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Abstract 

Advances in medical imaging technologies have made possible minimally invasive surgery, which in 

comparison with conventional open surgery, leads to a faster procedure execution, reduced incisions sizes 

and bone exposure, and quicker recovery times. A particularly complex minimally invasive procedure is 

the insertion of pedicle screws in the lumbar spine, requiring accuracy grade A or B on the Gertzbein-

Robbins scale, i.e., below 2mm. A minimally invasive surgical procedure starts with pre-operative imaging 

acquisition, e.g., a 3D-computed tomography (CT-scan), usually taken outside of the operating room (OR) 

and used to diagnose and plan implant insertion. A significant challenge consists of bringing the planned 

data into the OR, i.e., registering pre-operative data with the current patient pose using ubiquitous 

imaging modalities found in operating rooms, e.g., a mobile X-ray device (C-arm). Different registration 

approaches can be used depending on the used modalities, the particular surgical procedure, and organ 

properties to be registered. 

This work discusses an intensity-based 2D/3D registration approach using pre-operative CT data and 2D 

X-ray images for minimally invasive spine surgery. The intensity-based 2D/3D registration procedure is 

mathematically characterized and decomposed in its essential elements. A cost function is created using 

the comparison of X-ray images and digitally reconstructed radiographs (DRR) created out of the CT data. 

An optimization algorithm is used to minimize the cost function and find the registration pose. The DRR 

rendering is found to be computationally expensive, being the registration bottleneck. A novel 

optimization based on parallel computing is applied to the DRR process. 

A set of reference frames supported by the navigation system is considered to transform the registration 

results into the OR. The C-arm reference frame is described using the pinhole camera model and found 

with a parametrization device. The parametrization device is developed based on a simulation analysis of 

accuracy vs. size and evaluated based on an innovative inverse registration approach. 

Additionally, two novel improvements to the registration procedure are made using deep-learning. X-ray 

images captured using image intensifier C-arms are prone to distortions due to the earth's magnetic field. 

The implemented undistortion uses an image warping process that requires a plate with steel fiducials 

installed on the C-arm image detector. Each fiducial in the resulted X-ray images is detected with a 

convolutional neural network (CNN). Previously to the 2D/3D registration execution, it is required to input 

an initial pose. A graphical approach for the manual selection of the initial pose is implemented, but also 

an automatic initial pose generator based on a CNN is developed. 

The combination of implemented procedures is a fully automated local 2D/3D registration with an average 

accuracy of 1.5 mm, measured with the navigation system. The result of the registrations can be 

transferred easily to a navigated robot system. 
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Zusammenfassung 

Die minimalinvasive Chirurgie durch Fortschritte in der medizinischen Bildgebung ermöglicht, die im 

Vergleich zur konventionellen offenen Chirurgie zu einer schnelleren Durchführung des Eingriffs, 

geringeren Schnittgrößen und Knochenfreilegung sowie schnelleren Erholungszeiten führt. Ein besonders 

komplexer minimalinvasiver Eingriff ist das Einsetzen von Pedikelschrauben in der Lendenwirbelsäule, der 

eine Genauigkeit der Klasse A oder B auf der Gertzbein-Robbins-Skala erfordert, d.h. unter 2 mm. Ein 

minimalinvasiver chirurgischer Eingriff beginnt mit der präoperativen Bildgebung, z. B. einer 3D-

Computertomographie (CT), die in der Regel außerhalb des Operationssaals (OP) aufgenommen und zur 

Diagnose und Planung der Posen für die einzusetzenden Pedikelschrauben verwendet wird. Eine große 

Herausforderung besteht darin, die geplanten Daten in den OP zu bringen, d. h. die präoperativen Daten 

mit der aktuellen Patientenposition zu registrieren, wobei allgegenwärtige Bildgebungsmodalitäten 

verwendet werden, die in Operationssälen zu finden sind, wie beispielsweise ein mobiles Röntgengerät 

(C-Bogen). Abhängig von den verwendeten Modalitäten, dem jeweiligen chirurgischen Verfahren und den 

zu registrierenden Organeigenschaften können unterschiedliche Registrierungsansätze verwendet 

werden. 

In dieser Arbeit wird ein intensitätsbasierter 2D/3D-Registrierungsansatz unter Verwendung von 

präoperativen CT-Daten und 2D-Röntgenbildern für die minimalinvasive Wirbelsäulenchirurgie diskutiert. 

Das intensitätsbasierte 2D/3D-Registrierungsverfahren wird mathematisch charakterisiert und in seine 

wesentlichen Elemente zerlegt. Aus dem Vergleich von Röntgenbildern und digital rekonstruierten 

Röntgenbildern (DRR), die aus den CT-Daten erstellt werden, wird eine Kostenfunktion erstellt. Ein 

Optimierungsalgorithmus wird verwendet, um die Kostenfunktion zu minimieren und die 

Registrierungspose zu finden. Es hat sich herausgestellt, dass das DRR-Rendering rechenintensiv ist und 

den Engpass bei der Registrierung darstellt. Eine neuartige Optimierung, die auf parallelem Rechnen 

basiert, wird auf den DRR-Prozess angewendet. 

Ein Satz von Koordinatensystemen, die vom Navigationssystem unterstützt werden, wird berücksichtigt, 

um die Registrierungsergebnisse in den OP zu transformieren. Das C-Bogen-Koordinatensystem wird mit 

Hilfe des Lochkameramodells beschrieben und mit einem Parametrisierungsvorrichtung gefunden. Die 

Parametrisierungsvorrichtung wird auf der Grundlage einer Simulationsanalyse von Genauigkeit vs. Größe 

entwickelt und auf der Basis eines innovativen inversen Registrierungsansatzes bewertet. 

Zusätzlich werden zwei neuartige Verbesserungen des Registrierungsverfahrens mittels Deep-Learning 

vorgenommen. Röntgenbilder, die mit Bildverstärker-C-Bögen aufgenommen werden, sind anfällig für 

Verzerrungen aufgrund des Erdmagnetfeldes. Die Bilder werden durch eine Bildentzerrung korrigiert, die 

eine Platte mit Stahl-Markern auf dem C-Bogen benötigt. Jeder Marker in den resultierenden 

Röntgenbildern wird mit einem Convolutional Neural Network (CNN) erkannt. Vor der Ausführung der 

2D/3D-Registrierung muss eine Ausgangsposition eingegeben werden. Es wird ein grafischer Ansatz für 
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die manuelle Auswahl der Anfangs-Pose implementiert, aber auch ein automatischer Generator für die 

Anfangs-Pose auf Basis eines CNN entwickelt. 

