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Abstract
Virtually all of the analysis of quantum contextuality is restricted to the case where events are
represented by rank-one projectors. This restriction is arbitrary and not motivated by physical
considerations. We show here that loosening the rank constraint opens a new realm of quantum
contextuality and we demonstrate that state-independent contextuality (SIC) can even require
projectors of nonunit rank. This enables the possibility of SIC with less than 13 projectors, which
is the established minimum for the case of rank one. We prove that for any rank, at least 9
projectors are required. Furthermore, in an exhaustive numerical search we find that 13 projectors
are also minimal for the cases where all projectors are uniformly of rank two or uniformly of rank
three.

1. Introduction

Experiments provide strong evidence that the measurements on quantum systems cannot be reproduced by

any noncontextual hidden variable model (NCHV). In an NCHV model each outcome of any measurement
has a preassigned value and this value in particular does not depend on which other properties are obtained
alongside. This phenomenon is called quantum contextuality. Being closely connected to the

incompatibility of observables [1], quantum contextuality is the underlying feature of quantum theory that
enables, for example, the violation of Bell inequalities [2], enhanced quantum communication [3, 4],

cryptographic protocols [5, 6], quantum enhanced computation [7, 8], and quantum key distribution [9].
The first example of quantum contextuality was found by Kochen and Specker [10] and required 117

rank-one projectors. Subsequently the number of projectors was reduced until it was proved that the
minimal set has 18 rank-one projectors [11]. This analysis was based on the particular type of contradiction

between value assignments and projectors that was already used in the original proof by Kochen and
Specker. The situation changed with the introduction of state-independent noncontextuality inequalities,

where any NCHV model obeys the inequality, while it is violated for any quantum state and a certain set of
projectors. With this enhanced definition of state-independent contextuality (SIC), Yu and Oh [12] found
an instance of SIC with only 13 rank-one projectors and subsequently it was proved that this set is minimal

[13] provided that all projectors are of rank one. Note that the iconic example of the Peres–Mermin square
[14, 15] uses 9 observables with two-fold degenerate eigenspaces, but they are combined to 6 measurements

of 24 rank-one projectors.
In contrast, SIC involving nonunit rank projectors has been rarely considered. To the best of our

knowledge, the only examples [15–18] which use nonunit rank are based on the Mermin star [19]. In these
examples it was shown that nonunit projectors are sufficient for SIC, but it was not shown whether nonunit

projectors are also necessary for SIC. Furthermore, in a graph theoretical analysis by Ramanathan and
Horodecki [20] a necessary condition for SIC was provided which also allows one to study the case of

nonunit rank.
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In this article, we develop mathematical tools to analyze SIC for the case of nonunit rank. We first show
that in certain situations nonunit rank is necessary for SIC. Then we approach the question whether
projectors with nonunit rank enable SIC with less than 13 projectors. We find that in this case at least 9
projectors are required. For the special cases of SIC where all projectors are of rank 2 or rank 3 we find
strong numerical evidence that 13 is indeed the minimal number of projectors.

This paper is structured as follows. In section 2 we give an introduction to quantum contextuality using
the graph theoretic approach. We extend this discussion to SIC in section 3 and we give an example where
rank-two projectors are necessary for SIC. In section 4 we provide a general analysis of the case of nonunit
rank and show that scenarios with 8 or less projectors do not feature SIC, irrespective of the involved ranks.
This analysis is used in section 5 to show in an exhaustive numerical search that all graphs smaller than the
graph given by Yu and Oh do not have SIC, if the rank of all projectors is 2 or 3. We conclude in section 6
with a discussion of our results.

2. Contextuality and the graph theoretic approach

Our analysis is based on the graph theoretic approach to quantum contextuality [21]. In this approach an
exclusivity graph G with vertices V(G) and edges E(G) specifies the exclusivity relations in a contextuality
scenario. The vertices represent events and two events are exclusive if they are connected by an edge. The
cliques of the graph form the contexts of the scenario. (In appendix A we give definitions of essential terms
from graph theory.) Recall that an event is a class of outcomes in an experiment and two events are
exclusive if they cannot be obtained simultaneously in any experiment. We consider now two types of
models implementing the exclusivity graph, quantum models and noncontextual hidden variable models.

In a quantum model of the exclusivity graph G one assigns projectors Πk to each event k such that∑
k∈C Πk is again a projector for every context C. This is equivalent to having ΠkΠl = 0 for any two

exclusive events k and l. With such an assignment and a quantum state ρ one obtains the probability for the
event k as

PQT(k) = tr(ρΠk). (1)

The set of all probability assignments PQT that can be reached with some projectors (Πk)k and some state ρ
is a convex set which coincides [21] with the theta body TH(G) of the graph G.

In contrast, in an NCHV model for the exclusivity graph G the events are predetermined by a hidden
variable λ ∈ Λ. That is, to each event k one associates a response function Rk : Λ→ {0, 1}. For a context C
the function λ �→

∑
k∈C Rk(λ) has to be again a response function, which is equivalent to Rk(λ)Rl(λ) = 0

for all λ and any pair of exclusive events k and l. The probability of an event k is now given by

PNCHV(k) =
∑
λ∈Λ

μ(λ)Rk(λ), (2)

where μ is some probability distribution over the hidden variable space Λ. The set of all probability
assignments PNCHV that can be reached with some response functions (Rk)k and some distribution μ forms
a polytope which can be shown [21] to be the stable set STAB(G) of the graph G.

Quantum models and NCHV models are both noncontextual in the sense that the computation of the
probability P(k) of an event k does not depend on the context in which k is contained. Quantum
contextuality occurs now for an exclusivity graph G if we can find a quantum model with probability
assignment PQT which cannot be achieved by any NCHV model and hence PQT ∈ TH(G)\STAB(G). Since
STAB(G) is convex, it is possible to find nonnegative numbers (wk)k∈V(G) ≡ w such that

Iw : P �→
∑

k

wkP(k) (3)

separates all NCHV models from some of the quantum models. That is, there exists some α, such that
Iw(PNCHV) � α holds for any PNCHV ∈ STAB(G), while Iw(PQT) > α holds true for some PQT ∈ TH(G).
This can be further formalized by realizing that the weighted independence number [22] α(G, w) is exactly
the maximal value that Iw attains within STAB(G) and similarly that the weighted Lovász number [23]
ϑ(G, w) is exactly the maximum of Iw over TH(G). Consequently the inequality Iw(PNCHV) � α(G, w) holds
for all NCHV probability assignments and this inequality is violated by some quantum probability
assignment if and only if [21] ϑ(G, w) > α(G, w) holds. In addition, one can show [21] that the value of
ϑ(G, w) can always be attained for some quantum model employing only rank-one projectors.
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Figure 1. (a) The graph GYO with 13 vertices and 24 edges. Removing the dashed edge yields the graph GYO′ . (b) Representation
of the graph GToh. Any subset of the vertices 1, 2, . . . , 30 enclosed by a line forms a clique, that is, all vertices in any of the sets
{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}, {17, 18, 19, 20}, {28, 14, 1, 22}, {22, 2, 17, 29}, {29, 20, 5, 24},
{24, 6, 3, 21}, {21, 4, 10, 27}, {27, 9, 7, 23}, {23, 8, 13, 28}, {26, 15, 19, 30}, {30, 18, 12, 25}, or {25, 11, 16, 26} are mutually
connected by an edge.

