation signal and a 

corresponding current is used for the angle tracking algorithm. There are two main types 

of the injected voltage vector. One is a revolving carrier voltage generated by injecting 

a high-frequency rotating voltage vector to the input of the pulse-width modulator. The 

other one is an alternating carrier voltage vector that oscillates in a time-varying spatial 

direction [21]. Sensorless control methods based on either types of the injected voltage 

signals were proven successful to be performed in the low-speed region, including zero 

crossing under loaded conditions. When taking into account the signal-to-noise ratio, 

the dependencies on parameter variations and the inverter nonlinearities such as dead-

time and zero current clamping, the method relied on the alternating carrier signal is 

preferred [49]. 

The field angle tracking plays an important role in ensuring a good performance of the 

sensorless drive. It should be able to track small saliency of PMSMs, especially those 

with permanent magnets mounted on the surface of the rotor. The tracking procedure 

can utilize band-pass filters [20][48] or Fourier interpolation [46] to extract the high-

frequency current that contain information of the field angle. In this research, the 

demodulation procedure presented in [48] is adopted because of its simplicity and its 

sensitivities to small saliency. 

For the purpose of convenience, the mathematical description of the PMSM in the actual 

rotor-fixed reference frame is stated again as follows: 
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If only high-frequency components of the injected voltages and of the response currents 

are considered under an assumption that the injected frequency is sufficiently higher 

than the rotor speed, the PMSM can be regarded as a simple R-L circuit. The voltage 

equations (4.5) can be rewritten as [50]: 

dh
dh dh dh

qh
qh qh qh

di
u R i L

dt
di

u R i L
dt

   
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 (4.6) 

The subscript ' 'h  indicates parameters and variables of the machine corresponding to a 

high-frequency. 

Equation (4.6) can be expressed in the frequency domain as follows: 
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The terms 𝑧ௗ௛ = 𝑅 + 𝑗 ∙ 𝜔௛ ∙ 𝐿ௗ௛ ,  𝑧௤௛ = 𝑅 + 𝑗 ∙ 𝜔௛ ∙ 𝐿௤௛ are the 𝑑- and 𝑞-axis high-

frequency impedances; 𝜔௛ is the frequency of the injected signal. 

With regard to the estimated rotor reference frame, the relationship between the high-

frequency voltages and the high-frequency currents is established based on the 

coordinate transformations presented in section 2.2. 

 

1/ 0cos sin cos sin

sin cos sin cos 0 1/

1 / 0cos sin cos sin

sin cos 0 1/ sin cos

deh dh dhdh

qeh qh qhdh

dehdh

qehdh

i i uz

i i uz

uz

uz

   
   

   
   

             
                         

         
                

 (4.8) 

where 𝑖ௗ௘௛ , 𝑖௤௘  are the 𝑑- and 𝑞-axis high-frequency current components; 𝑢ௗ௘௛ , 𝑢௤௘௛  

are the 𝑑- and 𝑞-axis high-frequency voltage components in the estimated reference 

frame. 

If an alternating high-frequency voltage defined by  

 ˆ cos ; 0deh h h qehu u t u   (4.9) 
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is superimposed on the 𝑑-component of the stator voltage in the estimated rotor 

reference frame, the corresponding high-frequency current given by (4.8) can be 

obtained [50]: 
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 (4.10) 

Equation (4.10) shows that the 𝑑- and 𝑞-axis high-frequency current components in the 

estimated rotor reference frame contain information of the field error angle ∆𝛾 if the 

high-frequency impedance difference between the 𝑑- and 𝑞-axis exists, i.e. (𝑧ௗ௛ −

𝑧௤௛) ≠ 0. The 𝑑-axis current component in (4.10) does not become zero in case of a 

zero error angle. On the contrary, the 𝑞-axis current component depends on the field 

error angle ∆𝛾. If the resistance is small enough in comparison to the high-frequency 

inductance, it follows with 
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That the 𝑞-axis current component can be rewritten as: 
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And if the error angle ∆𝛾 is sufficiently small, which results in sin (2∆𝛾) ≈ 2∆𝛾, then 

the 𝑞-axis current component can be rewritten as: 
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 (4.13) 

Equation (4.13) shows that the 𝑞-axis current component is modulated by the field error 

angle ∆𝛾. A full demodulation procedure for the estimation of the field angle is depicted 

in Fig 4.4. 
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Fig 4.4. Block diagram of the demodulation procedure 

The 𝑞-axis current component regarding the estimated rotor reference frame 𝑖௤௘ is band-

pass filtered, resulting in the high-frequency current component 𝑖௤௘௛ defined by (4.13). 

This signal is then modulated and low-pass filtered to get an error signal 𝑓(∆𝛾). 
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It is necessary to mention that the phase of 𝑖௤௘   due to the time delay of the inverter 

should be taken into account. A practical way to identify the phase lag is conducted by 

comparing the measured waveform of 𝑖௤௘௛ with that of the reference signal 𝑠𝑖𝑛(𝜔௛ ∙ 𝑡). 

The phase lag should be compensated in the demodulation procedure. The error 

signal 𝑓(∆𝛾) is further processed by a phase-locked loop (PLL) to obtain the field angle 

and field speed. The parameters of the PI-controller in the PLL can be tuned according 

to the characteristic of the low-pass filter (LPF). Assuming that a first-order low pass 

filter with the transfer function given by (4.15) is utilized. 
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 (4.15) 

where 𝛽௟௣ is the bandwidth of the filter.  

The block diagram of the PLL can be interpreted in Fig 4.5. The PI controller has the 

transfer function given by 
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4 Sensorless Control of the Permanent Magnet Synchronous Machine 45

 

 

where 𝑘௣ and 𝑘௜ are the parameters of the PI controller in the PLL. 

 

Fig 4.5. Block diagram of the PLL 

The closed-loop transfer function T(s) of the PLL is [51]: 
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 (4.17) 

A pole-placement method is used to calculate the parameters of the PI controller in the 

PLL [51]. The closed-loop poles are located at 𝑠 = −𝛽, meaning that the denominator 

of the transfer function 𝑇(𝑠) is equivalent to (𝑠 + 𝛽)ଷ. Eventually, the cut-off frequency 

of the low-pass filter and the parameters of the PI controller of the PLL can be calculated 

and given by (4.18). 
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lp lp
lp p i

err err

k k
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A full low-speed sensorless control scheme for the PMSM based on the injection 

technique is illustrated in Fig 4.6. 
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Fig 4.6. Sensorless control scheme of the PMSM at the low-speed 

4.4 Wide speed range sensorless control of the drive 

The sensorless drive should be able to work in a wide speed range because the machine 

may be required to work at different speeds. As aforementioned, methods that rely on 

the fundamental field wave models are applicable to the high-speed region, whereas 

signal injection based methods are well suited to operation at low-speeds. A combination 

of the two methods is a promising solution to implement the sensorless drive in a wide 

speed range. 

An approach for combining the two methods was already discussed in [22], in which a 

modified voltage method is used throughout the whole speed range. The modified 

voltage model method is augmented with the signal injection technique at low-speeds. 

Fig 4.7 demonstrates the block diagram of the combined estimator. The estimates of the 

rotor speed and the rotor position are based on the following equations: 
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 (4.19)   

where 𝜔௘_௛௜௚௛ is the estimate of the field speed according to the modified voltage 

method; 𝑘௜ and 𝑘௣ are defined by (4.18).  
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Fig 4.7. Combined angle estimation system [22] 

In order to achieve a smooth transition between the low-speed and the high-speed 

regions, the injection voltage amplitude 𝑢ො௛ and the bandwidth 𝛽௟௣ are linearly decreased 

with the increasing speed, and the signal injection method is disabled above the 

transition speed 𝜔௧௥௔௡௦, i.e. 

0

0

ˆ ,
ˆ

0, otherwise

,

0, otherwise

trans me
h me trans

h trans

trans me
lp me trans

lp trans

u if
u

if

 
 



 
  

 

 
 



 

 



 (4.20) 

where the parameters 𝑢ො௛଴ and 𝛽௟௣଴ correspond to the zero-speed operation; 𝜔௠௘ is the 

estimated mechanical speed. It can be understood that in the high-speed region, the 

effect of the injection method vanishes. In the low-speed region, the estimates of the 

modified voltage model method act as disturbances while those of the injection method 

are dominant. 

In this research work, the high-speed sensorless control is based on the enhanced voltage 

model as presented in section 4.2. The combined field angle observer is built in a similar 

way depicted in Fig 4.7, but a weighted coefficient W0 is augmented to the calculation 

of the field velocity. The function of W0 is to reduce the interference of disturbances 

proposed by the enhanced voltage model method at low-speeds. The determination of 

W0 is given by (4.21) and is shown in Fig 4.8 (a). 
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The field angle and field velocity are now obtained from the following equations: 
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 (4.22) 

 

(a)                                                                     (b) 

Fig 4.8. a) Determination of W0; (b) block diagram of the proposed estimator 

Fig 4.8 (b) shows the structure of the proposed observer. It is obvious that the effects of 

the signal injection method are inversely proportional to the speed and becomes zero in 

the speed region above 𝜔௧௥௔௡௦. The estimates obtained from the enhanced voltage model 

based method are prevalent in the high-speed region and vanishes at the zero crossing 

speed.  

4.5 Summary of the chapter 

The chapter discussed sensorless control for the PMSM. To drive the motor in the high-

speed region, an enhanced voltage model based method was introduced. In the low-

speed range including standstill, signal injection technique was presented. A combined 

estimator to drive the machine in both high and low-speed regions was proposed. By 

conducting the combined estimator, the PMSM can be driven in a wide speed range. 

Equation Section (Next)  



 

 

5.1 Introduction  

As already presented in section 1.3, this work focuses on mechatronics systems 

characterized by repetitive cycles of production. In the laboratory, a slider-crank 

mechanism was designed and built as an example of such the system. It should be 

mentioned that the theoretical analysis and proposed control algorithm applied to the 

slider-crank mechanism can be extended to any mechatronics systems characterized by 

repetitive phenomenon. From the viewpoint of control, the mechanical configuration of 

the mechanism should be well known, where the load torque is a key parameter 

regarding the design of controllers of the electric drive. Therefore, this chapter 

introduces the mechanical structure and the equivalent model of the slider-crank 

mechanism, from which kinetic analysis can be carried out in order to obtain 

mathematical description of the load torque. The next step is to develop two methods 

for the estimation of the load torque in the time-domain by using Fourier interpolation. 

The proposed methods rely on the evaluation of the Fourier coefficients while 

representing the load torque in Fourier series.  

5.2 Horizontal slider-crank mechanism 

In technical installations, there are two main types of slider-crank mechanisms, one is 

the horizontal mechanism and the other is the vertical mechanism. The classification is 

based on the horizontal or vertical movement of the sliding object. In this work, the 

former type is utilized.  

Fig 5.1(a) illustrates the mechanical structure of a horizontal slider-crank mechanism. 

As can be seen, the mechanism consists of three main parts: a slider, a connecting rod 

and a crank. The crank and the driven machine are connected by a coupling shaft. The 

reduced model depicted in Fig 5.1(b) is used for the kinetic analysis.  

In the reduced model, 𝑂, 𝐵, and 𝐶 are the three articulated joints between the coupling 

shaft, the crank, the connecting rod and the slider. 𝐺௖ and 𝐺௖௥௢ௗ correspond to the centers 

of gravity of the crank and the connecting rod, respectively. As the mechanism has one 
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degree of freedom, a two-dimension coordinate system (𝑂𝑥𝑦) can be used to describe 

the position of each single body. The angles of the crank and the connecting rod with 

respect to the horizontal axis are denoted by 𝛾௠ and 𝜑, respectively. Since the 

mechanism and the driven machine are directly coupled, i.e. no gearbox is used, the 

angle 𝛾௠ is also the mechanical angle of the rotor. It can be seen that the driven machine 

completes one cycle of the mechanism in one revolution of the rotor. In addition, without 

loss of generality, the surface on which the slider moves can be assumed to be the 

potential surface. The potential surface is used for the analysis of potential energy 

associated with each body in the mechanism. 