Die Kombination der implementierten Verfahren ist eine vollautomatische lokale 2D/3D-Registrierung mit 

einer durchschnittlichen Genauigkeit von 1,5 mm, gemessen mit dem Navigationssystem. Das Ergebnis 

der Registrierungen kann mit geringem Aufwand auf ein navigiertes Robotersystem übertragen werden. 
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Abbreviations 

AD    AdaDelta 

Adam    Adaptive Moment Estimation 

AG    AdaGrad 

AP    Anterior-Posterior 

ARB    Aim Rigid Body (RB attached to the patient) 

BN     Best Neighbors 

CHT    Circle Hough Transform 

CNN    Convolutional Neural Network 

CR     Correlation Ratio 

CRB    Calibration Rigid Body (RB attached to the C-arm parametrization device) 

CT-scan    Computed Tomography Scan 

CUDA     Compute Unified Device Architecture 

DICOM    Digital Imaging and Communications in Medicine 

DoF    Degrees of freedom 

DRB    Device Rigid Body (RB attached to the 2D/3D registration testing device) 

DRR    Digitally Reconstructed Radiograph 

FCNN    Fully Connected Neural Network 

GC     Gradient Correlation 

GD     Gradient Difference 

GRDE    Gradient Descent 

LAT    Lateral 

MI     Mutual Information 

MR    Magnetic Resonance 

NACC     Normalized Absolute Cross-Correlation 

NCC     Normalized Cross-Correlation 

NMI     Normalized Mutual Information 

OR    Operating Room 

OTS    Optical Tracking System (reference frame of the stereo system) 

PI     Pattern Intensity 

PRB    Pointer Rigid Body 

RB    Rigid Body 

ReLU    Rectified Linear Unit 

SAD     Sum of Absolute Differences 

SLNCC     Sum of Local Normalized Cross-Correlation 



Abbreviations 

XVIII 
 

SSD     Sum of Squared Differences 

TRB    Tool Rigid Body (RB attached to the robot end-effector) 

VWSLNC    Variance-Weighted Sum of Local Normalized Correlation 
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Mathematical Notation 

ℂ    The Set of Complex Numbers 

ℍ    Quaternion Space 

℘𝒏     Real Projective n-space 

ℝ    The Set of Real Numbers 

ℝ𝒏     Euclidean n-space 

ℤ    The Set of Integer Numbers 

𝐀     Matrix 𝐀 

𝒃⃗⃗      Column Vector 𝒃⃗⃗  

𝒄     Point 𝒄 ∈  ℝ𝑛 

𝒄̃     Point 𝒄̃  ∈  ℘𝑛 

𝑑    scalar 𝑑 

𝐪     Quaternion 𝐪 

𝐓 = {𝑎0, … , 𝑎𝑛}   Set 𝐓 of 𝑛 + 1 elements. It contains elements from 𝑎0 to 𝑎𝑛  

{A}    Reference frame A 

𝒑𝐵 
𝐴      Coordinate of {B} with respect to {A} 

𝑹𝐵 
𝐴      Rotation matrix from {B} with respect to {A} 

𝑻𝐵 
𝐴      Transformation matrix from {B} with respect to {A} 
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1. Introduction  

Insertion of pedicle screws is a medical procedure that requires cutting a significant segment of the 

patient's body to expose the bone structure in conventional open surgery. With the full sight of the bone 

segment, surgeons can proceed to insert pedicle screws. This procedure creates a trauma that reflects in 

several months of post-operative recovery. Advances in medical imaging technologies motivated the 

creation of minimally invasive surgery, which leads to a faster procedure execution, reduced incision size 

and bone exposure, and less traumatic and quicker recovery. 

A minimally invasive surgical procedure starts with pre-operative imaging acquisition, e.g., a 3D-computed 

tomography (CT-scan), usually taken outside of the operating room. Using the planning software, the 

patient is diagnosed, and the insertion of pedicle screws is planned. At the beginning of the surgical 

procedure, the registration stage is crucial to bringing pre-operative data into the intra-operative 

scenario. Conventional matching procedures like paired-point or surface matching procedures are 

unsuitable in the spine application because it is hardly possible to identify landmarks or surfaces accessible 

during the intervention. Image registration approaches do not have this drawback, but they require an 

imaging modality in the operating room. In a typical 2D/3D registration, intra-operative 2D imaging are 

acquired using a ubiquitous modality available in every operating room, a mobile X-ray unit, also known 

as C-arm. The 2D/3D registration result links the pre-operative data with the patient's position, whose 

reference frame is tracked with a navigation system. The screw insertion can be accomplished using 

pre-operative planned data together with the surgical robot system. 

In this work, an intensity-based 2D/3D registration procedure for lumbar spine surgery is implemented. 

This work focuses on evaluating and optimizing the typical elements of the registration procedure that 

maximize the pedicle screw accuracy in minimally invasive lumbar spine surgery. The evaluation criteria 

used during the implementation process lead to a unique 2D/3D registration approach. The implemented 

optimizations enable the registration to be carried out in few seconds. Among these optimizations, novel 

approaches for automating the registration procedure are developed. 

The implementation of the 2D/3D registration can be seen as part of two main components. The first 

component consists of the C-arm characterization, i.e., applying a C-arm mathematical model that links 

an X-ray image with the volume position in the 3D space. This characterization also finds the 

transformation of the C-arm coordinate system with a known reference frame. In the second component, 

the registration procedure must ensure a match between the 3D modality and the X-ray images. The result 

given for this stage provides the connection between the 3D and 2D modalities, i.e., the pre- and intra-

operative modalities. With the knowledge of the C-arm coordinate frame, the previous result is 

transformed into a coordinate frame system inside the operating theater.  
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The first part of this work elaborates on the C-arm mathematical model, the reference frames involved in 

the 2D/3D registration, and image undistortion from C-arms with image intensifier technology. The 

second part explains the 2D/3D registration process and the development of fundamental components 

such as image similarity measurements, optimization algorithms, and the digital reconstructed radiograph 

module. At the end of the second part, an experimental chapter shows the 2D/3D registration accuracy. 

The last section of this work discusses the improvements in the image undistortion process and the 

automatic selection of the initial pose for the 2D/3D registration process using deep-learning techniques.  
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2. Motivation to Evaluate and Optimize Registration Procedures for 

Minimally Invasive Spine Surgery with Navigated Surgical Robot 

Systems 

The incorporation of new technologies into the medical field has led some surgical interventions to be 

implemented as minimally invasive procedures. One of the first known minimally invasive procedures is 

the endoscopy, which allows the analysis of the body's interior with a small incision, e.g., laparoscopy, or 

even without any cut, e.g., colonoscopy. During the last decades, the incorporation of optical stereo vision 

systems (navigation systems) and surgical robots have increased the potential of minimally invasive 

surgery to insert pedicle screws in the spine accurately. The requirements that have to be fulfilled by the 

developed procedures to be incorporated into robotic systems are discussed at the end of this chapter. 