3. SIC and nonunit rank

The discussion so far concerns quantum models as being specified by the projectors assigned to each event
together with a quantum state. In SIC one removes the quantum state from the specification of a quantum
model and instead requires that probabilities from the quantum model cannot be reproduced by an NCHV
model, independent of the quantum state. Therefore we consider the set of probability assignments formed
by all quantum states and fixed projectors (Πk)k,

PSIC = {P : k �→ tr(ρΠk)|ρ is a quantum state}. (4)

This set is also convex, since P is linear and the set of quantum states is convex. Hence, in the case of SIC it
is again possible to find nonnegative numbers (wk)k ≡ w such that Iw separates STAB(G) from PSIC.
Therefore, it holds that ∑

k

wk tr(ρΠk) > α(G, w), for all ρ, (5)

or, equivalently, that the eigenvalues of ∑
k

wkΠk − α(G, w) (6)

are all strictly positive.
We say that the projectors (Πk)k of a quantum model of G form a rank-r projective representation (PR)3

of G, when r = (rk)k∈V(G) with rk the rank of Πk. The smallest known contextuality scenario which allows
SIC is given by the exclusivity graph GYO with 13 vertices [12]. This graph is shown in figure 1(a). For this
scenario it is sufficient to consider rank-one projective representations. It also has been shown that no
exclusivity graph with 12 or less vertices allows SIC [13], provided that all projectors are of rank one, r = 1.
But this does not yet show that SIC requires 13 projectors, since it is possible that a contextuality scenario
features SIC only if some of the projectors are of nonunit rank.

This rises the question whether projectors of nonunit rank can be of advantage regarding SIC. We now
show that this is the case by analyzing the exclusivity graph GToh with 30 vertices [18]. This graph is shown
in figure 1(b). One can find a rank-two PR of this graph [18], such that

∑
kΠk = 7 + 1

2 . Since the
independence number of GToh is 7, that is, α(GToh) ≡ α(GToh, 1) = 7, this shows that rank two is sufficient
for SIC in this scenario.

For necessity, we show that no rank-one PR featuring SIC of GToh exists. We first note that such a
representation would be necessarily constructed in a four-dimensional Hilbert space. This is the case
because the largest clique of GToh has size four and hence any PR must contain at least four mutually
orthogonal projectors of rank one. For an upper bound on the dimension d of any PR featuring SIC we use

3 An projective representation obeys ΠkΠl = 0 if [k, l] ∈ E(G). In contrast, an orthogonal representation obeys 〈ψk|ψl〉 = 0 if
[k, l] ∈ E(G)
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Figure 2. Illustration of the graph Gr. G has vertices a, b, c, d and here ra = 2, rb = 1, rc = 1, rd = 3. In the product graph,
vertices enclosed by a line form a clique, that is, they are all mutually connected by an edge.

the result [20, 24]
d < χf(G), (7)

where χf (G) denotes the fractional chromatic number of G. One finds χf(GToh) = 4 + 2
7 implying d � 4.

We do not find any rank-one PR of GToh in dimension d = 4 using the numerical methods discussed in
section 5.2 and in appendix B we prove also analytically that no such representation exists.

4. Graph approach for projective representations of arbitrary rank

The example of the previous section showed that considering projective representations of nonunit rank can
be necessary for the existence of a quantum model with SIC. Since the case of rank-one has already been
analyzed in detail, it is helpful to reduce the case of nonunit rank to the case of rank one. To this end we
adapt the notation [25] Gr for the graph where each vertex k is replaced by a clique Ck of size rk and all
vertices between two cliques Ck and C� are connected when [k, �] is an edge. See figure 2 for an illustration.
That is,

V(Gr) = {(k, i)|k ∈ V(G), i = 1, 2, . . . , rk}, (8)

E(Gr) = {[(k, i), (�, j)]|[k, �] ∈ E(G) or (k = � and i 
= j)}. (9)

The construction of Gr is such that if (Πk,i)k,i is a rank-one PR of Gr, then evidently Πk =
∑

i Πk,i

defines a rank-r PR of G. Vice versa, if (Πk)k is a rank-r PR of G, then one can immediately construct a
rank-one PR of Gr by decomposing each projector Πk into rank-one projectors (Πk,i)i such that
Πk =

∑
i Πk,i.

For a given graph G we denote by dπ(G, r) the minimal dimension which admits a rank-r PR and by
χf (G, r) the fractional chromatic number for the graph G with vertex weights r ∈ N|V(G)|. In addition we
abbreviate the Lovász function of the complement graph by ϑ(G, r) = ϑ(G, r). For these three functions we
omit the second argument if rk = 1 for all k, that is, χf (G) ≡ χf (G, 1), etc.

Theorem 1. For any graph G and vertex weights r ∈ N|V(G)| we have dπ(Gr) = dπ(G, r), χf (Gr) = χf (G, r),
and ϑ(Gr) = ϑ(G, r). In addition, χf (G, mr) = mχf (G, r) and ϑ(G, mr) = mϑ(G, r) hold for any m ∈ N.

The proof is provided in appendix C. As a consequence we extend the relation [23] ϑ(G) � dπ(G) (see
also appendix A) to the case of nonunit rank,

ϑ(G, r) � dπ(G, r). (10)

Similarly we have generalization of the condition in equation (7): whenever a graph G has a rank-r PR
featuring SIC, then it holds that

dπ(G, r) < χf(G, r). (11)

Following the ideas from references [20] and [26], we consider quantum models that use the maximally
mixed state ρmm = 𝟙/d, where d is the dimension of the Hilbert space. For a rank-r PR, the corresponding
probability assignment is then simply given by

Pmm(k) = rk/d. (12)

If the representation features SIC, then Pmm /∈ STAB(G), since, by definition, Pmm ∈ PSIC while PSIC and
STAB(G) are disjoint sets. This is the motivation to define the set RANK(G) of all probability assignments

4
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Pmm which arise from any PR of G. That is,

RANK(G) = {r/�|r ∈ N|V(G)|, � ∈ N, such that � � dπ(G, r)}. (13)

Denoting by RANK(G) the topological closure of RANK(G) we show in appendix D the following
inclusions.