 

 

Fig 5.1. Horizontal slider-crank mechanism: a) mechanical structure; b) reduced model 

5.3 Load torque calculation in the horizontal slider-crank mechanism 

During the operation of the mechanism, there are four main sources of load torque 

including the changes of the inertia, of the potential energy, of the friction forces and of 

the crank velocity [52]. If the mechanism is analyzed in the steady state, the load torque 

slider

connecting rod

crank

coupling

 a



5 Load Torque Estimation in Repetitive Mechanical Systems 51

 

 

due to the change of the crank velocity can be ignored. The three remaining sources of 

the load torque will be presented hereafter. 

5.3.1 Moment of inertia 

According to the kinetic analysis [52], the total moment of inertia of the mechanism 

referred to the shaft of the drive is given in (5.1). The calculation of the equivalent inertia 

is explored and presented in appendix 9.2.  

 2 2 2
1 1( ) sin sin sin 2 2 sin cosmechanism m b c m m m m mJ m r m r k                   (5.1) 

with 

1 2 20.2 0.5 ; 0.5 ; / ; /b crank crod c slider crodm m m m m m r r k exc r          (5.2) 

The total moment of inertia is obtained by adding the moment of inertia of the machine 

𝐽௠௔௖௛௜ , of the coupling shaft 𝐽௖௢௨௣௟௜௡௚ and of the mechanism 𝐽௠௘௖௛௔௡௜௦௠: 

   total m machine coupling mechanism mJ J J J     (5.3) 

The moment of inertia of the driven machine 𝐽௠௔௖௛௜௡௘ and of the coupling shaft 𝐽௖௢௨௣௟௜௡௚ 

are constant while the moment of inertia of the mechanism 𝐽௠௘௖௛௔௡௜௦௠ is a function of 

the crank angle 𝛾௠. As a result, the total moment of inertia is an angle-dependent 

function. 

5.3.2 Potential energy 

The potential energy refers to energy possessed by an object by virtue of its position in 

relation to a reference object. The most common type of potential energy is the 

gravitational potential energy that depends on the mass of the object and the distance 

from its center to the reference object [53]. 

When the slider-crank mechanism operates, the crank and the connecting rod are the 

two components storing gravitational potential energy because their centers of gravity 

change regarding the potential surface. The total potential energy is given by (5.4). 
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where g is the gravitational acceleration; 𝑊௣ is the total potential energy; 

𝑊௣,௖௥௔௡௞ , 𝑊௣,௖௥௢ௗ are the potential energies of the crank and the connecting rod, 

respectively. 

5.3.3 Modelling of the friction 

Friction is a complex nonlinear phenomenon and exists in all mechanisms. In general, 

friction is unwanted and is one of the main factors that limit the performance quality of 

mechanical systems. For this reason, many researches have focused on friction modeling 

and friction compensation [54][55][56]. Friction models are often used to identify 

friction forces, which can be compensated by applying equal forces or torque but 

opposite in sign. A precise friction model is necessary for a precise load torque 

compensation algorithm. 

There have been a number of proposed friction models as listed in [57]. Due to its 

nonlinearity and dependency on the mechanical configuration, friction is not studied in 

in general cases but in specific circumstances. In the horizontal slider-crank mechanism, 

if internal friction of rolling bearings installed in the driven machine and in the 

articulated joints are neglected, friction mainly comes from the contact surface between 

the slider and the supporting frame. Friction is composed of four components: Coulomb 

friction, stiction, viscous damping and Stribek effect as shown in Fig 5.2.  

A. Stiction 

Stiction, which is also known as break-away friction, has a non-zero value only when 

the slider is driven to a standstill. Fig 5.2(a) depicts the shape of the stiction force. 

Stiction at rest cannot be merely described as a function of velocity, it is often modelled 

with an external force 𝐹௘ in the following description: 

 
if 0 and

sgn if 0 and

e slider e s

sticiton

s e slider e s

F v F F
F

F F v F F

   
  

 (5.5) 

where 𝐹௦ is a constant. 
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(a) (b) 

  

(c) (d) 

      (e) 

Fig 5.2. a) Stiction;  b) Coulomb friction; c) viscous damping; d) Stribek effect; e) total 
friction 

B. Coulomb friction 

Coulomb friction does not depend on the area of the contact. It is proportional to the 

normal force the slider exerts on the supporting frame. The Coulomb friction is not 

dependent on the magnitude but on the direction of the slider velocity. Experimental 

observations have been carried out to prove that the Coulomb friction force is lower than 

the stiction force [54]. Fig 5.2(b) shows the graphical representation of the Coulomb 

friction. The mathematical description of the Coulomb friction force is:  

 sgnCoulomb c sliderF K v   (5.6) 

where 𝐾௖ = 𝜇|𝐹ே|; 𝜇 is a friction coefficient; 𝐹ே is the normal force the slider exerts on 

the supporting frame. 
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In the horizontal slider-crank mechanism, the normal force is equal but opposite in sign 

to the potential force of the slider. Hence, the absolute value of the normal force |𝐹ே| is 

a constant. The coefficient 𝐾௖  is known as the Coulomb constant. 

The signum function 𝑠𝑔𝑛(𝑣௦௟௜ௗ௘௥) is defined by: 
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 (5.7) 

C. Viscous friction 

Viscous friction as demonstrated in Fig 5.2(c) is due to the viscous behavior of the fluid 

lubricant on the contact surface between the slider and the supporting frame. The viscous 

force is proportional to the velocity of the slider. Equation (5.8) describes the calculation 

of the viscous force. 

viscous v sliderF K v   (5.8) 

where 𝐾௩ is known as the viscous constant. 

D. Stribek effect 

Stribek effect is due to the use of lubricant and occurs at the translation boundary from 

partial to a full fluid lubricant. As shown in Fig 5.2(d), Stribek effect is a highly 

nonlinear phenomena and arises in low-speed region.  

E. Total friction force 

The four aforementioned components of friction can be further classified into two 

groups. The stiction belongs to the first group and is called static friction. The second 

group known as kinetic friction includes the Coulomb friction, the viscous friction and 

the Stribek effect. Typically, the static friction between two surfaces is higher than the 

kinetic friction. If an applied force is strong enough to overcome the static friction, then 

the reduction of the friction to the kinetic friction can cause the two sticky surfaces to 

slide over each other [58]. This characteristic is known as stick-slip phenomenon.  
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The total friction force can be calculated by adding up the four friction components. Fig 

5.2(e) shows the graphical representation of the total friction force. For mathematical 

description, only Coulomb friction and viscous friction are taken into account because 

the two other components are highly nonlinear and appear only at low-speeds. 

 sgntotal Coulomb viscous c slider v sliderF F F K v K v       (5.9) 

where 𝐹௧௢௧௔௟  is the total friction force. 

5.3.4  Load torque calculation 

The load torque demanded by the mechanical system is defined by the Euler-Lagrange 

equation [52]. 
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where 𝐽௧௢௧௔௟  , 𝑊௣ , 𝐹௧௢௧௔௟ are given by (5.3), (5.4) and (5.9), respectively; 𝑥௦௟௜ௗ௘௥ is the 

position of the slider with respect to the 𝑥-axis. 

Supposing that the crank is driven at a constant angular velocity, i.e. Ω௠ = 𝑑𝛾௠ 𝑑𝑡⁄ =

𝑐𝑜𝑛𝑠𝑡;  𝑑ଶ𝛾௠ 𝑑𝑡ଶ⁄ = 0, the first component of the load torque is zero. The derivation of 

the three remaining load torque components is presented in appendix 9.3. In summary, 

the load torque consists of four terms including the torque due to the change of inertia 

𝑇௜௡௘௧௜௔, of the potential energy 𝑇௣, of the Coulomb friction 𝑇஼௢௨௟௢௠௕ and of the viscous 

friction 𝑇௩௜௦௖௢௨௦. 

load inertia p Coulomb viscousT T T T T     (5.11) 

where 
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  (5.12)
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5.4 Load torque estimation methods 

The four equations  (5.12) - (5.15) show that the load torque depends not only on the 

system parameters and on the crank velocity, but also on the two unknown constants 

𝐾௖  and 𝐾௩. Furthermore, all the four components are periodic functions of the crank 

angle 𝛾௠. Fig 5.3 shows the figure representation of the total load torque and its 

components at Ω௠ = 60 𝑚𝑖𝑛ିଵ with predefined values of the two constants 𝐾௖ ,  𝐾௩. 

As the load torque changes periodically according to the angle 𝛾௠, it can be 

characterized by using Fourier interpolation [59].     
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The Fourier coefficients  𝑎௞ and  𝑏௞ are defined by: 
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 (5.17) 

Equation (5.16) shows that the load torque can be identified if the information about the 

crank angle 𝛾௠ and about the Fourier coefficients 𝑎௞ and 𝑏௞ is available. The angle can 

be measured by using an encoder assembled in the driven machine or estimated by using 

an observer of the rotor position. Therefore, the estimation of the load torque can be 

conducted via the evaluation of the Fourier coefficients. 

The determination of the Fourier coefficients given in (5.17) shows that they depend on 

the load torque and on the crank angle.  By assuming a good dynamic of the speed 

control loop, the reference torque, which is the output of the speed controller, can be 

regarded as a good approximation of the load torque. Accordingly, the Fourier 
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coefficients 𝑎௞ and 𝑏௞  can be estimated in one complete cycle of the mechanism, 

meaning that  𝛾௠ changes from 𝛾଴ to 𝛾଴ + 2𝜋 for any starting angle 𝛾଴. 

(a) (b) 

(c) (d) 

 (e) 

Fig 5.3. Calculation of the load torque components and total load torque with Ω𝑚 =

60 𝑚𝑖𝑛−1, 𝐾௖ = 20 𝑁, 𝐾௩ = 32.84 𝑁𝑠/𝑚,: a) inertia torque; b) potential torque; c) 

Coulomb torque; d) viscous torque; and e) total torque 

For the calculation of the Fourier coefficients in (5.16), it is usual to use a DFT (Discrete 

Fourier Transform). Thus (5.17) is discretized by dividing one period 2𝜋 into 𝑁 equal 

portions, where each portion is  
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   (5.18) 

By taking a period [𝛾଴, 𝛾଴ + 2𝜋], (5.17) can be rewritten as: 
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 (5.19) 

The sums in (5.19) can be numerically evaluated by using a sliding window whose figure 

representation is shown in Fig 5.4. It can be seen that there are increments of the 

angle 𝛾௠ in time. Each angle increment Δ𝛾௠ triggers a window shift, meanwhile the 

microprocessor starts a recalculation of (5.19) by adding the value corresponding to the 

new window portion and subtracting the value of the oldest window portion.  

 

Fig 5.4. Graphical representation of a sliding window method 

The sliding window method has some primary characteristics as follows: 
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 The quantization of a window Δ𝛾௠ is inversely proportional to the number of 

window portions 𝑁, which is also the number of samples in one period. The increase 

of 𝑁 yields more precise estimation results. However, the increase of 𝑁 demands 

more calculation and memory to microcontrollers because all partial calculation of 

(5.19) must be stored. The selection of 𝑁 depends on the sampling time 𝑇௦ of the 

estimation algorithm and on the highest frequency 𝑓௠௔௫ to be considered [60]. 

max

1

s

N
f T




 (5.20) 

𝑁 should be properly chosen before carrying out any calculation.   

 The shifting speed between the window portions depends on the mechanical 

velocity of the mechanism and on the window quantization. 

 The sliding window method converges after one period. Fig 5.5 depicts simulation 

results where the estimated torque tracks precisely the reference torque after exactly 

one cycle of the mechanism. 

 
Fig 5.5. Simulation of  the load torque and the estimated load torque 

An alternative approach that can be used for the evaluation of the Fourier coefficients 

comes from the structure related to the harmonic speed controller as presented in section 

3.2.2. Since the drive is analyzed in the steady state, there is no demanded load torque 

due to the change of the speed. Therefore, the function of the speed controller is to 

generate a reference torque to cancel the load torque. The control structure shown in Fig 

5.6 is designed for the 𝑘௧௛ harmonic of the speed error, which is originated from the 𝑘௧௛ 

harmonic of the load torque. This means that the 𝑘௧௛ speed controller aims to cancel 

the 𝑘௧௛ harmonic of the load torque. As a result, the outputs of the PI controllers 

corresponding to 𝑒௖௢௦
௞  and 𝑒௦௜௡

௞  deliver good estimates of the Fourier coefficients 

𝑎௞ and−𝑏௞, respectively [40].  
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Fig 5.6. Estimation of the Fourier coefficients based on harmonic speed controller 

  

Fig 5.7. Simulation of the load torque at different velocities of the mechanism 

In summary, the demanded load torque in the horizontal slider-crank mechanism is a 

periodic function of the crank angle and can be represented in terms of Fourier series. 