The consequences of using minimally invasive surgery and the registration process that is done, previously 

to the execution of the navigated surgical procedure, are explained in the following section. In the end, 

the task consists of developing a transformation matrix that allows converting a planned pose in the pre-

operative data, e.g., a pedicle screw pose, into a target pose for the navigated robot system. 

 

2.1. Considerations of Minimally Invasive Surgery with Navigated Surgical Robot 

Systems 

The use of minimally invasive surgery brings some advantages in comparison with open surgery 

interventions. From the patient's perspective, pain, hospital stay, and complication reduction are among 

the advantages of minimally invasive surgeries compared with open surgeries [1]. Surgeons also benefit 

from minimally invasive procedures as the amount of radiation they received is reduced [2]. 

On the other hand, some drawbacks arise from the inclusion of minimally invasive surgery; for example, 

the acquisition cost of a minimally invasive setup for an operating room is high [3]. Apart from that, some 

technical challenges from the implementation stand of view have to be considered for developing a 

minimally invasive surgery. They are split into image registration challenges and target requirements for 

the navigated surgical robot system. This division is considered because the planning software, which 

includes the registration process, and the navigated surgical robot are the two macro components of a 

minimally invasive surgery with navigated surgical robot systems. 
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2.2. Technical Challenges in Image Registration: Implementation and 

Optimization 

As the required modalities and the patient set up in a minimally invasive surgery is achieved once the 

medical procedure is already started, i.e., the patient is anesthetized, and some incisions are already done 

[4], the execution time of the registration is critical. That means the registration procedure has to be 

carried out as fast as possible. Depending on the taken approach, some registrations use iterative 

methodologies, which are computationally expensive. Some approaches report registration times of some 

minutes [5]. Though using modern hardware, such as top-notch CPUs, helps decrease the execution time 

of the registration, another paradigm like parallel computing, using GPUs, presents a better chance of 

reducing times to just a couple of seconds [6]. 

In the planning stage of the minimally invasive procedure, a medical modality, e.g., CT-scan, taken days 

before the surgery (pre-operative modality) can be used to define the locations of the implants [1]. There 

is no life risk for the patient at this stage, so the interaction with the planning software can be done 

without significant concern. The main challenge of the registration consists of bringing the planned data 

into the operating scenario using modalities inherent to the operating theater (intra-operative modality), 

e.g., mobile X-ray device. 

A technical challenge derived from the above paragraph can be described as minimizing the human 

intervention in importing pre-operative data to the operating scenario using intra-operative modalities. 

In other words, the autonomy of the registration procedure has to be as high as possible while assuring 

the registration accuracy. 

In open surgeries, where a navigation system is used for feedbacking the position and orientation of 

instruments (optically navigated surgery), surgeons can verify the accuracy of registered modalities using 

distinguishable features of exposed bones [7]. This accuracy assessment cannot be done in minimally 

invasive surgery. The quality of a registration cannot be evaluated per se, requiring external and indirect 

measurements to validate, e.g., start the medical procedure and use X-ray images to verify that the 

trajectories of the perforations go according to the plan. The implementation of a registration process has 

to be tested, such as it guarantees an accuracy below the expected tolerance, less than 2mm for spine 

implant positioning [1]. 

The implementation of the registration process for minimally invasive spine surgery introduces additional 

elements into the operating theater, e.g., optical tracking system, rigid bodies (RB) attached to the 

patient, calibration devices, and others. It is desired that the number of these elements and their 

interference with the surgical workflow is minimal. The introduction of new devices induces additional 

procedures on top of the standard medical protocols. It is necessary to develop a registration process that 

limits the number of new elements and adds as few additional steps as possible to the surgical workflow.  
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2.3. Target Requirements for Navigated Surgical Robot Systems 

This work is framed on the SIISpine project, which focuses on developing a robotic assistance system to 

support minimal invasive spine interventions with reduced radiation. The SIISpine project development is 

supported by the previously developed modular interactive computer-assisted surgery (modiCAS) project. 

Some contributions to the modiCAS project have been focused on developing a solution for an integrated 

system consisting of a navigation component and a robotic component, resulting in a so-called "navigated 

robot system." This navigated surgical robot system receives inputs like a conventional navigation system 

without a robot. The robot arm can be considered as a mechatronic extension of the navigation system. 

Due to the inherent characteristics of the modiCAS system, the robot arm is positioned in the pose sent 

to the navigation component. Using standard industrial robot arms, the achievable resolution and 

accuracy of this integral system are similar to the values achievable for the navigation component if used 

without a robot arm, i.e., they mainly depend on the accuracy of the used stereo camera and DRB design 

[8]. It means the registration results can be used with the pre-operative data and the navigation 

component to supply the robot system aim pose.  

The registration accuracy is found in this thesis using the navigation system without involving the robot 

system, i.e., to avoid the risk that the robot introduces some errors. In conclusion, although a surgical 

robot later uses the registration results, this work centers its attention on computing the transformation 

from pre-operative data into an aim pose for the navigated robot system and guaranteeing accurate 

registrations that leads to implant placement with grades A or B on the Gertzbein-Robbins scale, i.e., 

below 2mm [9]. 
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3. Scope and Objectives of the Evaluation and Optimization of 2D/3D 

Registration 

This thesis focuses on implementing a fully automatic intensity-based 2D/3D registration for lumbar 

spine using pre-operative CT-scans and intra-operative X-ray modalities. Some technical restrictions 

are introduced, such as limiting additional elements inside the operating theater, e.g., rigid bodies, 

fiducials on the patient, helping structures. These restrictions do not exclude the registration accuracy 

for lumbar spine surgery that guarantees implants with grades A or B on the Gertzbein Robbins scale. 

The main scope of this work can be systematically split into the following objectives: 

• Finding the mathematical procedure to perform the 2D/3D registration and transforming the 

results into a useful frame for a surgical robot system: This objective is developed with the 

combined outcome of sections 5.1 and 5.2. In section 5.1, reference frames involved in the 2D/3D 

are introduced, and the equation of the 2D/3D registration is deduced. The structure of the 2D/3D 

registration procedure is presented in section 5.2. The analysis of including a region of interest 

during the registration is developed in section 5.8. 

• Characterizing the intra-operative imaging device, i.e., mobile X-ray device (C-arm), and correcting 

and processing the obtained intra-operative images: X-ray images of image intensifier C-arms 

present distortions. The required elements to find the distortions and the undistortion approach 

are presented in section 5.3. The C-arm is characterized using the pinhole camera model; the 

implications, requirements, and results for this characterization are described in section 5.4. 

• Developing and selecting the fundamental components of the intensity-based  2D/3D registration 

process, e.g., cost function, optimization algorithms, and digitally reconstructed radiograph 

(DRR): The evaluation of cost functions and optimization algorithms for the 2D/3D registration is 

carried out in section 5.5, and an available DRR is evaluated in the first part of section 5.6. A 

graphical interface to select the initial seed for the optimization is developed in section 5.7. 