Theorem 2. For any graph G, the set RANK(G) is convex and STAB(G) ⊆ RANK(G) ⊆ TH(G).

This implies that any NCHV probability assignment can be arbitrarily well approximated by a quantum
probability assignment using the maximally mixed state. Conversely, if RANK(G) ⊂ STAB(G) for an
exclusivity graph G, then any quantum probability assignment using the maximally mixed state can be
reproduced by an NCHV model and hence no PR of G can feature SIC. This is the case for all graphs with
at most 8 vertices, as we show in appendix E by using a linear relaxation of RANK(G).

Theorem 3. STAB(G) = RANK(G) for any graph G with 8 vertices or less.

Since any exclusivity graph allowing SIC must have ¯RANK(G) � STAB(G), this implies the following
statement.

Corollary 4. Any scenario allowing SIC requires more than 8 events.

5. Minimal state-independent contextuality

We now aim to find the smallest scenario allowing SIC, that is, the smallest exclusivity graph which has a PR
featuring SIC. Here, we say that a graph G′ is smaller than a graph G if either G′ has less vertices than G or if
both have the same number of vertices and G′ has less edges than G. With this notion, the smallest known
graph allowing SIC is GYO′ with 13 vertices and 23 edges4, where GYO′ is GYO but with one edge removed as
shown in figure 1(a). Due to corollary 4 it remains to consider the graphs with 9 and up to 12 vertices as
well as all graphs with 13 vertices and 23 edges or less.

Instead of testing for a PR featuring SIC, we use the weaker condition in equation (11) and we limit our
considerations to rank-r representations where all projectors have the same rank and r = 1, r = 2, or r = 3.
We now aim to establish the following.

Assertion 5. For r = 1, 2, 3, the smallest graph G with dπ(G, r1) < χf (G, r1) is GYO′ .
This assertion implies that GYO′ is the smallest graph admitting SIC when considering rank-r projective

representations for r = 1, 2, 3.

Our approach to assertion 5 consists of two steps. First we identify four conditions that are easy to
compute and necessary for dπ(G, r) < χf (G, r) to hold. For graphs which satisfy all these conditions and for
r = r1 with r = 1, 2, 3, we then implement a numerical optimization algorithm in order to compute
dπ(G, r1). We then confirm assertion 5, aside from the uncertainty that is due to the numerical
optimization.

5.1. Conditions
We introduce four necessary conditions that are satisfied if G is the smallest graph with dπ(G, r) < χf (G, r)
for some fixed r. First, we consider the case where G is not connected. Then there exists a partition of the
vertices V(G) into disjoint subsets Vi � V(G) such that no two vertices from different subsets are
connected. We write Gi for the corresponding induced subgraph and similarly ri. It is easy to see (see
appendix A), that dπ(G, r) = maxi dπ(Gi, ri) and χf (G, r) = maxi χf (Gi, ri) and hence dπ(G, r) < χf (G, r)
implies that already dπ(Gi, ri) < χf (Gi, ri) for some i. But this is at variance with the assumption that G is
minimal. Hence we have the following.

Condition 1. G is connected.
Second, we consider a partition of V(G) into disjoint subset Vi � V(G) such that any two vertices from

different subsets are connected. We have dπ(G, r) =
∑

i dπ(Gi, ri) and χf (G, r) =
∑

i χf (Gi, ri) (see
appendix A) and hence dπ(G, r) < χf (G, r) implies dπ(Gi, r) < χf (Gi, r) for some i and thus G is not
minimal.

Condition 2. G is connected.

4 In fact, GYO′ has the same rank-one projective representation as GYO and one can verify that the corresponding set PSIC is disjoint
from STAB(G’YO).
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Table 1. Numbers of graphs satisfying condition 1–5. Condition 1–5 are applied to all
graphs with n vertices. For n = 13∗ vertices, only the graphs with up to 23 edges are
considered. Condition 3 can be applied for the case r = r1 for any r but condition 4 and
condition 5 are evaluated only for the cases r = 1, 2, 3.

Rank Condition n = 9 n = 10 n = 11 n = 12 n = 13∗

Any None 274668 12005168 1018997864 165091172592 10951875086
Any 1 & 2 247492 11427974 994403266 163028488360 9185079351
r = r1 1–3 52 608 13716 609373 16893
r = 1 1–4 37 283 5122 163127 15596
r = 1 1–5 1 11 446 31049 77
r = 2 1–4 44 398 7159 238478 15691
r = 2 1–5 8 126 2483 106400 172
r = 3 1–4 45 430 8240 265346 15865
r = 3 1–5 13 158 3574 133268 346

Third, we write G − e for the subgraph with the edge e removed. Clearly, dπ(G − e, r) � dπ(G, r). Thus,
if dπ(G, r) < χf (G, r) and χf (G, r) = χf (G − e, r), then we have already dπ(G − e, r) < χf (G − e, r) and G
cannot be minimal. In order to avoid this contradiction, we need the following.

Condition 3. χf (G, r) 
= χf (G − e, r) for all edges e.
Note that if r = r1, then this condition reduces to rχf (G) 
= rχf (G − e) and is independent of r. We can

further sharpen Condition 3 by assuming merely 
χf (G, r)� = 
χf (G − e, r)�, where 
x� denotes the least
integer not smaller than x. Then dπ(G, r) < χf (G, r) implies dπ(G − e, r) < 
χf (G − e, r)� and since
dπ(G − e, r) is an integer, this also implies dπ(G − e, r) < χf (G − e, r).

Condition 4. 
χf (G, r)� 
= 
χf (G − e, r)� for all edges e.
Finally, from equation (10) we have ϑ(G, r) � dπ(G, r) and since dπ(G, r) is an integer, we also have


ϑ(G, r)� � dπ(G, r). This implies our last condition.

Condition 5. 
ϑ(G, r)� < χf(G, r).
We apply these five conditions to all graphs with n = 9, 10, 11, 12 vertices and all graphs with n = 13

vertices and 23 or less edges. The resulting numbers of graphs are listed in table 1. First, all nonisomorphic
graphs are generated using the software package ‘nauty’ [27], where then all graphs violating condition 1 or
condition 2 are discarded. Subsequently, condition 3 is implemented and for the remaining graphs, ϑ(G),
χf (G), and mineχf (G − e) are computed, which then allows us to evaluate condition 4 and condition 5 for
r = r1 with r = 1, 2, 3.

For the computation of χf , we use a floating point solver for the corresponding linear program. On the
basis of the solution of the program, an exact fractional solution is guessed and then verified using the
strong duality of linear optimization. The Lovász number ϑ is computed by means of a floating point solver
for the corresponding semidefinite program. The dual and primal solutions are verified and the gap
between both is used to obtain a strict upper bound on the numerical error. This error is in practice of the
order of 10−10 or better for the vast majority of the graphs.