The estimation of the load torque can be conducted through the evaluation of the Fourier 

coefficients.  At a certain operating velocity, the coefficients can be determined by using 

either a sliding window method or a harmonic speed controller. The load torque 

calculation given by equations (5.12) - (5.15) shows that if the two unknown 

constants 𝐾௖  and 𝐾௩ are identified, the load torque only depends on the crank velocity. 

Fig 5.7 depicts the shape of the load torque at different velocities within the operational 

speed-range of the mechanism. In order to make the load torque estimation possible at 

any speed, two approaches including a phenomenological method and a look-up table 

based method are proposed and presented in the following sections [61]. 
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5.4.1 Phenomenological method 

The phenomenological method is based on the physical description of the system and 

the associated physical phenomenon. In this method, each Fourier coefficient is 

explicitly described by a function of the crank angle 𝛾௠. To do so, the four components 

of the load torque given in (5.12)-(5.15) are represented in terms of Fourier series. The 

two components 𝑇௜௡௘௥௧௜௔ in (5.12) and 𝑇௣ in (5.13) are already trigonometric functions. 

The two other components can be expanded into Fourier series if the angle-dependent 

functions 

 

 

1

2

2

1
sin sin 2 cos

2

1
sin sin 2 cos

2

m m m m

m m m m

f k

f k
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    
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 

  (5.21) 

are in the form of Fourier expansion. When considering the values of the mechanism 

parameters given in appendix 9.2, 𝜆 = 𝑟ଵ 𝑟ଶ =⁄ 0.147 and 𝑘 = 𝑒𝑥𝑐 𝑟ଶ = 0.0882⁄  are 

obtained. Then 𝑓ଵ(𝛾௠) and 𝑓ଶ(𝛾௠) can be calculated by a Matlab-Simulink model in one 

period of 𝛾௠. The data is stored and processed by the FFT (Fast Fourier Transform) tool 

to obtain the Fourier coefficients as given in Table 5.1 and Table 4.2. 

Table 5.1. Coefficients of 
1

sin sin 2 cos
2m m mk        

Harmonic order DC 1 2 3 4 5 

Cos 
0.64 

0.06 - 0.423 - 0.04 - 0.084 - 0.01 

Sin 0 0.074 0 0.031 0.0002 

Table 5.2. Coefficients of 
2

1
sin sin 2 cos

2m m mk        
 

 

Harmonic order DC 1 2 3 4 5 

Cos 
0.51 

0.0697 - 0.492 - 0.069 0 0 

Sin 0.0061 0.0868 0.0061 0 0 

Accordingly, the load torque can be described in the following equation: 
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where 𝑎௞ and 𝑏௞  are given in Table 5.3. 

Table 5.3. Fourier coefficients of the load torque 

Symbol Harmonic Coefficient 

𝑎଴/2 𝐷𝐶 0.64 ∙ 𝐾௖ ∙ 𝑟ଵ + 0.51 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ 

𝑎ଵ 𝑐𝑜𝑠𝛾௠ 0.06 ∙ 𝐾௖ ∙ 𝑟ଵ + 0.0697 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ + 0.104 

𝑎ଶ 𝑐𝑜𝑠(2 ∙ 𝛾௠) 𝑚௖ ∙ 𝑟ଵ
ଶ ∙ Ω௠

ଶ ∙ 𝑘 − 0.4235 ∙ 𝐾௖ ∙ 𝑟ଵ − 0.4924 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ 

𝑎ଷ 𝑐𝑜𝑠(3 ∙ 𝛾௠) −0.04 ∙ 𝐾௖ ∙ 𝑟ଵ − 0.0697 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ 

𝑎ସ 𝑐𝑜𝑠(4 ∙ 𝛾௠) −0.0864 ∙ 𝐾௖ ∙ 𝑟ଵ 

𝑎ହ 𝑐𝑜𝑠(5 ∙ 𝛾௠) −0.01 ∙ 𝐾௖ ∙ 𝑟ଵ 

𝑏ଵ 𝑠𝑖𝑛𝛾௠ 0.25 ∙ 𝑚௖ ∙ 𝑟ଵ
ଶ ∙ Ω௠

ଶ ∙ 𝜆 + 0.0061 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ 

𝑏ଶ 𝑠𝑖𝑛(2 ∙ 𝛾௠) 0.5 ∙ 𝑚௖ ∙ 𝑟ଵ
ଶ ∙ Ω௠

ଶ + 0.0754 ∙ 𝐾௖ ∙ 𝑟ଵ + 0.0868 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ 

𝑏ଷ 𝑠𝑖𝑛(3 ∙ 𝛾௠) 0.75 ∙ 𝑚௖ ∙ 𝑟ଵ
ଶ ∙ Ω௠

ଶ ∙ 𝜆 + 0.0061 ∙ 𝐾௩ ∙ 𝑟ଵ
ଶ ∙ Ω௠ 

𝑏ସ 𝑠𝑖𝑛(4 ∙ 𝛾௠) 0.0308 ∙ 𝐾௖ ∙ 𝑟ଵ 

𝑏ହ 𝑠𝑖𝑛(5 ∙ 𝛾௠) 0.0002 ∙ 𝐾௖ ∙ 𝑟ଵ 

In practical situations, harmonics up to the 5th are taken into account as a compromise 

between the estimation precision and the algorithm complexity. To complete the 

phenomenological calculation of the Fourier coefficients, the two constants 𝐾௖  

and 𝐾௩ must be determined. For doing so, the relationship between the DC component 

and the two constants is considered. Fig 5.8 depicts experimental measurements of the 

eleven coefficients given in Table 5.3 by using the sliding window method.  
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Fig 5.8. Fourier coefficients obtained from experiments by using the sliding window 
method 

The data was obtained by running the mechanism at different constant speeds. The 

straight dotted red line characterizing the linear behavior of the DC component with 

respect to the mechanical speed Ω௠ is achieved by connecting the two points located on 

the border of the linear region. The intersection of the straight dotted red line with the 

vertical axis helps identify the Coulomb constant while its slope can be used to calculate 

the viscous constant. It is observed that the curve of the DC component shows a 

nonlinear phenomenon in the low speed region. The reason is that when the slider is 

moved slowly, the Stribeck effect occurs and considerably contributes to the demanded 

load torque. However, the Stribek effect is not taken into account in the kinetic analysis 

of the mechanism.  

The procedure for conducting the load torque estimation based on the phenomenological 

method is shown in Fig 5.9. The mechanical velocity Ω௠ is measured or estimated and 

used for the calculation of the Fourier coefficients according to Table 5.3. The obtained 

coefficients, together with the crank angle 𝛾௠ , are used to calculate the load torque 

based on (5.22). 
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Fig 5.9. Block diagram of the phenomenological method for the load torque estimation 

5.4.2 Look-up table based method 

It can be realized that the phenomenological method relies on the theoretical analysis of 

the load torque. The precision of the estimation procedure strongly depends on the 

precision of the load torque model, which unfortunately is nonlinear. The 

phenomenological method is less applicable especially at low-speed region at which the 

stiction and the Stribeck effect are dominant. Thus, an alternative solution called here 

as look-up table based method is proposed. The idea behind the look-up table method is 

that the Fourier coefficients are estimated by using look-up tables constructed from 

measurements on the mechanical system. There are two steps to build such tables: 

Step 1: The crank is driven at different angular velocities within its operational range 

ൣ0;  Ω௠,௠௔௫൧. In each case, a set of coefficients [𝑎௞;  𝑏௞]is obtained. 

Step 2: For the calculation of each Fourier coefficient, a two-dimension look-up table 

is created from the data obtained in Step 1. The input of the table is the crank angular 

velocity Ω௠ . Linear interpolation is used for reducing the size and calculation of the 

tables. 

Fig 5.10 illustrates the concept of the look-up table based method. The crank velocity 

obtained from a mechanical angular sensor or from an angle observer goes to the look-

up tables to evaluate the Fourier coefficients. With the information of the crank angle, 

equation (5.22) delivers the estimate of the load torque. 
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Fig 5.10. Block diagram of the look-up table based method  

5.5 Summary of the chapter  

This chapter explained the mechanical structure of a horizontal slider-crank mechanism, 

which is used as an example of repetitive mechanical systems. The model of the load 

torque was presented theoretically. The mathematical description of the load torque 

shows that it depends on the system parameters, on 𝐾௖  and 𝐾௩  which are known as the 

Coulomb and viscous constants, on the mechanical position 𝛾௠  and on the mechanical 

speed Ω௠ of the crank.   

The load torque is a periodic function of the crank angle, so it can be characterized by 

using Fourier series. The estimation of the load torque can be carried out by the 

evaluation of the Fourier coefficients. There are two methods for the estimation of the 

coefficients: one is based on theory while the other is based on look-up tables. 

The estimated load torque can be used either in a feed-forward control scheme in order 

to improve the speed response quality or in a bearing fault detection method which will 

be presented in the next chapter.  

Equation Section (Next) 



 

 

 

 

6.1 Introduction 

As presented in Chapter 5, the load torque in a repetitive mechanical system can be 

estimated by using Fourier interpolation. The estimated load torque can be used as a 

compensation signal in a feed-forward control scheme to improve the speed response 

quality as well as for the analysis of mechanical states of bearings installed in the 

industrial system. When a healthy bearing is in operation, the load torque demanded by 

the mechanical system does not include the torque coming from the bearing because of 

negligible internal friction. On the contrary, under faulty working conditions, a defective 

bearing can cause changes on the demanded load torque. Since the bearing faults and 

the demanded load torque are correlated, the information of the faults can be obtained 

by analyzing the load torque.  

This chapter describes the mechanical structure of a ball bearing, the causes and effects 

of the bearing failures and proposes a novel bearing-fault detection method. 

6.2 Structure and load distribution of a rolling ball bearing 

A rolling bearing is a bearing that carries a load by placing rolling elements like balls or 

rollers between two bearing rings known as raceways. The relative motion of the 

raceways causes the rolling elements to roll with very little rolling resistance and very 

little sliding [62]. 

According to the types of the rolling elements, rolling bearing can be classified into two 

groups, including ball bearing and roller bearing shown in Fig 6.1. Ball bearing is 

subsequently divided according to its raceways configuration, including deep groove 

and angular contact. Roller bearing, on the other hand, is classified according to the 

cylindrical, needle, tapered or spherical shape of the rollers.  

The rolling bearing can be further classified based on the direction of the applied load. 

By following this classification scheme, two types of rolling bearing can be found: radial 

bearing which carries radial loads and thrust bearing which carries axial loads [63]. 
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Fig 6.1. Classification of the rolling bearing 

Fig 6.2 shows a graphical representation of an angular contact ball bearing. The two 

bearing rings are an inner raceway and an outer raceway, between which a set of balls 

can rotate. A cage is installed inside the bearing in order to keep the balls evenly 

distributed around its whole circumference and also to provide even load distribution 

and uniform running. 

Contact angle 𝛼, or load angle, is defined as the angle between the centerline of the 

bearing and the direction of the force that the rolling elements exert on the outer raceway 

as shown in Fig 6.2 [5]. Angular contact ball bearings are designed to accommodate 

both radial and axial loads. The contact angle often ranges from 10 to 45 degrees. For 

bearings that are only subjected to radial load, the contact angle is zero, i.e. (𝛼 = 0). 

The research about the load distribution on the elements of a ball bearing to build friction 

models was carried out and presented in [64]. It was proven that when radial load is 

applied to a bearing, the rolling elements are not equally loaded. In addition, the load 

zone for a radically loaded bearing with internal clearance, i.e. the total distance through 

which one ring can be moved relative to the other ring, would be less than 1800. 