• Optimizing bottle-neck processes that restrict the registration accuracy and execution time: An 

improved and faster DRR using parallel computing is implemented in the last part of section 5.6. 

The X-ray imaging undistortion process is improved using deep-learning in section 7.1. An 

automatic initial pose generator for the 2D/3D registration is developed in section 7.2. 
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4. State of Art of Image Registration Approaches and Imaging 

Modalities 

4.1. Minimally Invasive Surgery 

The concept of minimally invasive surgery is adopted for medical interventions with reduced body damage 

employing techniques and technology that avoid open surgeries. Minimally invasive surgery offers several 

advantages for the patients, including less pain, less blood loss, shorter hospital stays, faster recovery, 

and fewer complications [1]. 

One of the very first developed minimally invasive surgery was the laparoscopy, which is done through a 

set of small incisions, using micro-cameras and tiny surgical instruments. This kind of technology still 

requires a specialist to operate the tools. Consequently, it is classified as non-robotic minimally invasive 

surgery. 

In the case of pedicle screw insertion in the spine, non-robotic minimally invasive surgery uses Kirscher 

wires (K-wires) and a continuous X-ray image, known as fluoroscopy, to guide the insertion [10]. Although 

this procedure has shown accuracies comparable to those of open spine surgery, it exposes the surgeons 

to high doses of radiation. When a robot can assist the insertion, the process is then classified as robotic 

minimally invasive surgery, bringing the additional advantage of no-radiation for the surgeon and fine 

movement of the end-tools [2]. 

Within robotic minimally invasive surgery, there are master-slave robots, and computer-assisted 

navigated robots. Minimally invasive surgery with a master-slave robot is the case when the physician 

entirely manipulates the robot. The most known system of this kind is the da Vinci surgical robotic system. 

This system improves the visual field, increases the surgeon's movement precision, and boosts the 

physician endurance in long surgeries [4]. This type of system has one general pitfall: the cost of the 

solution [3]. These systems also lack robot autonomy since the system behaves like a manipulator. In some 

applications like spine surgery, the robotic system is expected to play a more active role. These drawbacks 

are overcome by the computer-assisted navigated robots, which is the topic of section 4.3. 

 

4.2. Position Vectors, Rotation and Homogenous Transformations Matrices 

Before going any further with the concepts involved in the development of this work, it is essential to 

introduce the notations used in this work for position vectors, rotation matrices, quaternions, and affine 

transformations. 
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4.2.1. Position Vectors and Rotation Matrices 

Let {A} be a reference frame, and 𝒄 ∈ ℝ3 be a point. 𝒄 is described in {A} with the notation, 

𝒑𝑐 
𝐴  =  [

𝑥𝑐 
𝐴

𝑦𝑐 
𝐴

𝑧𝑐 
𝐴

] (1) 

which expresses 𝑐 as the position vector with cartesian coordinates [𝑥, 𝑦, 𝑧]𝑇 with respect to {A}. Figure 

4-1 illustrates the previous concept. 

 
Figure 4-1. Illustration of the position vector APc 

 

Let be {A} and {B} be two independent reference frames. The position of the frame {B} with respect to {A} 

is given by 𝒑𝐵 
𝐴 . The reference frame {B} is defined by three orthonormal vectors 𝒙̂𝐵 , 𝒚̂𝐵, 𝒛̂𝐵, which are 

known in {A}, i.e., 𝒙̂ 
𝐴

𝐵, 𝒚̂ 
𝐴

𝐵, 𝒛̂ 
𝐴

𝐵. See Figure 4-2. 

 
Figure 4-2. Illustration of the rotation ARB 

 

There three orthonormal vectors are used as the columns of a 3x3 matrix: 

 𝑹𝐵 
𝐴  =  [ 𝒙̂ 

𝐴
𝐵 𝒚̂ 

𝐴
𝐵 𝒛̂ 

𝐴
𝐵] (2) 

 

The matrix 𝑹𝐵 
𝐴  is known as a rotation matrix, which has the following properties: 

• A rotation matrix is an orthonormal matrix. It means each column vector is orthogonal with the others, 

the magnitude of each column vector is 1, and the rotation matrix determinant is 1. 
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• The rows of a rotation matrix, e.g., 𝑹𝐵 
𝐴 , give the three orthonormal vectors of {A} relative to {B}, i.e., 

𝒙̂ 
𝐵

𝐴, 𝒚̂ 
𝐵

𝐴, 𝒛̂ 
𝐵

𝐴. Therefore, the rotation of {A} related to {B} is found by transposing rows and columns, 

that is 𝑹𝐴 
𝐵  [11]. In other words, the inverse of a rotation matrix is equal to its transposed one: 

𝑹𝐴 
𝐵  = 𝑹 

𝐴
𝐵
−1  =  𝑹 

𝐴
𝐵
𝑇  =  [

𝒙̂ 
𝐴

𝐵
𝑇

𝒚̂ 
𝐴

𝐵
𝑇

𝒛̂ 
𝐴

𝐵
𝑇

]  (3) 

 
A set of fundamental rotation matrices describe the rotations around X-, Y- and Z-axis by a given angle. 

These matrices are known as basic rotation matrices and are defined as follows: 

𝑅𝑜𝑡{𝑥, 𝛼} = [
1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] (4) 

 

𝑅𝑜𝑡{𝑦, 𝛽} = [
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 1 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽
] (5) 

 

𝑅𝑜𝑡{𝑧, 𝛾} = [
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0
0 0 1

] (6) 

 

These equations produce right-hand rotations. In total, there are twelve possible combinations with those 

angles. As there are three rotational DoF in the 3D-space, a 3-DoF-rotation can be expressed as the 

product of three consecutive basic rotation matrices. Let the coordinate frame {A} be rotated around the 

Z-axis by an angle 𝛾, 𝑅𝑜𝑡{𝑧, 𝛾}, then in the resulting X’-axis by an angle 𝛼, 𝑅𝑜𝑡{𝑥′, 𝛼}, and a final rotation 

around the resulting Y’’-axis by an angle 𝛽, 𝑅𝑜𝑡{𝑦′′, 𝛽}. This chain of rotation can be seen in Figure 4-3. 