5.2. Numerical estimate of the dimension
If an exclusivity graph G has a rank-r PR with SIC, then, according to theorem 1 and the subsequent
discussion, there must be a rank-one PR of Gr in dimension d = 
χf (G, r)� − 1. At this point, we do not
further exploit the structure of the problem. We rather consider methods which allow us to verify or falsify
the existence of a rank-one PR in dimension d of an arbitrary graph G with n vertices.

If such a PR exists, then one can assign normalized vectors yk ∈ Cd to each vertex k ∈ V(G) such that
y†�yk = 0 for all edges [�, k] ∈ E(G). Collecting these vectors in the columns of a matrix Y, we obtain the
feasibility problem

find X = Y †Y with Y ∈ Cd×n,

subject to Xk,k = 1 for all j ∈ V(G),

X�,k = 0 for all [�, k] ∈ E(G).

(14)

This problem is equivalent to the optimization problem

minimize
∑

k∈V(G)

(Xk,k − 1)2 +
∑

[�,k]∈E(G)

X2
�,k,

with X = Y†Y and Y ∈ Cd×n,

(15)

6
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where the problem in equation (14) is feasible if and only if the problem in equation (15) yields zero. The
optimization can be executed using a standard algorithm like the conjugate-gradient method [28]. However,
the obtained value can be from a local minimum and depend on the initial value used in the optimization.
Hence obtaining a value greater than zero does not conclusively exclude the existence of a PR, but this
problem can be mitigated by performing the minimization for many different initial values.

Instead of employing one of the standard optimization algorithms, we use a faster method that allows us
to repeat the minimization with many different initial values. For this we denote by L the set of all
(n × n)-matrices X which satisfy the constraints of the problem in equation (14) and we write R for the set
of all matrices X for which X = Y†Y for some (d × n)-matrix Y. In an alternating optimization, we generate
a sequence (X( j))j from an initial value X(0) such that

X(2i+1) = arg min
R

{‖R − X(2i)‖|R ∈ R},

X(2i) = arg min
L
{‖L − X(2i−1)‖|L ∈ L}.

(16)

By construction, δj = ‖ X(j) − X(j−1) ‖ is a nonincreasing sequence and hence δ∞ = limj→∞ δj exists.
Consequently, for the existence of a PR it is sufficient if δ∞ = 0 because then X(∞) = limj→∞ X(j) exists with
X(∞) ∈ R ∩ L. In appendix F we show that this alternating optimization can be implemented efficiently for
the Frobenius norm ‖M‖F =

∑
i,j |Mi,j|2.

We run the optimization with 100 randomly chosen initial values X(0) for each of the remaining graphs
with corresponding rank r. We stop the optimization if δk−2/δk < 1 + 10−5. For all graphs and all
repetitions the optimization converges with a final value of δk in the order of 1. In comparison, we test the
algorithm for many graphs with known dπ where the graphs have up to 40 vertices. In all these cases, the
algorithm converges to δk in the order of 10−9, which gives us confidence that the alternating optimization
is reliable. In summary this constitutes strong numerical evidence that none of the remaining graphs with
corresponding rank has a PR with SIC.

6. Conclusion and discussion

The search for a primitive entity of contextuality has not yet reached a conclusion despite of decades of
research on this topic. Of course, one can argue that the pentagon scenario by Klyachko et al [29] does
provide a provably minimal scenario. But the drawback of the pentagon scenario is that it is
state-dependent. That is, contextuality is here a feature of both, the state and the measurements. In contrast,
in the state-independent approach, contextuality is a feature exclusively of the measurements and we argue
that a primitive entity of contextuality should embrace state-independence. Among the known SIC
scenarios, the one by Yu and Oh [12] is minimal and this has also been proved rigorously for the case where
all measurement outcomes are represented by rank-one projectors.

As we pointed out here, there is no guarantee that the actual minimal scenario will also be of rank one:
we showed that a scenario by Toh [18]—albeit far from minimal—requires projectors of rank two. This
motivated our search for the minimal SIC scenario for the case of nonunit rank. Due to theorem 3, we can
exclude the case where the exclusivity graph has 8 or less vertices. For the remaining cases of 9 to 12 vertices,
we also obtain a negative result, however, under the restriction that the PR is uniformly of rank two or
uniformly of rank three. A key to this result is a fast and empirically reliable numerical method to find or
exclude projective representations of a graph, which might be also a useful method for related problems in
graph theory.

Curiously, there is no simple argument that shows that the scenario by Yu and Oh is minimal, even
when assuming unit rank. This in contrast to the case of state-dependent contextuality, where the reason
that the pentagon scenario is the simplest scenario beautifully has the origin in graph theory [21]. For the
future it will be interesting to develop additional methods for SIC, in particular for the case of
heterogeneous rank. It will be particularly interesting whether this problem can be solved using more
methods from graph theory, whether it can be solved using new numerical methods, or whether the
problem turns out to be genuinely hard to decide.
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Appendix A. Elements from graph theory

A graph G is a collection of vertices V(G) connected by edges E(G). Each edge [i, j] ∈ is an unordered pair
of the vertices i 
= j ∈ V(G). Conversely, for a given vertex set V and edge set E the pair (V, E) forms the
graph denoted by G(V, E). For a given subset W of V and subset F of E, the graph G(W, F) is a subgraph of
G(V, E). In the case where

F = E ∩ {[i, j]}i,j∈W , (A1)

G(W, F) is a subgraph of G(V, E) induced by the subset W. In the case where

F = {[it , it+1]}t, (A2)

G(W, F) is a path in G(V, E). A graph G(V, E) is connected if any two vertices can be connected by a path. A
subset of vertices C is a clique, if in the induced subgraph all vertices are mutually connected by an edge. A
clique C is maximal, if any strict superset of C is not clique. The complement graph Ḡ of G has an edge [i, j]
if and only if i 
= j and [i, j] is not an edge in G. A clique in Ḡ is an independent set of G. Independent sets
are also called stable sets. If any strict superset of W is not an independent set, then W is a maximally
independent set.

Now, the index vector of a given subset of vertices W is defined as

ΔW = [δW (k)]k∈V , (A3)

where δW(k) = 1 if k ∈ W and δW(k) = 0 otherwise. Let I denote the set of all independent sets of graph G,
then the stable set polytope STAB(G) is the convex hull of the set {ΔW |W ∈ I}.