Fig 6.3 shows the load zone and the load distribution of a bearing subjected to only 

radial load with zero internal clearance. The number of balls in the bearing is 𝑧 = 10. In 

the bearing, five balls carry the load including ball number one and two more pairs. The 

parameter 𝑛 referred to the number of ball pairs carrying the load in addition to ball 

number one is defined by (6.1) [65]. 
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Fig 6.2. Mechanical and kinetic representation of a ball bearing 

- 𝑣଴: tangential velocity of the outer raceway 

- 𝑣௖: tangential velocity of the cage 

- 𝑣௜: tangential velocity of the inner raceway 

- 𝑑௕: diameter of the ball 

- 𝑑௖: diameter of the cage 

- 𝑑௜: diameter of the inner raceway 

- 𝑑଴: diameter of the outer raceway 

- 𝛼 : load angle  

1

4

z
n INT

   
 

  (6.1) 

where 𝑧 is the number of balls; 𝐼𝑁𝑇 is the integer function meaning that any fractional 

part of (6.1) is truncated. 

Angle 𝛽 between the two adjacent rolling elements is given by: 

2

z

   (6.2) 

In the static equilibrium of the bearing, the load on the rolling elements is given by: 

1 2 12 cos ... 2 cosr nP P P P n          (6.3) 
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where 𝑃௥ is the applied radial load on the bearing and 𝑃௜  for 𝑖 = 2 … 𝑛 is the load on a 

rolling element.  

Fig 6.3. Ball bearing: a) load zone and b) load distribution 

The relationship between the load on each individual ball and the load exerted on ball 

number one as shown in Fig 6.3 is: 

  3/2

1 cos 1 , 2, 1iP P i i n      (6.4) 

By combining (6.3) and (6.4), the radial load on the bearing can be found and given by 

the following equation. 

   5/2 5/2

1 1 2 cos ... 2 cosrP P n           (6.5) 

As 𝑃ଵ is the maximum ball load and is denoted by 𝑃௠௔௫, and if the function in the bracket 

in (6.5) is denoted as 𝑄, or: 

   5/2 5/2
1 2 cos ... 2 cosQ n        (6.6) 

Equation (6.5) can be rewritten as: 

max maxr
t

z
P P Q P

S
     (6.7) 
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where 𝑆௧ = 𝑧/𝑄 is a constant. 

The load torque exerted on ball number one can be calculated from (6.7): 

1 max
t

r

S
P P P

z
    (6.8) 

Thus, the exerted on the ball number 𝑖 is: 

 3/2

max cos ( 1)iP P i      (6.9) 

Equation (6.9) shows that the load distribution is sinusoidal and is illustrated in Fig 6.3 

(b). 

6.3 Bearing faults causes 

Rolling bearings are designed to have a long lifetime. To maximize the lifetime of a 

bearing, it must be properly installed, lubricated and maintained. Poor operating 

conditions, such as moist environments, contaminated areas and improper handling can 

lead to a reduction of the lifetime of the bearing. When a bearing fault is found, it is 

important to determine the exact cause of the fault in order to make appropriate 

adjustments to avoid a similar failure in the future [66]. 

Under normal operating conditions, including a balanced load and a good alignment, a 

fatigue bearing fault starts with a fissure located below the raceways or rolling elements.  

With time, the fissure propagates up to the surface and eventually causes a localized 

fatigue phenomenon known as spalling or flaking. The affected area rapidly expands 

over the entire circumference of the raceways or the rolling elements, and pollutes the 

lubricant. As a result, a failure occurs with a rough running of the bearing [4]. Even 

though this is the most commonly found cause of rolling bearing faults, there are many 

external sources that speed up the failure process, including contamination, corrosion, 

improper lubrication, defective installation and overheating.  

Due to harsh environment conditions present in almost all industrial installations, 

contamination and corrosion are the leading external sources of bearing faults. 

Contamination includes airborne dust, dirt and any abrasive substances, whose hardness 

ranges in between relatively soft and diamond-like. Once contamination finds its ways 

to the bearing, it contaminates the bearing lubricant and triggers an incipient bearing 
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fault. Corrosion comes from the exposition of the bearing to corrosive fluids like water, 

acid, deteriorated lubricant, etc. [4]. The usual effect of corrosion is the increase of 

vibration followed by wear. In extreme cases, corrosion can initiate an early fatigue 

bearing failure.  

The operation of the bearing balls depends on the continuous presence of a very thin 

film of lubricant between the balls and the raceways or between the cage and the balls. 

Improper lubrication includes both under- and over-lubrication, and in either cases, the 

balls cannot rotate on the desired oil film that increases the level of heating. Excessive 

temperature degrades the properties of the lubricant and accelerates the bearing failure 

process.  

Installation failures are associated with an improper installation of the bearing to the 

shaft or in the housing. An improper installation produces either physical damage known 

as brinelling or misalignment. Brinelling relates to the formation of indentation in the 

raceways which increases the vibration of the bearing. Any static overload or strong 

impact, such as dropping assembled equipment or using hammers to remove or install 

the bearing, can cause brinelling. Severe brinell-marks can result in a premature fatigue 

failure. Misalignment is also a common result of the defective bearing installation. If 

misalignment appears and exceeds 1𝜇𝑚 𝑚𝑚⁄ , the temperature of the bearing balls or of 

the housing can reach an abnormal value, which eventually reduces the lifetime of the 

bearing [66].  

Overheating is another external source causing bearing failure. The temperature in 

excess of 1200 C can anneal the ring and the ball materials. The resulting loss in hardness 

reduces the loaded capability of the bearing. In severe cases, the balls and the raceways 

can be deformed. Some common causes of overheating include heavy electrical heat 

loads, inadequate heat paths, and insufficient cooling [66]. 

6.4 Classification and signatures of bearing faults 

The classification of bearing faults is not performed based on the causes of the faults but 

on the consequence of the damage. A well-known approach to categorize bearing faults 

was presented in [5] where they are divided into two main types: single-point defect and 

generalized roughness as shown in Fig 6.4. This research work uses the same 

classification.  
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Fig 6.4. Classification of bearing faults 

A single-point defect is defined as a single, localized defect on the surface of one of the 

four bearing elements: the inner raceway, the outer raceway, the cage and the balls. A 

single-point defect produces a characteristic fault frequency which depends on the 

surface that contains the fault. A predictable frequency component usually appears in 

the machine vibration and is reflected in the stator currents. Therefore, most condition 

monitoring techniques are designed to detect the characteristic fault frequencies, from 

which the corresponding failures can be detected.  

Generalized roughness occurs when the bearing surface has degraded considerably over 

a large area and, thus, becoming rough, irregular and deformed [5]. This type of failure 

is found in many industrial installations. The damage on a generalized roughness bearing 

may not be visible to naked eyes. As there is no single-point defect on the bearing 

elements, the characteristic fault frequencies are not found in the spectrum of the 

machine vibration or of the stator currents. Instead, the generalized roughness causes 

unpredictable broadband effects [6][67]. This signature is often used for the detection 

of the generalized roughness. Furthermore, the roughness increases friction inside the 

faulty bearing, which results in an increase of the demanded load torque to the driven 

machine. This phenomenon can also be used to indicate the presence of the fault. 

In a study presented in [68], the inner raceway and outer raceway faults are responsible 

for up to 90% of all bearing failures. Hence, this work will mainly focus on these two 

Bearing faults

Single-point defects

Outer raceway defect Inner raceway defect

Generalized-roughness fault



6 Diagnosis of Faults in Rolling Bearing 73

 

 

types of single-point defects. The analysis of the inner and outer raceway defects starts 

with the derivation of the corresponding characteristic fault frequencies. By taking into 

account the mechanical structure of a ball bearing, including the load angle 𝛼, the 

number of balls 𝑧, and the dimensions of the ball elements, the mechanical angular speed 

of the cage Ω௖ is defined by: 

2
c i o i o

c
c c c

v v v v v

r r d

 
   


 (6.10) 

where 𝑣௜ and 𝑣଴ are the angular velocities of the inner and the outer raceways, which are 

given in (6.11) and (6.12). 
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 

 (6.12) 

where 𝑟௜, 𝑟଴ and 𝑟௖ are the radius of the inner raceway, outer raceway and cage, 

respectively; Ω௜ and Ω௢ are the angular speed of the inner and the outer raceways. 

By putting (6.11) and (6.12) in (6.10), the angular velocity of the cage can be found. 

cos cos1

2 2
b b

c i c o c
c

d d
r r

d

                     
 (6.13) 

Ideally the cage and the balls have the same angular velocity. The inner and the outer 

characteristic fault frequencies are defined based on the relative motion between the 

balls and the corresponding raceways. Fig 6.5 shows an example of an outer raceway 

faulty bearing. The damaged area is supposed to be located at the 6 o’clock position and 

is marked by a blue triangle. Whenever a ball goes over the damaged area, a load torque 

pulse is created. The frequency of the pulse is the outer raceway characteristic fault 

frequency. 
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Fig 6.5. Load pulses corresponding to an outer raceway fault 

Therefore, the characteristic fault frequency of the outer raceway fault can be calculated 

by (6.14) [69]. 
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Similarly, the characteristic fault frequency of the inner raceway fault can be determined 

by (6.15). 
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Under the assumption that the outer raceway is fixed inside the bearing housing, i.e. 

Ω଴ = 0, and that the inner raceway rotates at an angular velocity Ω௜ = Ω௡, or at 

frequency 𝑓௡ = Ω௡/2𝜋, the characteristic fault frequencies given by (6.14) and (6.15) 

can be rewritten as (6.16) and (6.17), respectively. 

1 cos 1 cos
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n b b
ORF n

c c

d dz z
f f

d d
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 (6.17) 

It can be seen that the inner and the outer characteristic fault frequencies depend on the 

rotational frequency 𝑓௡ of the inner raceway, on the mechanical dimension of the 

bearing, and on the contact angle 𝛼. If the necessary information is available, the 

characteristic fault frequencies can be easily calculated. On the contrary, for a bearing 

with six to twelve balls, the following approximation formulas can be used [70]. 

0.4ORF nf z f    (6.18) 

0.6IRF nf z f    (6.19) 

The outer and inner raceway faults can also be observed at multiples of the characteristic 

fault frequencies defined by (6.20) and (6.21) in the spectrum of the machine vibration 

[5] or of the stator currents [4].  

k
ORF ORFf k f   (6.20) 

, 1,2,3...k
IRF IRFf k f k    (6.21) 

As can be seen in Fig 6.3, the load zone covers a part of the circumference of the bearing. 

Evidently, the location of the defect has a great influence on the magnitude of the fault 

frequency. When the defect rotates through the load zone, an impulse is generated every 

time a ball passes over the damaged area. The intensity of the shock will be at its greatest 

magnitude if the defect is located at the point of maximum radial force. Therefore, the 

most intense impulse is generated on every turn of the machine, assuming that the inner 

raceway synchronously rotates with the shaft of the driven machine with a frequency 𝑓௡. 

This aspect leads to a phenomenon that the intensity of the defect, which is periodically 
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generated at 𝑓ூோி, will be modulated by the mechanical rotation frequency 𝑓௡. As the 

modulated signal produces spectral components at the sum- and difference- frequencies, 

sidebands around 𝑓ூோி appear at any frequencies given by (6.22). 

, , 1,2,3..., 1, 2, 3...k v
IRF IRF nf k f v f k v          (6.22). 

The width of the sideband is defined by:    

S B
nf f   (6.23) 

The intensity of the defect determines the number of detectable sidebands. In addition 

to the characteristic fault frequency, sidebands can also be used as a signature for the 

detection of an inner raceway defect. 

6.5 Detection of the bearing faults  

As mentioned in section 1.2, there are two main methods dedicated to the detection of 

the bearing faults. The method with the use of the acceleration sensor is more costly 

than that which does not require an additional sensor. The current work aims to develop 

a new procedure to detect the bearing faults in repetitive mechanical systems. As the 

movement of a bearing ball over the damaged areas creates load torque pulses, the 

spectrum of the load torque contains information related to the bearing defects. 

Therefore, the spectrum of the load torque can serve as an indicator of the presence of a 

bearing fault. Also, the proposed method does not require additional sensors [71]. 