 

Figure 4-3. 𝑍 − 𝑋′ − 𝑌′′ rotation 

 

This chain of rotations is known as the 𝑍 − 𝑋′ − 𝑌′′ representation. In this case, the resulted reference 

frame is used for the next rotation, known as intrinsic rotations. There is another approach called extrinsic 

rotations, but it will not be discussed as they are not used to develop this work. The 𝑍 − 𝑋′ − 𝑌′′ rotation 

can be expressed mathematically as in (7). 
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    𝑹𝐵,𝑍𝑋𝑌 
𝐴 =  Rot{𝑧, 𝛾} ∙ Rot{𝑥′, 𝛼} ∙  Rot{𝑦′′, 𝛽}  

= [

𝑐𝑜𝑠𝛾 ∙ 𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛾 ∙ 𝑠𝑖𝑛𝛼 ∙ 𝑠𝑖𝑛𝛽 −𝑠𝑖𝑛𝛾 ∙ 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛾 ∙ 𝑠𝑖𝑛𝛽 + 𝑠𝑖𝑛𝛾 ∙ 𝑠𝑖𝑛𝛼 ∙ 𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛾 ∙ 𝑐𝑜𝑠𝛽 + 𝑐𝑜𝑠𝛾 ∙ 𝑠𝑖𝑛𝛼 ∙ 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛾 ∙ 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛾 ∙ 𝑠𝑖𝑛𝛽 − 𝑐𝑜𝑠𝛾 ∙ 𝑠𝑖𝑛𝛼 ∙ 𝑐𝑜𝑠𝛽

−𝑐𝑜𝑠𝛼 ∙ 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 ∙ 𝑐𝑜𝑠𝛽
] 

(7) 

 

For sake of clarification, the rotation matrix in (7) is called 𝑹𝐵,𝑍𝑋𝑌 
𝐴 . Later on, a rotation matrix, e.g., from 

frame {A} to {B}, will be named 𝑹𝐵 
𝐴  regardless the used representation for the rotation. 

 

4.2.2. 3D Affine Transformation Matrices 

Now let the relation between {A} and {B} be known, i.e., translation, 𝒑𝐵 
𝐴  , and orientation, 𝑹𝐵 

𝐴 . In this 

case, the point 𝒄 is described in {B}, that is 𝒑𝑐 
𝐵 . The before mentioned elements are shown in Figure 4-4. 

 

Figure 4-4. Transformation of the point c in {B}, BPc, to {A}, APc 

 

Mathematically, 𝒑𝑐 
𝐴  can be found by translating {A} by 𝒑𝐵 

𝐴 , then rotating {A} until it aligns with {B} using 

𝑹𝐵 
𝐴 . Finally, the point 𝒄 is found by knowing its position in {B}, 𝒑𝑐 

𝐵 . See equation (8). 

𝒑𝑐 
𝐴 = 𝒑𝐵 + 𝑹𝐵 ∙ 𝒑𝑐 

𝐵
 
𝐴

 
𝐴  (8) 

 

From (8), the transformation is simplified as, 

𝒑𝑐 
𝐴 = 𝑻𝐵 ∙ 𝒑𝐶 

𝐵
 
𝐴  (9) 

 

where 𝑻𝐵 
𝐴  is built out of 𝒑𝐵 

𝐴  and 𝑹𝐵 
𝐴 . The matrix 𝑻𝐵 

𝐴  is known as an affine transformation matrix, and 

it is also named as the pose of B (with respect to A). The affine transformation matrix, also referred to as 

the transformation matrix, is a 4x4 matrix. The last row of the transformation matrix is a constant [0 0 0 1] 

row vector. The structure of 𝑻𝐵 
𝐴  can be seen in equation (10). 

[
𝒑𝑐 
𝐴

 
1

] =  [
𝑹𝐵 
𝐴 𝒑𝐵 

𝐴

  
0 0 0 1

] [
𝒑𝑐 

𝐵

 
1

] 
(10) 

 

In case that 𝒑𝑐 
𝐵  is the position to be calculated using equation (8), it can be found that: 

𝒑𝑐 
𝐵  =  − 𝑹𝐴 ∙ 

𝐵 𝒑𝐵 
𝐴 + 𝑹𝐴 ∙ 

𝐵 𝒑𝑐 
𝐴  (11) 
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From (11), the transformation is simplified as: 

𝒑𝑐 
𝐵 = 𝑻𝐴 

𝐵 ∙ 𝒑𝑐 
𝐴  (12) 

 

The matrix 𝑻𝐴 
𝐵  can be made as equation (10) 

[
𝒑𝑐 

𝐵

 
1

] =  [
𝑹𝐴 

𝐵 − 𝑹𝐴 ∙ 
𝐵 𝒑𝐵 

𝐴

  
0 0 0 1

] [
𝒑𝑐 
𝐴

 
1

] 
(13) 

 

From (9) and (12), it can be said that 

𝑻𝐵 = 
𝐴  𝑻 

𝐵
𝐴
−1 (14) 

 

and from (10) and (13), it can be found that [11] 

𝑻 
𝐵

𝐴
−1 = [

𝑹 
𝐴

𝐵
−1 𝒑𝐴 

𝐵

  
0 0 0 1

] = [
𝑹𝐴 

𝐵 − 𝑹𝐴 ∙ 
𝐵 𝒑𝐵 

𝐴

  
0 0 0 1

] (15) 

 

4.2.3. Chain of Affine transformation matrices 

Let {A}, {B},…, {M}, {N} be a finite number of reference frames as depicted in Figure 4-5. The 

transformations 𝑻𝐵 
𝐴 ,…, 𝑻𝑁 

𝑀  and the point 𝒒  in {N} are known, 𝒑𝑞 
𝑁 . 

 
Figure 4-5. Transformation using a finite number of reference frames 

 

The point 𝒒 is desired to be known in {A}, 𝒑𝑞 
𝐴 . The mathematical development is done in equation (16) 

𝒑𝑞 
𝐴 = 𝑻𝐵 

𝐴 ⋯ 𝑻𝑁 
𝑀 ∙ 𝒑𝑞 

𝑁  (16) 

 

equation (16) can be further simplify as: 

𝒑𝑞 
𝐴 = 𝑻𝑁 

𝐴 ∙ 𝒑𝑞 
𝑁  (17) 

 

Where 𝑻N 
𝐴  is the product of the transformations ∏ 𝑻𝑖+1 

𝑖𝑁
𝑖=𝐴 . 

 

An important conclusion from (10) and (17) indicates that 𝒑𝑁 
𝐴  and 𝑹𝑁 

𝐴  are also known once 𝑻𝑁 
𝐴  is 

calculated. This result is used in several sections in chapter 5 when a transformation matrix is calculated, 
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e.g., 𝑻𝑁 
𝐴  , the position and the rotation from the initial to the final frame, e.g., 𝒑𝑁 

𝐴  and 𝑹𝑁 
𝐴 , are used in 

the following steps without further clarification. 