A collection of real vectors (vi)i∈V is an orthogonal representation of G, provided that [i, j] /∈ E implies
vi · vj = 0. The Lovász theta body of a given graph G can be defined as [30]

TH(G) = {[(s · vi)
2]i∈V |(vi)i∈V is an OR of G}, (A4)

where s = (1, 0, . . . , 0). We also use the following, equivalent definition of TH(G). A collection of projectors
(Πk)k∈V (over a complex Hilbert space) is a PR of G if ΠiΠj = 0 whenever [i, j] ∈ E(G). Then, one can also
write [21]

TH(G) = {[tr(ρΠi)]i∈V |(Πi)i∈V is a PR of G, tr(ρ) = 1, ρ � 0}. (A5)

Note that in the definition, the projectors might be of any rank.
For a vector r of nonnegative real numbers,

α(G, r) = max
x

{r · x|x ∈ STAB(G)} (A6)

is the weighted independence number [30] and the weighted Lovász number is given [31] by

ϑ(G, r) = max
x

{r · x|x ∈ TH(G)}. (A7)

For convenience, we write ϑ(G, r) = ϑ(G, r).
The weighted chromatic number χ(G, r) can be defined as [25]

min
(cI )I∈I

∑
I∈I

cI ,

such that
∑
I�i

cI � ri, for all i ∈ V ,
(A8)

where cI are nonnegative integers. Equivalently, if C = χ(G, r), then there exists an r-coloring of G with C
colors, that is, C is the minimal number of colors such that rk colors are assigned to each vertex k and two
vertices i and j do not share a common color if they are connected.

The weighted fractional chromatic number χf (G, r) is a relaxation of the integer program in

8
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equation (A8) to a linear program [25]

min
(xI )I∈I

∑
I∈I

xI ,

such that
∑
I�i

xI � ri, for all i ∈ V ,
(A9)

where xI are now nonnegative real numbers. Being a linear program with rational coefficients, all xI can be
chosen to be rational numbers and hence one can find a b ∈ N such that all bxI are integer. This yields the
relation

χf (G, r) = min
b∈N

χ(G, br)

b
. (A10)

Finally, we use dπ(G, r) as defined in the main text, that is, dπ(G, r) is the minimal dimension admitting
a rank-r PR. We also omit the weights r for the functions dπ , χf , and ϑ, if r = 1. We now show the known
relation [23] ϑ(G) � dπ(G), which is extended to the case of r = 1 in equation (10) in the main text.

Lemma 6. ϑ(G) � dπ(G)

Proof. For a given d-dimensional rank-1 PR (Πk)k of G, a d2-dimensional rank-1 PR (Pk)k of G can be
constructed as

Pk = Π∗
k ⊗Πk, (A11)

where complex conjugation is with respect to some arbitrary, but fixed orthonormal basis |1〉, |2〉, . . . , |d〉.
Using Ψ =

∑
j,l |jj〉〈ll|, we have tr(ΨPk) = 1 and tr(Ψ) = d.

We consider now an arbitrary rank-1 PR (Qk)k of G together with an arbitrary density operator ρ acting
on the same Hilbert space as the PR. Then (Pi ⊗ Qj)i,j is a PR of G ⊗ G and (i, i) is connected with ( j, j)
either within G or within G, for any two vertices i 
= j. Here G ⊗ K denotes the graph with vertices
V(G) × V(K) and where [(v,w), (v′,w′)] is an edge, if [v, v′] or [w,w′] is an edge.

Therefore,
∑

kPk ⊗ Qk � 𝟙 and consequently,

d = tr(Ψ⊗ ρ) �
∑

k

tr([Ψ⊗ ρ][Pk ⊗ Qk]) =
∑

k

tr(ρQk). (A12)

By virtue of equation (A5) we obtain
∑

xi � d for all x ∈ TH(G), which then yields the desired inequality
due to equation (A7). �

The disjoint union G = G1 ∪ G2 of two graphs consists of the disjoint union of the vertices,
V(G) = V(G1) � V(G2), and [i, j] is an edge in G if it is an edge in either G1 or G2. For condition 1 in
section 5.1 we use the following observation.

Lemma 7. If G =
⋃

i Gi, then dπ(G, r) = maxidπ(Gi, ri) and χf(G, r) = maxiχf(Gi, ri), where ri is the part of
r for Gi.

Proof. By definition, dπ(G, r) � maxi dπ(Gi, ri). Conversely, if d = maxi dπ(Gi, ri) then we can find a
d-dimensional rank-ri PR for each Gi. Since the subgraphs are mutually disjoined, these PRs jointly form
already a d-dimensional rank-r PR of G. Thus d � dπ(G, r).

For the fractional chromatic number, one first observes that Gr =
⋃

iG
ri
i . Hence the assertion reduces to

χf(
⋃

iG
ri
i ) = maxi χf(Gri

i ), which is a well-known relation for disjoint unions of graphs [32]. �
The join G = G1 + G2 of two graphs is similar to the disjoint union, however with an additional edge

between any two vertices [i, j] if i ∈ V(G1) and j ∈ V(G2). For condition 2 in section 5.1 we use then the
following observation.

Lemma 8. If G =
∑

i Gi, then dπ(G, r) =
∑

i dπ(Gi, ri) and χf(G, r) =
∑

i χf(Gi, ri).

Proof. For given di-dimensional rank-ri PRs (Πj)j∈V(Gi) of Gi, we define

Pj,i =

(⊕
k<i

Ok

)
⊕Πj ⊕

(⊕
k>i

Odk

)
, (A13)

where j ∈ Gi and Ok is the zero-operator acting on the space of the PR of Gk. This construction achieves
that ((Pj,i)j∈V(Gi))i is a (

∑
i di)-dimensional rank-r PR of G and therefore dπ(G, r) �

∑
i dπ(Gi, ri) holds.

Conversely, from a given d-dimensional rank-r PR of G, we can deduce a di-dimensional rank-ri PR of each
Gi, where di is the dimension of the subspace Si where (Πj)j∈Gi acts nontrivially. Since each of subspace Si is
orthogonal to the other subspaces Sj, we obtain d �

∑
i di �

∑
i dπ(Gi, ri).
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For the fractional chromatic number, we note that Gr =
∑

iG
ri
i and since χf is additive under the join of

graphs [32], the assertion follows. �

Appendix B. GToh has no rank-one projective representation

It can be verified numerically that there is no four-dimensional rank-1 PR of GToh with our numerical
methods in appendix F. Here, we give an analytical proof with the help of the computer algebra system
Mathematica.

Since each (row) vector v corresponds to a rank-1 projector P(v) = v†v/|v|2, we can use vectors instead
of projectors in the case of rank-1 PR. Also, two non-zero vectors v1 and v2 are called equal if
P(v1) = P(v2). For three independent vectors v1, v2, v3 in the four-dimensional Hilbert space, from
Cramer’s rule we know that their common orthogonal vector is proportional to
Λ(v1, v2, v3) = (λ1,λ2,λ3,λ4)∗, with vi = {vi,1, vi,2, vi,3, vi,4},

λi = (−1)i

∣∣∣∣∣∣
v1,i+1 v1,i+2 v1,i+3

v2,i+1 v2,i+2 v2,i+3

v3,i+1 v3,i+2 v3,i+3

∣∣∣∣∣∣ , (B1)

where the sum i + j is modulo 4. The proof that there is no 4-dimensional rank-1 SIC set for G30 can be
divided in two cases.