Fig 6.6 illustrates the idea behind the proposed diagnostic procedure. It is necessary to 

mention again that in case the electric drive is properly designed, the reference torque 

𝑇௥௘௙, which is the output of the speed controller, is considered as a good approximation 

of the actual load torque 𝑇௟௢௔ௗ. The estimated load torque 𝑇௘௦௧, which is obtained by 

conducting the procedure shown in Fig 5.10, is compared to the approximation of the 

actual load torque 𝑇௥௘௙. The difference between the estimated torque and the reference 

torque designated here as delta torque Δ𝑇 is represented in terms of Fourier series by 

using the FFT algorithm. As the diagnostic procedure is conducted in the steady state, 

where the reference torque and the estimated torque are periodic functions, the delta 

torque is also a periodic function. As result, there are dominant harmonics related to the 

cyclical load torque in the spectrum of the delta torque. To make the diagnostic 

procedure more reliable, the dominant harmonics that are not related to the characteristic 
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fault frequencies are filtered in the same way presented in [16]. The remaining spectrum 

corresponding to a healthy bearing serves as the baseline and is compared to faulty lines. 

If the two lines have significant differences at 𝑓ைோி and its multiples, the faulty bearing 

is diagnosed to have an outer raceway fault. If the differences are visible at 𝑓ூோி and its 

multiples and at sideband frequencies 𝑓ூோி
௞,௩, the faulty bearing is diagnosed to have an 

inner raceway defect. In case the two lines differ from each other in a broad band and 

the average value of the reference load torque increases significantly, the faulty bearing 

is diagnosed to have a generalized roughness. 

 

Fig 6.6.  Procedure for the detection of bearing faults 

6.6 Summary of the chapter 

This chapter described the diagnosis of rolling bearing faults. The mechanical structure 

of a ball bearing was presented, followed by different causes of bearing failures. 

The classification of the bearing faults was introduced. From this process, there are two 

main types of bearing faults including single-point defects and generalized roughness. 

The characteristic fault frequencies are used for the detection of the faults. 

A new diagnostic method based on the load torque estimation was proposed. This 

method analyzes the spectrum of the delta torque. The spectrum provides necessary 

information for the diagnosis of the single-point defects as well as the generalized 

roughness. This approach does not require additional sensors. Equation Section (Next)



 

 

 

 

7.1 Introduction 

In this chapter, experimental results are presented and analyzed to verify the operation 

of the proposed methods on the estimation of the load torque, the harmonic speed 

control, the detection of rolling bearing faults and the sensorless control of the drive. 

First, the structure of the test-bench is introduced, then the two methods dedicated to the 

load torque estimation as presented in section 5.4 are conducted. The better estimation 

method is chosen to provide the estimated load torque for the feed-forward control 

algorithm. The next section will show experiments concerning the harmonic speed 

controller and is followed by the results on the sensorless control of the drive. The final 

section focuses on the detection of the rolling bearing faults. Both single-point defect 

and generalized roughness are investigated by using either the conventional FOC with 

an encoder for the measurement of the rotor position or the sensorless control scheme.  

7.2 Experimental Set-up 

The proposed methods were verified through experiments conducted on a laboratory 

setup as shown in Fig 7.1. 

For the digital control implementation, a commercial high performance dSPACE 1104 

board is used. The board has the following main characteristics [60]: 

- High level programming using Matlab-Simulink and a C complier 

- A power PC 603e processor with a slave TMS320C2000 DSP controller  

- Eight ADC converters: one ADC converter is multiplexed to four channels with 

16-bit resolution, other four parallel channels with 12-bit resolution 

- Eight parallel DAC converters with 16-bit resolution 

- Two incremental encoder channels working with both TTL and sine/cosine 

signals 

- Twenty digital I/O 

- One three-phase PWM unit and four single-phase PWM units 

 

7 Experimental Results
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Fig 7.1. Simplified configuration of the experimental set-up 

The controller board generates firing pulses for controlling the IGBTs inside a two-level 

voltage source inverter including a suitable dead-time to avoid DC-link short circuit. A 

standard space phasor modulation with a switching frequency of 5 kHz is considered in 

the present work. The dSPACE 1104 board communicates with the PC via the Control 

desk software for the purposes of monitoring. 

An incremental sine/cosine encoder with 2048 increments per revolution assembled in 

the driven machine is used for the measurement of the rotor position of the driven 

machine. The currents of two phases are measured by two Hall-effect current 

transducers. The DC-link voltage used for the space phasor modulation is measured by 

using resistors and amplifiers. 

As depicted in Fig 7.2, a surface-mounted PSMS is used to move the horizontal slider-

crank mechanism. The parameters of the machine and of the mechanism are given in 

appendix 9.1 and 9.2, respectively. There are two bearings installed in between the 

machine and the mechanism: one is on the motor side while the other is on the load side. 
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The mechanical configuration of the mechanism can be changed by adding a mass to 

the slider or changing the position of the articulated joint between the connecting rod 

and the crank. 

 

Fig 7.2. Horizontal slider-crank mechanism driven by a PMSM 

7.3 Load torque estimation and feed-forward control 

The first experiment for the load torque estimation is conducted by applying either the 

phenomenological or the look-up table method. Fig 7.3 depicts a block diagram of the 

test bench including the control scheme. The installed encoder in the PMSM is used for 

the measurement of the rotor angle. The Fourier coefficients are identified based on a 

sliding window method with 𝑁 = 500 samples per period as given in equation (5.18) in 

section 5.4. Harmonics up to the 5th in the spectrum of the load torque are considered as 

they ensure the desirable estimation precision of the load torque and the algorithm 

simplicity. 

The mechanism was driven in the velocity control mode with different values of the 

reference speeds within its operational range: 3 min-1, 5 min-1, 7 min-1, 10 min-1, 15 min-

1, 20 min-1, 25 min-1, 30 min-1, 40 min-1, 50 min-1, 60 min-1, 70 min-1, 80 min-1, 90 min-

1, 100 min-1. The estimation switch in Fig 7.3 was closed to enable the sliding window 

block to work with two inputs including the reference current in the 𝑞-axis for the 

Slider

Crank

  Bearing

Motor side

Connecting rod

PMSM  Bearing

Load side
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calculation of the reference load torque 𝑇∗ = 𝑘 ∙ 𝑖௤
∗  , where 𝑘 is a constant of the 

machine, and the crank angle 𝛾௠. It is necessary to mention that the precision of the 

crank angle strongly affects the precision of the estimation algorithm. Therefore, the 

initial value of the angle have to be determined during the commissioning of the system. 

The Fourier coefficients obtained from the estimation process are depicted in Fig 7.4.
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Fig 7.3. Block diagram of the experimental set-up for the load torque estimation according to section 5.3 

 

 



 

 

 

Fig 7.4. Fourier coefficients of the load torque at different velocities 

Fig 7.4 shows that the dependency of 𝑏ଶ on the crank angular velocity Ω௠ resembles a 

parabola. This behavior agrees with the calculation of 𝑏ଶ in Table 5.3. Furthermore, it 

can be seen that the shape of the DC component 𝑎଴ is similar to that of the total friction 

force in Fig 5.2(e). The linear region ranges from 25 min-1 to 100 min-1. As already 

mentioned in section 0, the straight dotted red line connecting the two points on the 

border of the linear region characterizes the linear behavior of the friction model of the 

mechanism. The Coulomb and the viscous constants are identified based on the slope of 

the straight dotted red line and its intersection with the vertical axis, respectively, and 

result to be:  

33.64 / ; 20v cK Ns m K N   (7.1) 

The phenomenological method for the load torque estimation can be carried out after 

the identification of 𝐾௩ and 𝐾௖ . In addition, the two steps of the look-up table based 

method illustrated in Fig 5.10 can also be performed by using the coefficients depicted 

in Fig 7.4. For the operation of the system with a feed-forward control, the switch in Fig 

7.3 is closed and the system works with a compensation of the load torque. The 

estimated load torque acts as a compensation signal in the speed control loop. It is 

assumed that the load torque is compensated at 𝑡 = 2𝑠.  
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Fig 7.5 shows the reference torque and the estimated torque before and after the load 

torque compensation. Fig 7.6 depicts the compensation load torque while Fig 7.7 shows 

the speed responses with and without the load torque compensation.  It can be seen in 

Fig 7.7 that both methods improve the speed response quality in the steady state by 

considerably reducing the tracking error. However, the look-up table based method 

ensures smaller speed oscillation as it yields a more precise load torque estimation as 

shown in Fig 7.5. One of the reasons for this behavior is, unlike the phenomenological 

method, the look-up table method takes into account the effects of the nonlinear friction. 

  
         (a)          (b) 

Fig 7.5. Reference torque and estimated torque: a) theory based method; b) look-up table 

based method 

  
        (a)     (b)  

Fig 7.6. Reference torque and compensation torque: a) phenomenological method; b) look-

up table based method 
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          (a)          (b) 

Fig 7.7. Reference speed and response speed: a) phenomenological method; b) look-up 

table based method 

The effectiveness of the look-up table method was verified by two other experiments 

associated with the changes of the mechanical configuration. For the calculation of the 

look-up table, the reference speed was set to 55 min-1. First, 𝑟ଵ as shown in Fig 5.1 was 

changed from 55 mm to 85 mm, the corresponding results are depicted in Fig 7.8. The 

increase of 𝑟ଵ leads to the increase of the load torque as it is defined by equations (5.11)

-(5.15) in section 5.3.  

As seen in Fig 7.8 (a), the look-up table method still provides a good estimation result. 

Fig 7.8 (c) demonstrates that the speed oscillation is significantly reduced by the feed-

forward control algorithm. For the second configuration, a mass of 1.7 kg was added to 

the slider. The corresponding results depicted in Fig 7.9 show that the look-up table 

method still works well in this case.   
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             (a)            (a) 

  
             (b)            (b) 

            (c)              (c) 

Fig 7.8. 𝑟ଵ is changed from 55 mm to 85mm: 

a) reference and estimated load torque; b) 

reference and compensation load torque; c) 

reference and response speed 

Fig 7.9. A 1.7-kg mass is added to the slider: 

a) reference and estimated load torque; b) 

reference and compensation load torque; c) 

reference and response speed 
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The next experiment refers to the operation of the feed-forward control algorithm in 

dynamic mode. To do so, three compensators were tested: 

i- No load torque compensation 

ii- The compensation load torque is obtained by using the look-up table based 

method 

iii- The compensator ii) augmented with the acceleration component 𝐽௧௢௧௔௟ ∙
ௗఠ೘

ௗ௧
 

The compensator iii) being as the compensator ii) is based on the look-up table method, 

in which the Fourier coefficients were achieved in the steady state, meaning that the 

effect of the acceleration load torque component was ignored. 

To evaluate the operation of the three compensators, a reference speed with a 60 min-

1/s- slope was used. The final reference speed was set to 60 min-1. Fig 7.10 shows that 

the speed responses were improved by applying the load torque compensation in both 

dynamic and steady states. Furthermore, the compensator iii) works more effectively 

than the compensator ii) only in the low-speed region since the augmented term can be 

compared to other terms when the crank is driven at low-speeds.  

 

Fig 7.10. Speed responses corresponding to the three compensators 

7.4 Harmonic speed control 

Experiments related to the harmonic speed control are conducted with two objectives. 

One is to improve the speed response quality and the other is to estimate the load torque. 

Both the objectives will be presented hereafter. 
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7.4.1 Velocity control 

 For the first purpose, a ramp-up reference speed with a slope of 60 min-1/s and a final 

value of 80 min-1 was utilized. The conventional PI-speed controller and a harmonic 

speed controller were implemented and compared, in which harmonic up to the 5th were 

taken into account. 

Fig 7.11 and Fig 7.12 show the speed responses and the spectrum of the speed oscillations 

corresponding to the conventional and the harmonic speed controller. It can be seen in 

Fig 7.11 that the harmonic speed controller works more effectively than the conventional 

one in both dynamic and steady states. The speed error in the steady corresponding to 

the harmonic controller is around 4 min-1, or 5% 𝜔௥௘௙ while that of the conventional 

controller is 16 min-1 or 20% 𝜔௥௘௙ . In the ramp-up time, the harmonic controller 

provides better reference speed tracking. Spectrum analysis of the speed error in the 

steady state shown in Fig 7.12 proves that harmonics up to the 5th were considerably 

diminished by the harmonic speed controller, because, as already mentioned, harmonics 

up to the 5th were considered. 

 
Fig 7.11. Speed responses corresponding to the harmonic speed controller and the 

conventional PI speed controller 
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(a) (b) 

Fig 7.12. a) Speed oscillations; b) spectrum of the speed oscillations 

The next comparison is made among the harmonic controller, the PI-R controller, and 

the feed-forward controller. The feed-forward algorithm is based on the compensator ii) 

as it was introduced in section 7.3. A ramp-up reference speed with a 180 min-1/s-slope 

was utilized. The slope was set higher than those in the former experiments in order to 

make the speed control loop work with higher dynamics. 