 

4.2.4. Quaternions 

Rotations in 3D using quaternions follow a different approach than Euler angles rotations. Instead of 

having a set of three subsequent intrinsic rotations, rotations with quaternions are done only by one 3D 

rotation. This single rotation uses one vector representing the rotation axis and one scalar as the rotation 

angle. The following mathematical formalisms are introduced to describe quaternions and their basic 

operations: 

 

Let ℍ be the quaternion space, which is defined as: 

ℍ =  {𝑎 + 𝑏𝒊̂ + 𝑐𝒋̂ + 𝑑𝒌̂ ;  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ  |  𝒊̂2 = 𝒋̂2 = 𝒌̂2 = 𝑖𝑗𝑘 = −1} (18) 

 

Let 𝐪𝜖ℍ be a quaternion defined as 

𝐪 = 𝑠 + 𝑣𝑥 𝒊̂ + 𝑣𝑦𝒋̂ + 𝑣𝑧𝒌̂ (19) 

 

𝐪, and generally, a quaternion, can be further grouped as a scalar and a vector 

𝐪 = (𝑠, 𝒗⃗⃗ ) (20) 

where 𝒗⃗⃗  =  𝑣𝑥 𝒊̂ + 𝑣𝑦𝒋̂ + 𝑣𝑧𝒌̂ 

 

The following relations are valid for the calculations with quaternions [11]: 

a) Let 𝐪1, 𝐪2, 𝐪3𝜖ℍ. The product of two quaternions results in a quaternion, i.e., 𝐪1 ∙ 𝐪2 = 𝐪3. The 

product is associative but not commutative, and it is defined as: 

𝐪3 = 𝐪1 ∙ 𝐪2 = (𝑠1𝑠2 − 𝒗⃗⃗ 1 ∙ 𝒗⃗⃗ 2,  𝑠1𝒗⃗⃗ 2  +  𝑠2𝒗⃗⃗ 1 + 𝒗⃗⃗ 1 × 𝒗⃗⃗ 2) (21) 

 

b) Let 𝐪, 𝐞 𝜖ℍ such as: 

𝐪 ∙ 𝐞 = 𝐞 ∙ 𝐪 = 𝐪,      𝐞 =  (1, 𝟎)   (22) 

 

c) Let 𝐪𝜖ℍ, then it exists an inverse quaternion 𝐪−1, such as:  

𝐪 ∙ 𝐪−1 = 𝐪−1 ∙ 𝐪 = 𝐞,       

𝐪−1 =
𝟏  

𝑠2 + 𝒗⃗⃗ 2
(𝑠, −𝒗⃗⃗ ) 

where 𝒗⃗⃗ 2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

(23) 

 

d) Let 𝐪𝜖ℍ be a unit quaternion, which has the following property: 
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𝑠2 + 𝒗⃗⃗ 2 = 1  (24) 

 

In a unit quaternion, the scalar, 𝑠, describes the rotational angle, and the vector, 𝒗⃗⃗ , describes the 

rotational normal axis 𝒏̂. 

𝐪 = (𝑠, 𝒗⃗⃗ ) = (𝑠, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) can be written as: 

𝐪 = [𝑐𝑜𝑠 (
𝜃

2
) , 𝑠𝑖𝑛 (

𝜃

2
) 𝒏̂] = [𝑐𝑜𝑠 (

𝜃

2
) , 𝑠𝑖𝑛 (

𝜃

2
)𝑛𝑥 , 𝑠𝑖𝑛 (

𝜃

2
)𝑛𝑦, 𝑠𝑖𝑛 (

𝜃

2
)𝑛𝑧] (25) 

where  𝑐𝑜𝑠 (
𝜃

2
) = 𝑠, 𝑠𝑖𝑛 (

𝜃

2
) 𝒏̂  =  𝒗⃗⃗  

 

Let 𝒖⃗⃗ , 𝒖⃗⃗ ′ 𝜖ℝ3 be vectors, 𝒏̂ 𝜖ℝ3 be a normal vector and 𝜃𝜖ℝ the angle around 𝒏̂ where 𝒖⃗⃗  will be rotated. 

The rotated vector 𝒖⃗⃗  is expressed as 𝒖⃗⃗ ′. The rotation can be seen in Figure 4-6 , and is mathematically 

expressed in equation (26). 

𝒖⃗⃗ ′ =  𝐪 ∙ 𝒖⃗⃗ ∙ 𝐪−𝟏  =  (𝑐𝑜𝑠 (
𝜃

2
) , 𝑠𝑖𝑛 (

𝜃

2
) 𝒏̂ ) ∙ (0, 𝒖⃗⃗ ) ∙ (𝑐𝑜𝑠 (

𝜃

2
) ,−𝑠𝑖𝑛 (

𝜃

2
) 𝒏̂ )  (26) 

 

 

Figure 4-6. Rotation using quaternions 

 

From (26), the rotation can be described as the product of the rotation matrix, 𝑹 ∈ ℝ3×3, and 𝒖⃗⃗ . 

𝒖⃗⃗ ′ =  𝑹 ∙ 𝒖⃗⃗  =  𝑅𝑜𝑡{𝒏̂, 𝜃} ∙ 𝒖⃗⃗  (27) 

 

The conversion from quaternion to rotation matrix can be found in equation (139) in appendix A.1. 

 

4.2.5. Gimbal lock 

Gimbal lock is the loss of one rotational DoF due to the parallel configuration of two axes as a result of 

the rotations using Euler angles, as expressed in (4), (5), and (6) [12]. The gimbal lock happens when in a 

selected rotation representation, e.g., 𝑍 − 𝑋′ − 𝑌′′, the second rotation angle equals 90 degrees, making 
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the rotations about the first and third axes collinear. As the rotations are applied in a fixed order, the 

subsequent rotations act on the axis where preceding rotations have been already applied [13]. An 

expression for the gimbal lock can be seen using the equation (7). The 𝑍 − 𝑋′ − 𝑌′′ representation creates 

a gimbal lock by replacing the values for the second rotation, 𝛼, by 90°: 

𝑹𝐵 
𝐴 = [

𝑐𝑜𝑠𝛾 ∙ 𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛾 ∙ 𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛾 ∙ 𝑠𝑖𝑛𝛽 + 𝑠𝑖𝑛𝛾 ∙ 𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛾 ∙ 𝑐𝑜𝑠𝛽 + 𝑐𝑜𝑠𝛾 ∙ 𝑠𝑖𝑛𝛽 0 𝑠𝑖𝑛𝛾 ∙ 𝑠𝑖𝑛𝛽 − 𝑐𝑜𝑠𝛾 ∙ 𝑐𝑜𝑠𝛽

0 1 0

] (28) 

 

In this case, gimbal lock affects the Y’’-axis rotation. It consists of some unreachable orientations around 

the Y’’-axis that would be done around Z-axis instead. 

The gimbal lock is an unavoidable problem while using Euler angles, but it can be faced with some known 

approaches. If the rotation around X′-axis is 90 degrees, but the rotation around other axes is not 90 

degrees, the rotation order can be changed, such as the non-90-degrees rotation is placed in second 

position, using one of the possible combinations from the Tait-Bryan angles [14]. Another solution is to 

limit the second rotation to be 90 degrees. In this case, when it is detected that the value for the second 

rotation is in the range 90°±0.1°, it is set to 89.9°. This approximation avoids the expression (28), but it 

does not bring an accurate result. A complete solution to the gimbal lock problem is given by the use of 

quaternions, see section 4.2.4. 