Case 1: Let {vi}i∈V(G30) be a four-dimensional rank-1 PR. We first consider the case where

vi 
= vj for (i, j) ∈ {(5, 21), (4, 24), (14, 23), (3, 10), (3, 22), (4, 22)}. (B2)

We can have the following process of parametrization in the basis of {v28, v14, v1, v22}:

v28 = (1, 0, 0, 0); v14 = (0, 1, 0, 0); v1 = (0, 0, 1, 0); v22 = (0, 0, 0, 1); (B3)

v2 = (cos x1, sin x1, 0, 0); v13 = (0, 0, cos x2, eiθ1 sin x2); (B4)

v17 = (− sin x1 cos x3, cos x1 cos x3, eiθ2 sin x3, 0); (B5)

v29 = (− sin x1 sin x3, cos x1 sin x3,−eiθ2 cos x3, 0); (B6)

v20 = (cos x4 cos x1, cos x4 sin x1, 0, sin x4); (B7)

v3 = (− sin x1 cos x5, cos x1 cos x5, 0, eiθ3 sin x5); (B8)

v4 = (− sin x1 sin x5, cos x1 sin x5, 0,−eiθ3 cos x5). (B9)

We claim that v3 is not on the plane spanned by v20, v29, otherwise v5⊥v3. Thus, v5 = v21 since they are
orthogonal to v3, v6, v24 in the four-dimensional space. This is conflicted with the assumption in
equation (B2). Hence, we get v24 = Λ(v3, v20, v29), which further leads to v5 = Λ(v20, v24, v29). Note that
v4⊥v3, v4⊥v21, hence v4 is on the plane spanned by v6, v24. Since v4 
= v24, we get
v6 = (v24v†24)v4 − (v4v†24)v24 and hence v21 = Λ(v3, v6, v24). Since v14 
= v23, we have that
v7 = Λ(v5, v6, v14), v8 = Λ(v5, v6, v7), and v23 = Λ(v8, v13, v28). Since v3 
= v10, we have that
v9 = Λ(v3, v7, v23), v27 = Λ(v7, v9, v23), and v10 = Λ(v4, v21, v27).

For the following proof, we make use of the computer algebra system Mathematica. Since v4⊥v5, direct
computation shows that sin(2x5)sin(x3 − x4)sin(x3 + x4) = 0. As sin(2x5) = 0 will result in either v3 = v22

or v4 = v22, which conflicts with the assumption in equation (B2), we have that x3 = ±x4 modπ. Because
of the freedom of choosing θ2, we can, without loss of generality, assume that x3 = x4. Then |v8|2 > 0
implies that sin x4 cos x4 
= 0. Further, v8⊥v28 implies that cos2 x1 = e2iθ3 sin2 x1, i.e., θ3 = 0 mod π and
x1 = ±π/4 mod π. Without loss of generality, we can assume that x1 = π/4. Then |v8|2 > 0 also implies
that sin(x4 + x5) 
= 0. Since v7⊥v23, v8⊥v13, we can find that cos x2 + ei(θ1+θ2) sin x2 = 0. Without loss of
generality, we can assume x2 = −π/4, θ1 = −θ2. All the above arguments result in that

v8v†
10 = −eiθ2 sin10

4 cos29
4 sin5(x4 + x5)/

√
2 
= 0, (B10)

which conflicts with the exclusivity relations. Thus, vi = vj should hold for at least one pair of
(i, j) ∈ {(5, 21), (4, 24), (14, 23), (3, 10), (3, 22), (4, 22)}.

Case 2: Let {a, b, c, d} be an orthogonal basis and x, y are another two vectors in the 4-dimensional
space, then

10
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Table 2. Kernaghan and Peres’ 40 rays, where the ray ri is represented by the vector in the ith column and 1̄ stands for −1.

1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1̄ 1̄ 0 0 0 0 1 1 1̄ 1̄ 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1̄ 1̄
0 0 1 0 0 0 0 0 1 1̄ 1 1̄ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1̄ 1̄ 0 0 0 0 0 0 0 0 1 1̄ 1 1̄
0 0 0 1 0 0 0 0 1 1̄ 1̄ 1 0 0 0 0 0 0 0 0 1 1 1̄ 1̄ 0 0 0 0 1 1 1̄ 1̄ 1 1̄ 1 1̄ 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1̄ 1 1̄ 0 0 0 0 1 1̄ 1 1̄ 0 0 0 0 0 0 0 0 1̄ 1 1 1̄
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1̄ 1̄ 1 1̄ 1̄ 1 0 0 0 0 0 0 0 0 1 1̄ 1 1̄ 1 1 1̄ 1̄ 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1̄ 1 1̄ 0 0 0 0 1 1̄ 1 1̄ 1 1̄ 1̄ 1 0 0 0 0 1̄ 1 1 1̄ 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1̄ 1̄ 1 0 0 0 0 1 1̄ 1̄ 1 0 0 0 0 1 1̄ 1̄ 1 0 0 0 0 1 1 1 1

(a) x ⊥ a, x ⊥ b, y ⊥ c, y ⊥ d implies that x ⊥ y;

(b) x ⊥ a, x ⊥ b, x ⊥ c implies that x = d;

(c) x ⊥ a, x ⊥ b, y ⊥ x, y ⊥ d implies that either x ⊥ c or y ⊥ c.

In the language of graph theory, if a given graph G has a rank-1 PR in dimension 4, then the graph
obtained from the following rules should also have rank-1 PR in dimension 4: let {a, b, c, d} be a clique and
x, y are two other vertices in G,

(a) if (x, a), (x, b), (y, c), (y, d) ∈ E(G), then add (x, y) to E(G);

(b) if (x, a), (x, b), (x, c) ∈ E(G), then combine x, d into one vertex whose neighbors is the union of the ones
of x and the ones of d;

(c) if (x, a), (x, b), (x, y), (y, d) ∈ E(G), then add either (y, c) or (x, c) to E(G).

When we apply these rules repeatedly to G30 after combining any pair in {(5, 21), (4, 24),
(14, 23), (3, 10), (3, 22), (4, 22)}, we either end up with a graph which contains a clique with size larger than
4 or a self-loop. This can be done automatically again with Mathematica. It is obvious that a clique of size
larger than 4 has no PR in 4-dimensional space and a self-loop has no rank-1 PR.