Fig 7.13 depicts the reference speed tracking corresponding to the three configurations 

of the speed controller. It can be seen that the harmonic and the resonant speed 

controllers provide better speed responses than the feed-forward speed controller as they 

ensure smaller speed oscillations. It is necessary to note that the resonant parts were 

allowed to take effect when the absolute angular speed of the crank Ω௠ is higher than 5 

min-1, because the resonant and the anti-resonant frequencies proposed by the resonant 

parts are identical in zero speed and may lead to unpredictable behaviors of the speed 

control loop. 

 
Fig 7.13. Reference speed tracking of the three configurations of the speed controller 
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7.4.2 Estimation of the load torque 

The second purpose related to the load torque estimation starts with the evaluation of 

the Fourier coefficients. Instead of using the sliding-window method, the coefficients 

can be obtained directly from the output of the corresponding harmonic controllers as 

shown in Fig 5.6.  

 
(a) 

 
        (b) 

Fig 7.14. Estimations based harmonic speed controller: a) Fourier coefficients; b) load 

torque 

Fig 7.14(a) shows the results of the estimation of the Fourier coefficients based on the 

structure of the harmonic speed controller. Fig 7.4 and Fig 7.14 show that the sliding-
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window method and the harmonic speed controller provide similar estimation values of 

the coefficients. After obtaining the coefficients, the load torque can be estimated by 

using the look-up table method, from which the load torque can be estimated as it is 

depicted in Fig 7.14(b). It is observed that the estimated load torque precisely tracks the 

reference load torque. This promising result will be used in another experiments related 

to the detection of the bearing faults. 

7.5 Sensorless control of the drive 

Until now, experiments on the load torque estimation and on the harmonic speed control 

are based on an encoder for the measurement of the rotor angle and rotor speed. The 

experiments shown in the following sections will focus on the sensorless control of the 

drive, where the rotor position and rotor speed are obtained from a field observer as 

mentioned in section 4. The installed encoder in the driven machine is used only for the 

purpose of comparison between estimated and measured values. As the slider-crank 

mechanism is operated from 0 min-1 to 100 min-1 corresponding to 0-3.3% rated speed 

of the driven machine, the high-frequency injection technique is adopted for the 

sensorless operation. 

7.5.1 Low-speed sensorless control of the drive 

The first step to implement the high-frequency injection technique is related to the 

selection of the alternating high-frequency injected voltage. Equation (4.14) 

demonstrates that the sensitivity of the injection method depends on coefficient 𝐾௘௥௥, 

which can be rewritten as follows: 

- -ˆ ˆ

2 2
dh qh dh qhh h

err
h qh dh dh qh

L L L Lu u
K

L L z L
   

  
 (7.2) 

If the magnitude of the high-frequency current on the d-axis is kept unchanged, or in 

other words the first term of the product on the right hand side of (7.2) is a constant, 

then 𝐾௘௥௥ only depends on the difference between the 𝑑 − and 𝑞 −axis high-frequency 

inductances. Hence, the measurement of the high-frequency inductances is crucial in 

order to choose a suitable injected frequency. For doing so, a pure sinusoidal voltage 

generated by a high-power generator with a frequency range 400 ÷ 3000( 𝐻𝑧) and an 

amplitude 𝑢ො௛(𝑉) was applied to the windings phase 𝑈 and phase 𝑉 of the machine. 

Phase 𝑊 was opened.  



7.5 Sensorless control of the drive 92
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The rotor of the machine was slowly rotated to detect the maximum RMS value 𝐼௠௔௫ 

and the minimum RMS value 𝐼௠௜௡ of the current flowing in the windings. The high-

frequency inductances corresponding to the 𝑑- and 𝑞-axis can be determined by the 

following equations: 

min

max

ˆ
( )

2 2 2
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( )

2 2 2
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L f

I f

u
L f

I f






   


   

 (7.4) 

Fig 7.15 (a) shows the measured high-frequency inductances while Fig 7.15 (b) depicts 

the inductance difference, i.e. the last term of the product on the right hand side of 

equation (7.2). 

(a) (b) 

Fig 7.15. a) High-frequency inductances; b) difference inductance of the d- and q- axis 

The selection of the injected frequency is carried out by taking into account the 

capability of the microprocessor or DSP and the sensitivity of the injection method [48]. 

Generally, the higher the injected frequency, the higher the dynamic of the field angle 

observer, and as a result the faster the speed response. However, the increase of the 

injected frequency demands a higher magnitude of the carrier voltage to make sure that 

the magnitude of the high-frequency current is large enough to be compatible with the 

resolution of the ADC converters built in the microprocessor. Furthermore, 

coefficient 𝐾௘௥௥ should be as high as possible because its value determines how sensitive 

the method reacts to the field error angle. By considering all these factors, an alternating 

carrier voltage signal with frequency of 𝑓௛ = 625 𝐻𝑧 and having amplitude of 𝑢ො௛ =
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20 𝑉 is chosen. The sampling frequency and switching frequency of the whole control 

system are synchronized and set at 5 kHz. The DC-link voltage is set to 𝑈ௗ௖ = 300 𝑉 

for reducing the adverse effects of a dead-time 𝑇ௗ௘௔ௗ = 3 𝜇𝑠 originated from the inverter 

equipped in the electric drive. At the injected frequency, the d- and q-axis inductances 

are: 

10 ; 11.2dh qhL mH L mH   (7.5) 

The low-pass filter in the demodulation procedure shown in Fig 4.4 is designed with 

𝛽௟௣ = 500 𝐻𝑧. The parameters of the PI controller in the phase-locked loop can be 

determined according to (4.18): 

26109 / ; 339369 /p ik rad As k rad As   (7.6) 

The dynamics of the field angle tracking algorithm was tested with a step response of 

the field angle by forcing the estimated angle at an initial value of zero. Fig 7.16 shows 

that the rise-time of the estimation response is 20 𝑚𝑠 for a reference angle of 1.05 𝑟𝑎𝑑, 

while the steady state error angle stays in the limits to 0.1 𝑟𝑎𝑑 or 5.7଴ electrical degrees. 

The next experiment is related to the measurement of the error signal 𝑓(∆𝛾) as a function 

of the error angle ∆𝛾. From (4.12) and the demodulation procedure depicted in Fig 4.4, 

the error signal 𝑓(∆𝛾) can be defined as follows: 

 
-ˆ

sin(2 )
4

dh qhh

h qh dh

L Lu
f

L L
 


    

 
 (7.7) 

For small value of the error angle ∆𝛾, (7.7) becomes (4.14). To conduct the experiment, 

the alternating carrier high-frequency voltage is injected into the 𝛼 −axis of the 𝛼, 𝛽- 

coordinate system while running the PMSM with an encoder for position feedback. 

While the rotor rotates, the error angle ∆𝛾 changes. The error signal 𝑓(∆𝛾) and the error 

angle ∆𝛾 were recorded and are shown in Fig 7.17. It can be seen that the shape of 𝑓(∆𝛾) 

resembles a sinusoidal signal whose period is equal to half of that of the error angle ∆𝛾. 

This phenomenon agrees with the theoretical determination of the 𝑓(∆𝛾) given in (7.7)

. It is necessary to mention that the demodulation procedure provides the estimation 

angle 𝛾௘ which either indicates the correct direction of the magnetic flux, or it is in error 

by a displacement of 𝜋 𝑟𝑎𝑑. Therefore, the magnet polarity of the rotor has to be 

determined in order to obtain the correct direction of the pole flux [21].
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Fig 7.16. Step response of the field angle 
tracking algorithm 

Fig 7.17. Error signal corresponding to one 
period of the error angle 

The sensorless control algorithm based injection technique was utilized for the operation 

of the drive. To evaluate its operation, a reference speed with a 60 min-1/s-slope was 

used. Fig 7.18 and Fig 7.19 show the results by using a conventional PI speed controller 

and a harmonic speed controller without the use of mechanical encoder. The harmonic 

speed controller was also designed up the 5th harmonic.  

Fig 7.18(a) and Fig 7.19(a) show that the sensorless control system can handle very low-

speeds including standstill. However, the harmonic speed controller provides better 

speed reference tracking by canceling cyclic speed oscillations originated from the 

periodic load torque. The results are similar to those obtained by using an encoder for 

the angle measurement as presented in section 7.4. The remaining speed error comes 

from the resolution of the ADC and the noise buried in the current measurement. Fig 

7.18 (b)-(c) and Fig 7.19 (b)-(c) show that the angle tracking algorithm works well by 

limiting the error angle to approximately six electrical degrees.  

In order to get a deeper insight into the reasons for the ripples in the estimate of the 

speed, the impact of the ADC quantization was carried out. The 12-bit ADC converters 

of the DSP built in the dSPACE 1104 board are capable of working with analog voltage 

inputs ranging from -10V to +10V. This means that the resolution of the ADC converter 

is 20𝑉 2ଵଶ⁄ = 4.883 𝑚𝑉. The current measurement circuit was designed with a ratio 

from the measured current to the output voltage of 𝐾௜௨ = 0.98 𝐴/𝑉. Hence, the 

resolution of the current measurement is 𝐾௜௨ ∙ 4.883𝑚𝑉 = 4.785 𝑚𝐴. Fig 7.20 shows 

the magnitude of the ripples that can be observed at some points in the demodulation 

procedure at the injected frequency 𝑓௛ = 625 𝐻𝑧 and the amplitude of the injected high-

frequency voltage is 20 𝑉. 
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(a) (a) 

 

(b) (b) 

 
(c) 

(c) 

Fig 7.18. Conventional PI speed controller: 

a) speed response; b) measured and 

estimated field angle; c) error angle 

Fig 7.19. Harmonic speed controller: a) 

speed response; b) measured and estimated 

field angle; c) error angle 
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Fig 7.20. Ripples of 625Hz-signals in the demodulation procedure coming from the 
resolution of the A/D converters 

Fig 7.20 shows that the estimated crank velocity has a ripple of 11.67 𝑚𝑖𝑛ିଵ  originated 

from the resolution of the ADC converters. The speed ripples can be observed in Fig 

7.18(a) and Fig 7.19(a). One solution to reduce the ripples is reducing the current 

measurement coefficient 𝐾௜௨. However, the decrease of 𝐾௜௨ results in a smaller current 

the ADC converter can handle. A tradeoff between the estimated speed quality and the 

range of the current measurement has to be made. 

7.5.2 Wide speed sensorless control of the drive 

In this section, a combined field angle observer is implemented to drive the PMSM in a 

wide speed range. The transition speed was set to 𝜔௧௥௔௡௦ = 200 𝑚𝑖𝑛ିଵ. The alternating 

high-frequency carrier voltage was selected in the same manner presented in section 

7.5.1. It is necessary to mention that the parameters of the low-pass filter and the PI 

controller in the PLL depend on the estimated rotor speed. The PLL has to be 

programmed in such a way that it can adapt to the variable speed. 