The results of this work are not flawed by the gimbal lock based on the following considerations. Equation 

(87) is the registration equation. Each transformation matrix in (87) does not include singularities. Some 

of these transformations come from the navigation system. The used surgical navigation system explained 

in section 4.3 gives the rotational part of the reported poses in quaternions, which are transformed to 

rotation matrices using equation (139) in appendix A.1. Another transformation comes from the digitally 

reconstructed radiograph (DRR) module. The DRR is implemented in section 5.6 and carries out its 

rotations using quaternions. The 𝑍 − 𝑋′ − 𝑌′′  representation defines the DRR rotation. The standard 

patient reference frame is depicted in Figure 4-20. It is physically not possible to have 90° in the X’-axis as 

the C-arm will crash with the patient long before it reaches 90°; therefore, no gimbal lock occurs. Finally, 

the transformation matrix obtained as the registration result is not converted back to Euler angles, 

meaning the result is not affected by the gimbal lock. 

 

4.3. Surgical Navigation Systems and Computer-Assisted Navigated Robots 

One modern tool used inside operating theaters is the surgical navigation system. This device returns the 

position and orientation (pose) of a particular tool with respect to a static reference frame. Different types 

of technologies are used to build a navigation system. There are mechanical, electromagnetic and, optical 

tracking systems. In this work, optical tracking systems are used. In essence, they are high-precision stereo 

cameras. Figure 4-7 shows the used navigation system, the Polaris Vega manufactured by NDI. 
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Figure 4-7. Surgical navigation system NDI Vega 

 

The static reference frame used as the coordinate system for the feedback poses is the camera reference 

frame. The objects of interest are points in the space that differ depending on the camera technology. 

Some manufacturers define a point as the intersection of a black and white checkered pattern. See Figure 

4-8 left side. In the NDI navigation system, a point of interest is the center of a sphere coated with 

retroflected paint. This paint has a high reflection coefficient for infrared (IR) light. The system has an 

array of IR LEDs. The system cameras are sensitive to the IR spectrum and are installed behind an IR filter 

to reduce disturbance created by other light frequencies. When there is a sphere in the scene, it can be 

spotted as a bright circle on the image. To calculate not only position but also orientation, a set of points 

is required. The camera can track particular tools with unique geometric arrangements of three or more 

points of interest called rigid bodies (RB). In an RB, the relative position among points remains constant. 

An example of an RB made of retroflected spheres can be seen on the right side of Figure 4-8. 

 

Figure 4-8. Example of rigid bodies (RB). On the left side, checkered-pattern RB. On the right, retroflected-sphere RB 

 

The camera can compute the pose of the RBs on the scene using a definition file. This definition contains 

the layout of the points and a coordinate system used to describe each point. Making use of this definition 

file, the tracking system can compute the transformation between its reference frame and the RBs. The 
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surgical navigation system reports the transformation of every loaded tool. A detailed explanation is given 

in section 5.1.1. A surgical navigation system can be used as a guide for the surgeon when using manual 

tools such as drill machines and reamers [15]. When the surgical navigation system is used not to guide a 

manual tool but a robot, the entire setup is classified as a computer-assisted navigated surgical robot 

system [16]. An RB is installed in one segment of the robot, commonly the last segment. The RB 

transformation with respect to the coordinate system of the robot tool is known. Another RB is attached 

to the patient's anatomy, close to where the surgical procedure will be carried out. This array of RBs allows 

the surgeon to use a planning-software to set an aiming pose for the robot tool, and the 

computer-assisted navigated robot is able to execute the procedure semi-automatically. Most modern 

systems include an additional linear guide rail parallel to the longest axis of the tool. The surgeon 

manipulates the movement on the linear guide rail. In other words, the robot holds the orientation and 

position of the tool, and the surgeon is in charge of inserting the tool into the patient. In this work, a six 

DoF robot from Adept Technology Inc is used. This robot has been adapted for spine surgery. The robot 

has a fine-tuning closed-motion control loop using the surgical navigation system. The robot aiming pose 

is given with respect to the navigation reference frame. Based on previous research, the robot guarantees 

repeatability similar to the navigation system precision, below 0.1mm [8]. See Figure 4-9. 

 

Figure 4-9. Adept robotic surgical arms used in this work 

 

It is worth clarifying that robot motion and control are beyond the scope of this work. The connection 

with the robot is limited to sending the aiming pose of the robot tool with respect to the patient's RB. On 

the other hand, finding the transformation of the patient's RB with respect to the pre-operative data is 

achieved through 2D to 3D registration, where all the efforts of this work are focused. 

The following section explains the quality of screw insertion in the medical field based on the 

Gertzbein-Robbins scale. 
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4.4. Pedicle Screw Acceptance and Accuracy Assessment 

The Gertzbein-Robbins scale evaluates the implant quality based on the screw lateral deviation compared 

with its pre-planned trajectory [9]. The pedicle screw deviation is known as breach, but it is also common 

to find the deviation under other names such as pedicle breach, screw breach, and cortical breach [17]. 

Since the implants are inserted through the pedicle until the vertebral body, canal encroachment must be 

avoided. See Figure 4-10.  

 

Figure 4-10. Lumbar vertebra components and canal encroachment clarification 

 

Pedicle breach is calculated on an X-ray image after the implant insertion. It uses the mean deviation of 

the implant at both entry and exit position. The inserted implant deviation is defined as the magnitude of 

the perpendicular segment to the inserted implant trajectory that intersects the planned implant 

trajectory. The error calculation can be seen in Figure 4-11 and mathematically formulated in (29). The 

longitudinal error is ignored in the Gertzbein-Robbins evaluation since the screw length error is not a 

predictor of canal encroachment [18]. 

 

Figure 4-11. Points to calculate the implant breach, and deviation definition using the planned position and the inserted screw 

 

𝐵𝑟𝑒𝑎𝑐ℎ =
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐴  +  𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐵

2
 (29) 

where A is the entry point and B is the exit point [19]. 
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An implant Grade A in the Gertzbein-Robbins scale indicates that the screw is inserted as planned, 0mm 

implant breach. Grade B indicates that the implant breach is less than 2mm. Grade C represents an implant 

breach <4mm; Grade D indicates a screw breach <6mm, and grade E in the Gertzbein-Robbins scale stands 

for a breach more than or equal to 6mm. Implants classified as Grade A and B are considered clinically 

acceptable while implants Grade C, D and E are subject to a risk of screw-related neurological 

complications [20]. One of the objectives of this work is to create a 2D/3D registration that leads to 

implant Grade A+B. It is shown in section 5.2.7 that the 2D to 3D registration cannot be evaluated directly. 