The rank-2 PR of G30 is made up of Kernaghan and Peres’ 40 rays as shown in table 2. Denote
P{a,b} := r†ara/|ra|2 + r†brb/|rb|2 where rarb = 0, then the vertices from v1 to v30 are represented by the
following rank-2 projectors:

P{1,7}, P{2,8}, P{3,4}, P{5,6}, P{9,12}, P{13,16}, P{14,10}, P{15,11},

P{19,20}, P{21,22}, P{23,17}, P{24,18}, P{28,27}, P{30,29}, P{31,25},

P{32,26}, P{33,35}, P{34,40}, P{36,37}, P{38,39}, P{1,2}, P{3,5}, P{9,13},

P{14,15}, P{19,21}, P{28,30}, P{23,24}, P{31,32}, P{34,36}, P{33,38}.

(B11)

Appendix C. Proof of theorem 1

The theorem consists of the following statements for any graph G, vertex weights r ∈ N|V(G)|, and m ∈ N.
(i) dπ(Gr, 1) = dπ(G, r), (ii) χf (Gr, 1) = χf (G, r), (iii) ϑ(Gr, 1) = ϑ(G, r), (iv) χf (G, mr) = mχf (G, r), and
(v) ϑ(G, mr) = mϑ(G, r).

(a) In the main text, above theorem 1, it was already shown, that any rank-one PR of Gr induces a rank-r
PR of G and vice versa. Hence the assertion follows.

(b) For the chromatic number we also have χ(Gr, 1) = χ(G, r), as it follows by an argument completely
analogous to the proof of dπ(Gr, 1) = dπ(G, r) (using colorings instead of projectors). This implies,

χf (G, r) = min
b∈N

χ(G, br)

b
= min

b∈N

χ(Gr, b)

b
= χf (Gr). (C1)

(c) By definition, the weighted Lovász number of G is calculated as

ϑ(G, r) = max
ρ,(Πk)k

∑
k∈V(G)

rktr(ρΠk), (C2)

where the maximum is taken over all states ρ and all PRs (Πk)k of G. However, if (Πk)k is a PR of G
then (Πk)k,i is a (r-fold degenerate) PR of Gr, due to

E(Gr) = {[(v, i), (w, j)]|[v,w] ∈ E(G)}. (C3)

11
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Figure 3. The independent set graph G for the five-cycle graph C5, where the vertex i represents the independent set {i} for
i = 1, 2, 3, 4, 5. The vertices 6, 7, 8, 9, 10 represent the independent sets {2, 5}, {1, 3}, {2, 4}, {3, 5}, {1, 4}, respectively.

Thus, ϑ(Gr) � ϑ(G, r). Conversely, let (Pk,i)k,i be any PR of Gr. For any state ρ we let P′
k = Pk,̂ı for ı̂ the

index that maximizes tr(ρPk,i). Then (P′
k)k is a PR of G and hence ϑ(G, r) � ϑ(Gr).

(d) This follows directly from the definition in equation (A9) by substituting xI by mxI and r by mr.

(e) This follows at once from the definition in equation (A7).

Appendix D. Proof of theorem 2

The theorem consists of three statements: (i) RANK(G) is convex, (ii) STAB(G) ⊆ RANK(G), and
(iii) RANK(G) ⊆ TH(G).

(a) For any vector p ∈ RANK(G) we can find a d-dimensional PR (Πk)k such that pk = tr(Πk)/d. With Π′
k

and d′ accordingly for p′ ∈ RANK(G), we let

Γk = (1𝟙d′ ⊗Πk) ⊕ (𝟙1d ⊗Π′
k), (D1)

where A ⊕ B denotes the block-diagonal matrix with blocks A and B. By construction, (Γk)k is a
(2dd′)-dimensional PR of G. Due to tr(Γk)/(2dd′) = (d′tr(Πk) + dtr(Π′

k))/(2dd′) = (pk + p′k)/2 we
have (p + p′)/2 ∈ RANK(G). Iterating this argument, any point qp + (1 − q)p′ with 0 � q � 1 is
arbitrarily close to some element of RANK(G) since any such q can be arbitrarily well approximated by
a fraction x/2n with x, n ∈ N. Hence RANK(G) is convex.

(b) Any extremal point a of STAB(G) is given by some independent set I of G via av = 1 if v ∈ I and
av = 0 else. Then (av11d)v is a d-dimensional PR with r = ad, that is, a ∈ RANK(G). Since STAB(G) is
the convex hull of its extremal points and RANK(G) is convex, the assertion follows.

(c) By definition, RANK(G) consists of all probability assignments involving the completely depolarized
state and TH(G) consists of all probability assignments for any quantum state. Since TH(G) is closed
[30], the assertion follows.

Appendix E. Proof of theorem 3

The proof of theorem 3 is based on an exhaustive test of all graphs with no more than 8 vertices. Since the
exact description of RANK(G) is difficult, we propose a linear relaxation of RANK(G) by using the
dimension relations of union and intersection of subspaces. Note that each rank-r projector corresponds to
an r-dimensional subspace. More explicitly, for a given d-dimensional projector Π, denote Πs as the
subspace spanned by all the vectors {Πv|∀v}. Then we know that

dim(Πs) = rank(Π) = tr(Π) � d,

dim Πs
1 + dim Πs

2 = dim(Πs
1 +Πs

2) + dim(Πs
1 ∩Πs

2),

dim(Πs
1 ∩Πs

2) � min {dim Πs
1, dim Πs

2},

(E1)

12



New J. Phys. 23 (2021) 043025 Z-P Xu et al

Figure 4. Odd cycle C2n+1.

where Πs
1 +Πs

2 = {v1 + v2|∀v1 ∈ Πs
1, v2 ∈ Πs

2} and Πs
1 ∩Πs

2 = {v|v ∈ Πs
1 and v ∈ Πs

2}. To take more
advantage of these relations, we consider the intersections of subspaces which are related to the projectors in
the PR. Denote ΠI = ∩i∈IΠi for a given set I of vertices in G and let Π∅ = 11. By definition, ΠI = 0 if I is
not an independent set. This implies that ΠI1 and ΠI2 are orthogonal if I1 ∪ I2 is no longer an independent
set for two given independent sets I1, I2.