Fig 7.21 to Fig 7.24 show the results corresponding to the combined angle estimator. As 

depicted in Fig 7.21, the speed was smoothly changed in the range [−700; 700] 𝑚𝑖𝑛ିଵ  

corresponding to [−0.23; 0.23] p.u. The signal injection method takes effects when the 

speed is in the range between [−200; 200] 𝑚𝑖𝑛ିଵ  according to the predefined transition 

speed 𝜔௧௥௔௡௦. This phenomenon is clearly observed in the figure representation of the 

error signal 𝑓(∆𝛾) in Fig 7.23. The estimated and the measured field angles are depicted 

in Fig 7.22, while the error angle is shown in Fig 7.24. It can be seen that the combined 

estimator limits the error angle to approximately ten electrical degrees in the steady state 

and eighteen electrical degrees in the transition region. 
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Fig 7.21. Speed response with a combined 
estimator 

Fig 7.22. Estimated and measured field 
angles 

Fig 7.23. Error signal in the PLL Fig 7.24. Error angle 

The next experiment was conducted for the comparison between the combined 

estimators with and without the use of the weighted coefficient W0. Fig 7.25 (a) shows 

that the speed was smoothly changed in the low-speed region including zero crossing 

with the combined estimator augmented by the weighted coefficient. On the contrary, 

the speed response according to the estimator without the weighted coefficient is noisy 

in the low speed region as it is shown in Fig 7.26 (a). In addition, combined angle 

estimator augmented by coefficient W0 ensures smaller error angle as shown in Fig 7.25 

(b) and Fig 7.26 (b). It can be concluded that the weighted coefficient W0 improves the 

performance of the combined angle estimator. 
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        (a)     (b) 

Fig 7.25. Combined angle estimator with weighted coefficient W0: a) speed response; b) 

electrical error angle 

     (a)         (b) 

Fig 7.26. Combined angle estimator without weighted coefficient W0: a) speed response; b) 

electrical error angle 

7.6 Diagnosis of the bearing faults  

Experiments on the detection of the bearing faults are conducted with two configurations 

of the electric drive: with and without the use of the mechanical encoder. Experiments 

with an encoder follow the diagnostic procedure presented in section 6.5, in which the 

load torque is estimated by applying either a sliding window method or a harmonic 

speed controller. In the sensorless drive, the rotor angle and rotor speed are provided by 

the field angle observer. Both single-point defects and generalized roughness of a ball 

bearing installed on the load side are taken into account. The horizontal slider-crank 

mechanism was driven at 60 min-1. For practical purpose, the delta torque ∆𝑇 was 

represented in Fourier series with 𝑓௡ = 10 𝐻𝑧 by taking a sample with a ten seconds 

length. The testing bearings are UBC-P205 bearings with the number of balls 𝑧 = 9.  
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7.6.1 Diagnosis of the bearing faults with the conventional FOC and mechanical 

encoder 

A. Outer raceway fault 

The first step for any experiments on the detection of the bearing faults is the preparation 

of desirable faulty bearings. Fig 7.27 shows a bearing with an artificial defect on the 

outer raceway. A screw was inserted into a hole located on top of the bearing housing. 

It can go up or down to change the contact pressure with the bearing balls for getting a 

desirable faulty level. An acceleration sensor was mounted on the bearing housing to 

measure vibration velocity, which is used to classify the working condition of the 

bearing. The crank was detached from the coupling shaft. The location of the screw was 

set so that the RMS value of the vibration velocity is categorized in level C according 

to the ISO 10816 standard while the machine was operating at 1000 min-1 or 16.67 Hz. 

Fig 7.28 illustrates the RMS value of the vibration velocity corresponding to the 

emulated outer raceway fault. 

Fig 7.29 shows the load torque, the estimated torque and the delta torque as time-

dependent functions in case of healthy and outer faulty bearings. Fig 7.30 depicts the 

spectral representation of the delta torque ∆𝑇 after the FFT. The red line corresponds to 

the Fourier terms associated with the healthy bearing and acts as the reference line. The 

blue line refers to the faulty bearing. 
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Fig 7.27. Bearing with an outer raceway 
defect 

 

Fig 7.28. Vibration velocity measurement 

  
(a)  (b) 

Fig 7.29. Load torque as time-dependent functions: a) healthy bearing: b) outer raceway 

faulty bearing 

According to (6.18), the resulting fault frequency is: 

0.4 0.4 9 10 36ORF nf z f Hz Hz        (7.8) 

At this frequency, Fig 7.30 shows a small but clear difference between the spectra. 

Furthermore, the deviations at the multiples of 𝑓ைோி(72 𝐻𝑧, 108 𝐻𝑧, … ) are also 

indications of the fault. Generally, the signatures to detect the outer raceway fault can 

be observed at frequencies defined by 𝑓ைோி
௞ = 𝑘 ∙ 𝑓ைோி , 𝑘 ∈ 𝑁∗.  

It can be concluded that the outer raceway fault was successfully detected by using the 

proposed method. 
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Fig 7.30. Spectrum of T corresponding to the healthy and the faulty bearings 

B. Inner raceway fault 

In further experiments, the case of an inner raceway defect was researched. Fig 7.31 

depicts the system designed for emulating defective bearing. The screw can move inside 

a hole in the coupling shaft to achieve an inner raceway defect. A gap of 6.5 𝑚𝑚 on the 

circumference of the inner raceway was removed to make sure that the screw can contact 

the bearing balls. The location of the screw was changed until the RMS value of the 

vibration velocity was in level C according to the ISO 10816 standard as it is shown in 

Fig 7.32. 

The diagnostic procedure was conducted similarly to the diagnosis of the outer raceway 

defect. According to (6.19), the characteristic fault frequency is 𝑓ூோி = 54 𝐻𝑧. Fig 7.33 

shows the load torque, the estimated torque, and the delta torque as time-dependent 

functions for the case of the defect on the inner raceway. It also shows the angular 

position of the crank, from which the position associated with the highest value of the 

load torque can be determined. In Fig 7.34, the Fourier spectrum of the delta torque 

corresponding to the faulty bearing is depicted in blue in comparison with the red 

reference spectrum. It can be observed that in addition to the characteristic fault 

frequency and its multiples 𝑓ூோி
௞ = (54 𝐻𝑧, 108 𝐻𝑧 … ), there are sidebands around 

these frequencies with the sideband width ∆𝑓ௌ஻ = 𝑓௡ = 10 𝐻𝑧. The sideband 

frequencies are defined by (7.9). 
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, * *54 10 ; ,k i
IRF IRF SBf k f i f k i Hz k N i Z           (7.9) 

                        

Fig 7.31. bearing with an inner raceway defect 

Fig 7.32. Vibration velocity measurement 

 

Fig 7.33. Load torque as time-dependent functions 
and angular position of the crank in case of an inner 

raceway fault 

As it was explained in section 6.4, the sidebands are caused by the load zone effect. In 

the horizontal slider-crank mechanism, the load applied to the bearing reaches the 

highest value when the crank stands at the position 6 o’clock and the second highest 

value at the position 18 o’clock as shown in Fig 7.33. The defect on the inner raceway 

rotates through the load zone once per revolution. As the fault intensity reaches the 

highest values twice per revolution (at the two aforementioned positions), the values of 

the coefficients corresponding to 𝑖 = 2 (or more generally at any even values of i ) are 

higher than those corresponding to other sideband frequencies. 
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From the clear signatures observed at the characteristic fault frequency and its multiples 

as well as the sideband effect, the inner raceway fault was successfully detected. 

 

Fig 7.34. Spectrum of the delta torque 

C. Generalized roughness fault 

To create a generalized roughness fault, some corundum was used to contaminate the 

bearing. This very hard material destroys the surface of the raceways and the bearing 

balls. As shown in Fig 7.35, a hole on the outer raceway and a hold on the bearing 

housing were created to make a path through which the corundum can enter the bearing. 

The results achieved by conducting the diagnostic method including the vibration 

velocity, the load torque, and the delta torque are shown in Fig 7.36 and Fig 7.37, 

respectively. 

Fig 7.29(a) shows that the DC component of the load torque corresponding to the healthy 

bearing is 0.8696 Nm. Fig 7.37 illustrates that the DC component belonging to the 

generalized roughness bearing is 0.9655 Nm that exhibits an increase of 11% when 

compared to the healthy case. The DC component related to the outer and the inner 

raceway defects are 0.8953 Nm (difference of 2.9%) and 0.8661 Nm (difference of 

0.4%) as they are shown in Fig 7.29(b), Fig 7.33, respectively. As expected, the increase 

of the DC component in the case of generalized roughness fault is much more significant 

than those in the case of single-point defects. 
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To make sure that the system was not affected by the corundum, the angular velocity 

was measured for the healthy and the faulty bearing. Fig 7.38 shows the crank angular 

velocity in both cases. It can be seen that there are no considerable differences between 

the speed responses, so the mechanism with the faulty bearing still works properly. 

 

Fig 7.35. Generalized roughness fault 
bearing 

 

Fig 7.36. Vibration velocity measurement 

 

Fig 7.37. Load torque as time-dependent 
function in case of generalized roughness 

fault 

 

Fig 7.38. Speed responses with a healthy 
and a generalized roughness bearings 

The broadband change caused by the generalized roughness fault is visible in Fig 7.39. 

The spectral line corresponding to the frequency 𝑓 = 36 𝐻𝑧 is higher than others 

because of the effect of the hole on the outer raceway. This hole can be considered as a 

mild outer raceway fault. However, the faulty signature at the multiples of 𝑓 = 36 𝐻𝑧 

are not observed, so it cannot be classified as an outer raceway fault.  
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It can be concluded that the proposed diagnostic procedure can detect the generalized 

roughness fault in the ball bearing. 

 

Fig 7.39. Spectrum of the delta torque 

D. Spectrum analysis by using FFT with windowing 

The three former experiments on the detection of the bearing faults were based on the 

FFT analysis, in which 10-second sampled signals corresponding to ten periods of the 

load torque were analyzed. Another way to get the spectrum of the delta torque is the 

use of a windowing method installed in a commercial oscilloscope [72]. The main 

advantage of the windowing method is the ability to work with any periods of the 

sampled signals. 

The Fourier spectra corresponding to a healthy, an inner and an outer raceways faulty 

bearings are depicted in Fig 7.40(a),(b),(c), respectively. The conditions of the bearings 

are similar to those presented in section 7.6.1(A) and 7.6.1(B).  

 

0 24 36 55 72 88 108 128 144
0

0.005

0.01

0.015

0.02

Frequency (Hz)

Sp
ec

tr
al

 c
om

po
ne

nt
Spectrum of the T

 

 

G-Roughness Bearing
Healthy Bearing



7.6 Diagnosis of the bearing faults 106

 

 

Fig 7.40. Delta torque (blue line) and its Fourier coefficients 
(green line): a) healthy bearing; b) outer raceway faulty bearing; c) 

inner raceway faulty bearing 

 

 

(a) 

 

 

 

 

(b) 

 

(c) 

The crank was also driven at 60 min-1, or 𝑓௡ = 1 𝐻𝑧. From (6.18), the characteristic fault 

frequency 𝑓ைோி = 3.6 𝐻𝑧. The spectrum belonging to the healthy bearing shown in Fig 

7.40(a) serves as the baseline for the comparison to defective lines. Fig 7.40(b) clearly 

shows large differences between the two lines at 𝑓ைோி  and its multiples. This 

phenomenon is similar to that as illustrated in Fig 7.30. 
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For the inner raceway defect 𝑓ூோி = 5.4 𝐻𝑧 is computed according to (6.19). Fig 7.40(c) 

shows that the coefficient related to 𝑓ூோி  and its multiples are larger than those in the 

baseline. In addition, the sideband effect is also visibly recognized, especially at 

frequencies corresponding to 𝑖 = 2 in (7.9). It can be concluded that the windowing 

method also provides a promising solution for the detection of the bearing fault. Both 

the single-point defects and generalized roughness fault in the bearing whose faulty level 

is located in level C according to the ISO 10816 standard can be detected.  

7.6.2 Diagnosis of the bearing faults based on harmonic speed controller 

As already mentioned, the harmonic speed controller brings an alternative solution for 

the load torque estimation. Fig 7.14 demonstrates the load torque estimation while 

healthy bearings were installed on either load side or motor side. The estimated load 

torque is used in the next experiment with the aim of detecting single-point defects. The 

preparation for desirable faulty bearings as well as the performance of the diagnostic 

procedure were conducted in a similar manner as it was presented in section 7.6.1. 

Fig 7.41(a),(b),(c) show the load torque, the estimated torque and the delta torque 

corresponding to a healthy bearing, an outer raceway faulty bearing and an inner 

raceway faulty bearing. The spectra of the delta torque corresponding to the three 

bearings are illustrated in Fig 7.43 and Fig 7.43. It can be seen in Fig 7.43 that the outer 

raceway fault can be detected as there are significant differences between the baseline 

and the faulty line observed at the outer raceway characteristic fault frequency 𝑓ைோி =

36 𝐻𝑧 and its multiples. The results coincide with those illustrated in Fig 7.30. 

Furthermore, the inner raceway defect can also be detected by analyzing the spectra 

shown in Fig 7.43. In addition to the clear differences at the inner characteristic fault 

frequency and it multiples𝑓ூோி
௞ = (54 𝐻𝑧, 108 𝐻𝑧 … ), the sideband effects are also 

noticeable.  

In summary, the single-point bearing defects were successfully detected by the 

identification of the load torque based on the harmonic speed controller. 
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(a) 

 
(b) 

 
(c) 

Fig 7.41. Reference torque, estimated 
torque, delta torque corresponding to: a) 
a healthy bearing; b) an outer raceway 
faulty bearing; c) and an inner raceway 

faulty bearing 

Fig 7.42 Spectrum of the delta torque 
corresponding to a healthy bearing and an outer 

raceway faulty bearing 

Fig 7.43. Spectrum of the delta torque 
corresponding to a healthy bearing and an inner 

raceway faulty bearing  
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7.6.3 Diagnosis of the bearing faults based on sensorless control of the drive 

The last experiment is related to the detection of the bearing faults by using the 

sensorless control of the drive. The load torque utilized in the diagnostic procedure is 

obtained by conducting a sensorless harmonic speed control [73].  

To prepare the desirable faulty bearings, the combined field angle estimator was used to 

drive the PMSM at the high speed region. Fig 7.44(a) shows the speed response at 1000 

min-1. Fig 7.44(b) illustrates the vibration velocity measured on the housing of the 

bearing with an artificial outer raceway defect. The RMS value of the vibration velocity 

shows that the faulty bearing is in level C according to the ISO 10816 standard. 

(a) (b) 

Fig 7.44. High-speed sensorless control for the electric drive: a) speed response in 

the steady state; b) vibration velocity with an outer raceway faulty bearing 

In Fig 7.45, the reference torque, the estimated torque, and the delta torque 

corresponding to a healthy bearing, an outer raceway faulty bearing, and an inner 

raceway faulty bearing are presented. The spectra of the delta torque corresponding to 

the outer raceway and inner raceway faulty bearings are depicted in Fig 7.46 and Fig 

7.47, respectively. It can be seen that the spectra have rich harmonics because of the 

reference load torque ripples originated from the ripples of the estimated speed. 

However, signatures for the diagnosis of the outer and of the inner raceway defects are 

still visible and detectable at the characteristic fault frequencies and its multiples. 
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     (a) 

 
       (b) 

 
    (c) 

Fig 7.45. Reference torque, estimated 
torque and delta torque: a) healthy 

bearing; b) outer raceway faulty bearing; 
c) inner raceway faulty bearing 

Fig 7.46. The spectrum of the delta torque 
corresponding to a healthy bearing and an outer 

raceway faulty bearing 

 

Fig 7.47. The spectrum of the delta torque 
corresponding to a healthy bearing and an inner 

raceway faulty bearing. 
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7.7 Summary of the chapter 

In this chapter, the theoretical analysis and proposals for the optimization of the electric 

drive and the diagnosis of the bearing faults in a slider-crank mechanism were validated. 

The first experiment was dedicated toward the load torque estimation, from which the 

estimated load torque can be used in a feed-forward control scheme to improve the speed 

response quality or in a diagnostic procedure to detect the presence of bearing faults. 

The three most commonly found types of the bearing faults were successfully detected, 

including the outer raceway defect, the inner raceway defect, and the generalized 

roughness fault.  

Harmonic speed control for the improvement of the speed response quality was tested. 

It was proven that both the PI-R speed controller and the harmonic speed controller can 

enhance the reference speed tracking possibility of the drive. 

The last experiment concerning the sensorless control of the drive was conducted. 

Experimental results show that the PMSM can be driven at low-speed region, including 

standstill, as well as high-speed region by following the injection technique and the 

enhanced voltage model, respectively. The harmonic speed control and the diagnosis of 

the bearing faults were also confirmed with the sensorless control of the drive. 

Equation Section (Next) 



 

 

 

 

The main objective of the present work was the identification of the production cycle of 

drives for the purpose of optimal control and of the diagnosis of mechanical failures. 

The new ideas are related to the two methods for the load torque estimation, the 

procedure for the detection of the bearing faults and the use of harmonic control for the 

speed control loop. To implement and to improve the proposed methods, a sensorless 

operation of the drive was developed and evaluated.  

In the first step, the load torque in a horizontal slider-crank mechanism, an example of 

repetitive mechanical systems, was identified by using Fourier interpolation. The 

estimation of the load torque was conducted via the evaluation of the Fourier coefficients 

by applying either a phenomenological method or an empirical look-up table based 

method. The estimated load torque can be used for two purposes. First, it was added to 

the output of the speed controller and acted as a compensation signal in a feed-forward 

control scheme. It was successfully proven that the load torque compensation improved 

the speed response quality not only in the steady state but also in the dynamic mode. 

Subsequently, the estimated load torque was used in a new approach for the detection 

of the bearing faults. As the load torque contains information of the characteristic fault 

frequencies associated with each type of the bearing faults, the spectrum analysis of the 

load torque can be used as an indicator for the presence of the faults. Both single-point 

defects and generalized roughness, the two most commonly failures found in bearing of 

industrial installations, were successfully diagnosed by the proposed method. In 

addition, the diagnostic procedure does not require any additional sensors. 

Besides the load torque compensation for the improvement of the speed response 

qualities, harmonic control is an alternative solution. In such method, each harmonic in 

the speed error can be manipulated by an individual controller. It can be a resonant part 

in case of PI-R speed controller or a PI controller in case of harmonic speed controllers. 

In either cases, experiments showed that the reference speed tracking was improved by 

considerably canceling the speed oscillation originated from the cyclic load torque. 

The final experiments were extended to the operation of the system without the use of 

an angular transducer used for the measurement of the rotor angle and rotor speed. The 

sensorless control for the PMSM was implemented in a wide speed range, in which a 

8 Conclusions 
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combined field angle estimator was proposed to drive smoothly the machine between 

the low-speed and the high-speed regions. The ideas on the load torque estimation, the 

bearing fault detection, and the harmonic control were successfully experimentally 

validated in the sensorless control of the drive. Equation Section (Next)  



 

 

 

 

9.1 Parameters of the PMSM 

Table 9.1. Parameters of the driven machine 

Parameters Value Unit 

Machine Model ABB SDM 101-005N8-115 

Nominal Power 1.54 𝑘𝑊 

Nominal Voltage 360 𝑉 

Nominal Velocity 3000 𝑚𝑖𝑛ିଵ 

Nominal Torque 4.9 𝑁𝑚 

Number of pole Pairs 3  

Winding Resistance 𝑅௎௏ 6.4 Ω 

Winding Inductance 𝐿௎௏ 21.8 𝑚𝐻 

Moment of Inertia 0.0006 𝑘𝑔 ∙ 𝑚ଶ 

 

9.2 Kinetic analysis of the horizontal slider-crank mechanism 

The moment of inertia of the horizontal slider-crank mechanism referred to the shaft of 

the driven machine can be obtained from the kinetic energy analysis. 

 

9 Appendix

(a)



9 Appendix 115

 

 

 

Fig 9.1.  Horizontal slider-crank mechanism: a) mechanical structure; b) reduced model 

The parameters of the mechanism are given in the following table: 

Table 9.2. Parameters of the slider-crank mechanism 

Name Symbol Values 

Mass of the crank 𝑚௖௥௔௡௞ 0.345 𝑘𝑔 

Mass of the connecting rod 𝑚௖௥௢ௗ 0.229 𝑘𝑔 

Mass of the slider 𝑚௦௟௜ௗ௘௥ 4.295 𝑘𝑔 

OB 𝑟ଵ 50 𝑚𝑚 

BC 𝑟ଶ 340 𝑚𝑚 

OG 𝑙 13.5 𝑚𝑚 

Distance from 𝑥-axis to the sliding surface 𝑒𝑥𝑐 30 𝑚𝑚 

The masses in the reduced model depend on the masses in the mechanism. A detail 

calculation procedure for the equivalent masses in the reduced model can be found in 

[74]. 

4

5
1 1
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a crank

b crank crod

c crod slider
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 (9.1)
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where 𝑚௖௥௔௡௞, 𝑚௖௥௢ௗ, and 𝑚௦௟௜ௗ௘௥ are the masses of the crank, the connecting rod, and 

the slider, respectively. 

Denoting 𝑥̇ = 𝑑𝑥 𝑑𝑡⁄  the derivation with respect to time of variable 𝑥, the total kinetic 

energy is given by: 

   22 2 2
1

1 1

2 2k b m cE m r m x y         (9.2) 

where (𝑥; 𝑦) is the position of mass 𝑚௖ in the 𝑂𝑥𝑦 coordinate system. 

Since mass 𝑚௖ moves on the horizontal axis, its vertical position is time-independent. 

As a result, the following equation holds: 

0y   (9.3) 

Geometric relations associated with the reduced model ensure: 

1 2cos cosmx r r      (9.4) 

2 1sin sin mr r exc      (9.5) 

The expression of 𝜑 can be obtained from (9.5) 
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     (9.6) 

with = 𝑟ଵ 𝑟ଶ; 𝑘 = 𝑒𝑥𝑐 𝑟ଶ⁄⁄  . 

The derivation of equations (9.4) and (9.6) yields: 
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  (9.7) 

where Ω௠ = 𝑑𝛾௠ 𝑑𝑡.⁄  
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Let 𝑢 = (𝜆 ∙ 𝑠𝑖𝑛𝛾௠ + 𝑘). A function 𝑓(𝑢) is defined as: 

 
21

u
f u

u



 (9.8) 

Normally 𝜆 ≪ 1 and 𝑘 ≪ 1, therefore (𝜆 ∙ 𝑠𝑖𝑛𝛾௠ + 𝑘) ≪ 1. Therefore, the function 

𝑓(𝑢) can be approximated by a Taylor series around zero: 

       '
00 | 0 0( )uf u f f u u u u       (9.9) 

By substituting (9.9) into (9.7), the time derivation of 𝑥 can be calculated as: 
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1

sin cos sin

1
sin sin 2 cos
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m m m m
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         
          


 (9.10) 

Combining (9.2), (9.3) and (9.10), the kinetic energy is given by: 

2
2 2 2 2

1 1

1 1 1
sin sin 2 cos

2 2 2k b m c m m m mE m r m r k                  
 

 (9.11) 

The reduced moment of inertia of the mechanism 𝐽௠௘௖௛௔௡௜௦௠ is defined as: 

21

2k mechanism mE J    (9.12) 

By comparing (9.11) and (9.12), the moment of inertia of the mechanism referred to the 

shaft of the driven machine is: 

2
2 2

1 1

1
sin sin 2 cos

2mechanism b c m m mJ m r m r k              
 

 (9.13)  

 If terms related to the multiplication of the two small constants   and k  are ignored 

while simplifying (9.13), the reduced moment of inertia is finally defined by: 

 2 2 2
1 1( ) sin sin sin 2 2 sin cosmechanism m b c m m m m mJ m r m r k                 

 (9.14) 
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9.3 Derivations of the load torque components 

Under the assumption that the crank is operated at a constant angular velocity, the load 

torque demanded by the slider-crank mechanism contains three components, including 

the torque due to the change of inertia, the potential energy, and the friction forces: 

2
1

2
ptotal m slider

load total
m m m

dWdJ d dx
T F

d dt d d


  

       
 

 (9.15) 

9.3.1 The inertia torque 

The torque due to the change of inertia is defined by: 

2
1

2
total m

inertia
m

dJ d
T

d dt




     
 

 (9.16) 

where totalJ  is given by (9.14) and Ω / .m md dt const   

The inertia torque can be determined by the following equation: 

2 2
1

1 1 3
sin 2 sin sin 3 2 cos 2

2 2 2inertia c m m m m mT m r k                    
 

 (9.17) 

9.3.2 The potential torque 

The potential torque comes from the change of the potential energy with respect to the 

shaft angle of the driven machine: 

p
p

m

dW
T

d
  (9.18) 

where  pW is defined by (5.4). 
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 (9.19) 
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9.3.3 The friction torque 

Friction forces, including the Coulomb friction and the viscous friction, contribute a 

significant component to the load torque. The component is named friction torque and 

given by: 

 sgnslider slider
fric total c slider v slider

m m

dx dx
T F K v K v

d d 
         (9.20) 

The velocity of the slider sliderv , or the time-derivative of the position, is given in (9.10).  

1
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 (9.21) 

In addition, the following equation is hold: 
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 (9.22) 

By combining (9.20), (9.21) and (9.22), the friction torque is composed of two terms. 

One is due to the Coulomb friction, and the other is because of the viscous friction. 

fric Coulomb viscousT T T   (9.23) 

where  
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 (9.25) 
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