For a given graph G, denote the set of all independent sets as I. Then define the corresponding
independent set graph G as the graph such that

V(G) = {vI}I∈I , E(G) = {[vI1 , vI2 ]| if I1 ∪ I2 /∈ I, I1, I2 ∈ I}. (E2)

For example, if G = C5 is the five-cycle graph, then the independent set graph G is as shown in figure 3.
Denote C as the set of all cliques in G. For a given clique C ∈ C, denote HC as the set of vertices in V(G)

which are connected to all vertices in C. That is,

HC := {vI |vI ∈ V(G), C ∪ {vI} ∈ C}. (E3)

Then we have the following constraints on the PRs of G:

Πs
I1
⊥Πs

I2
if vI1 , vI2 ∈ C ⇒

∑
vI∈C

dim(Πs
I) � 1, ∀C ∈ C,

Πs
I1
+Πs

I2
⊆ Πs

I1∩I2
⇒

∑
i=1,2

dim(Πs
Ii

) � dim(Πs
I1∩I2

) + dim(Πs
I1∪I2

), ∀I1, I2,

∀vI1 , vI2 ∈ HC ⇒ Πs
I1
+Πs

I2
⊥
∑
vI∈C

Πs
I ⇒

∑
vI∈C

dim(Πs
I) +

∑
i=1,2

dim(Πs
Ii

) � 1 + dim(Πs
I1∪I2

),

(E4)

where dim(Π) = dim(Π)/d.
By combining all the constraints in equation (E4) with the non-negativity constraints, we have a

polytope whose elements are possible values for {dim(Πs
I)}I∈I . If we only consider the possible values of

{dim(Π{vi})}vi∈V(G), then we have a linear relaxation of RANK(G). We denote such a linear relaxation as
LRANK(G). Note that we can add extra constraints that dim(ΠI) ∈ N, ∀I ∈ I if we only focus on a specific
dimension d.

For a given graph, we can calculate LRANK(G) as described above with computer programs. If
LRANK(G) = STAB(G), then we know that RANK(G) = STAB(G). As it turns out, LRANK(G) = STAB(G)
if G is a graph with no more than 8 vertices. Thus, we have proved theorem 3.

To have a closer look at this linear relaxation method, we illustrate it with odd cycles. It is known that
STAB(G) = TH(G) if G is perfect [23], which means that those graphs cannot be used to reveal quantum
contextuality. Recall that a graph is called perfect if all the induced subgraph of G are not odd cycles or odd
anti-cycles [33]. Hence, odd cycles and odd anti-cycles are basic in the study of quantum contextuality [34].
Note that STAB(G) is a polytope which can be determined by the set of its facets I(G, w) = α(G, w), where
w � 0. Each point outside of STAB(G) violates at least one of the tight inequalities, i.e., the inequalities
defining the facets. For a given facet I(G, w) = α(G, w), if the subgraph of {i|wi > 0} is a clique, then we
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say that this facet is trivial. This is because max I(G, w) = 1 in both the NCHV case and the quantum case.
Thus, we only need to consider the non-trivial tight inequalities one by one. For the odd cycle C2n+1 in
figure 4, the only non-trivial facet is [33]

2n+1∑
i=1

P(εi) � n = α(C2n+1). (E5)

If {Πi}2n+1
i=1 is a PR of the odd cycle C2n+1, then equation (E4) implies that

dim (Πs
1) + dim(Πs

2) + dim(Πs
2n+1) � 1 + dim(Πs

{2,2n+1}),

dim(Πs
Ik

) + dim(Πs
k+1) + dim(Πs

2n−k) � 1 + dim(Πs
Ik+1

), ∀ k = 1, . . . , n − 2,

dim(Πs
In−1

) + dim(Πs
n+1) + dim(Πs

n+2) � 1,

(E6)

where Ik = ∪k
j=1{2j, 2(n − j) + 3}. Equation (E6) implies that, for any PR {Πi}2n+1

i=1 ,

2n+1∑
i=1

dim (Πs
i) � n. (E7)

Thus, STAB(G) = RANK(G) if G is an odd cycle.

Appendix F. Implementation of the alternating optimization

Note that there exists a (d × n)-matrix Y such that R = Y †Y if and only if R � 0 and rank(R) � d. Then,
the fast implementation of the alternating optimization is based on the fact that the following two
optimizations can be evaluated analytically:

min
R

‖R − X‖F

s.t. R � 0, rank(R) � d,
(F1)

min
L

‖L − X‖F

s.t. Lkk = 1, Lk� = 0 ∀ [k, �] ∈ E(G),
(F2)

where the Frobenius norm is defined as ‖ M ‖F = tr(M†M) =
∑

k� |Mk�|2.
The first optimization can be solved using a semidefinite variant of the Eckart–Young–Mirsky theorem

[35], which states that for any n × n matrix M, the best rank-d (more precisely, rank no larger than d)
approximation with respect the Frobenius norm (that is, minrank(Md)�d‖Md − M‖F) is achieved by

Md = U diag(s1, s2, . . . , sd, 0, . . . , 0)V†, (F3)

where M = U diag(s1, s2, . . . , sn)V† is the singular value decomposition of M, and the singular values satisfy
that s1 � s2 � · · · � sn � 0. We mention that Md is not unique if sd is a degenerate singular value. Now, let
us consider the optimization in equation (F1). As X is Hermitian, it admits the decomposition
X = X+ − X−, where X+ = P+XP+ � 0, X− = −P−XP− � 0, and

P+ =
∑
λk�0

|ϕk〉〈ϕk|,

P− =
∑
λk<0

|ϕk〉〈ϕk|.
(F4)

Here λ1 � λ2 � · · · � λn are the eigenvalues of X, and |ϕi〉 are the corresponding eigenvectors.
Furthermore, let R+ = P+RP+, R− = P−RP−, and

X+
d =

∑
k�d,λk�0

λk|ϕk〉〈ϕk|, (F5)

then the optimization in equation F1 satisfies that

‖R − X‖F � ‖R+ + R− − X+ + X−‖F

= ‖R+ − X+‖F + ‖R− + X−‖F

14
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� ‖X+
d − X+‖F + ‖X−‖F, (F6)

where the first two lines follow from that ‖M‖F � ‖P+MP+ + P−MP−‖F = ‖P+MP+‖F + ‖P−MP−‖F,
and the last line follows from the Eckart–Young–Mirsky theorem as well as the facts that
rank(R+) = rank(P+RP+) � rank(R) � d and ‖M1 + M2‖F � ‖M1‖F when M1, M2 � 0. Moreover, one
can easily verify that all inequalities in equation (F6) are saturated when R = X+

d , because P+X+
d P+ = X+

d

and P−X+
d P− = 0. By noting that X+

d satisfies that X+
d � 0 and rank(X+

d ) � d, we get that the optimization
in equation (F1) is achieved when R = X+

d , which gives the solution∑
k�d+1,λk�0

λ2
k +

∑
λk<0

λ2
k . (F7)

The solution of the second optimization in equation (F2) follows directly from the definition of the
Frobenius norm ‖M‖F =

∑
k� |Mk�|2. One can easily verify that the minimization is achieved when

Lkk = 1, k = 1, 2, . . . , n

Lk� = 0, [k, �] ∈ E(G),

Lk� = Xk�, k 
= � and [k, �] /∈ E(G),

(F8)

and the solution is
d∑

k=1

(1 − Xkk)2 +
∑

[k,�]∈E(G)

|Xk�|2. (F9)
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