For this reason, using an implant as a measurement indirectly indicates the quality of the 2D to 3D 

registration. 

In the following section, the mobile X-ray unit is discussed. This device plays a vital role in the registration 

process as it gives visual feedback on the position of the patient within the operating theater. 

 

4.5. Mobile X-Ray Unit (C-Arm) 

C-arm devices are the most common imaging-modalities inside the operating theater, used as guiding 

tools for controlling and monitoring surgical procedures [21]. C-arms allow the physician to obtain X-ray 

images of the patient along different projection directions. To this end, the device structure can be rotated 

and translated [22]. Although there are some C-arms with the capability of generating 3D volumes, they 

are mainly used to produce 2D X-ray images. In short terms, a C-arm consists of a primary structure in “C” 

shape, an image intensifier, and an X-ray tube (X-ray source). These last two components are installed at 

opposite ends of the main C-structure. 

The image detector is the element that transduces the X-ray radiation into digital information. During the 

last decades, detectors have been improved to use less radiation, obtain better contrast, and offer higher 

image resolution. It is possible to discern between two technologies used in the detectors: X-ray image 

intensifiers and flat-panel detectors. Although both technologies create X-ray images, the results vary 

significantly between them. In Figure 4-12, it can be seen the change in the upper part of the C-arm 

depending on the technology. The left side of Figure 4-12 shows a C-arm with an image intensifier 

detector, and a C-arm with a flat-panel detector on the right side. From now on, X-ray image intensifiers 

will be referred as image intensifiers. 
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Figure 4-12. Mobile X-ray unit (C-Arm). Image intensifier on the left, flat-panel detector on the right 
Courtesy of Ziehm Imaging GmbH [23] 

 

4.5.1. Image Intensifier C-Arm 

With the first commercial X-ray devices, a fluoroscopist was in the middle of the X-ray path to see the 

projection on a calcium-tungstate screen [24]. In the middle of the 20th century, the X-ray image 

intensifier was developed to create brighter X-ray images, which could also be recorded for further 

analysis. An image intensifier can be seen as a vacuum tower of four essential elements: input layer, 

focusing lenses, accelerating anode, and output layer. In the input layer, the X-rays are absorbed by a 

curved phosphor layer that converts the rays into light. Then a photocathode absorbs this light and turns 

it into electrons. The electrons are accelerated throughout the vacuum and focused on the output layer. 

The former operations are done by the accelerating anode and the focusing lenses, which are a set of 

negatively charged plates that repel the electrons. On the output layer, another phosphor layer, with 

different compounds as the input layer, transforms the electrons into visible light, which is absorbed by a 

camera (image detector) that generates the image [25]. The structure of the image intensifier can be seen 

in Figure 4-13. 

 

Figure 4-13. Structure of an image intensifier 
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It is worth noting that the input layer is curved to guarantee that the electrons travel the same distance 

from the input layer to the output layer. However, this projection from electrons going out from a curved 

surface to a flat output layer creates a pincushion distortion [26]. Other inherent problems associated 

with electro-optics produce S-shaped and spiral distortions [27]. One of the most significant contributors 

to these distortions is the earth's magnetic field, which is variant and complex to predict [28]. Thus, it is 

hardly possible to find a map that generalizes the distortion of an image intensifier C-arm. Instead, a 

particular distortion calibration must be achieved for each X-ray [29]. After the invention of the Flat-panel 

detector C-arm, which is explained in the following section, the image intensifier C-arm became known as 

conventional C-arm. 

 

4.5.2. Flat-Panel Detector C-Arm 

The image-creation process in the image intensifier C-arm is divided into four elements, while in the flat 

panel detector can be seen as two main components. In the first step, the X-ray radiation enters through 

a scintillation layer, transforming the radiation into direct light towards an array of detector elements. 

Each of these detector elements can compute the X-ray radiation on its surface, and then transduce this 

value into a grayscale level. In other words, each detector element gives the value of a pixel of the final 

image. The number of detector elements on the array determines the size of the X-ray image [30]. The 

working principle of the flat-panel detector brings several advantages compared with the image intensifier 

C-arm. The X-ray images are intrinsically free of distortion, it requires lower ionic radiation to create an 

image, and the image-forming process requires less energy than an image intensifier. 

 

During the execution of this work, testing procedures and workflows were executed using an image 

intensifier C-arm. In some seldom trials, it was possible to access a flat-panel detector C-arm. Thus, this 

work considers the possibility of using an image for a C-arm with any technology. The procedures for 

C-arm parametrization (see section 5.4) and 2D to 3D registration (see section 5.1 and 5.2) expect X-ray 

images without distortion. When using images from a conventional C-arm, the X-ray images are processed 

by an undistortion method explained in chapter 5.3.  

 

4.5.3. Mathematical Model of the C-Arm 

As explained before, a C-arm is a mobile X-ray device. It can be seen as a camera with an image sensor 

sensitive to X-ray radiation. The C-arm requires an X-ray source, which is usually referred to as an X-ray 

tube. 

A camera can be defined as a mapping process between the 3D world and a 2D image. The most basic 

mathematical model of the camera is the pinhole camera model, mainly applied to charge-coupled device 
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(CCD) cameras [31]. However, some studies have found that X-ray and C-arm devices also satisfy the 

pinhole camera model [32] [33]. 

The pinhole camera model is based on the camera obscura device that was first used to take pictures [34]. 

It consists of two parallel screens, as can be seen in Figure 4-14. In the first screen, there is a pinhole, and 

through it, some rays pass and form an image on the second screen, which will be called the retinal plane. 

All the rays that form the image are coming from the pinhole. Therefore, this point is called the optical 

center (𝒄). The screen, where the optical center is located, is called the focal plane, and the distance f 

from the retinal plate to the optical center, is called the focal length of the optical system. 

 

Figure 4-14. Pinhole camera model 

 

The projection from a perpendicular ray from 𝒄 to the retinal plane can be seen in Figure 4-15 as the point 

𝒄𝑟 . In an ideal case, the point 𝒄𝑟  and the image origin are aligned. In the general case, there is a 

displacement, and the point 𝒄𝑟 has a coordinate (𝑢0, 𝑣0) with respect to the image origin. 

 

Figure 4-15. Optical Line, and image origin of the pinhole camera model 

 

Let the origin of a Euclidian coordinate system be centered on the optical center (point 𝒄), and the 

equation 𝑧 = 𝑓 defines the retinal plane. A point 𝒙0 = (𝑥, 𝑦, 𝑧)
𝑇 can be projected into the retinal plane 

by a ray going through the optical center, as depicted in Figure 4-16.  
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Figure 4-16. Projection of Point x0 ϵ ℝ3 ⟶ xp ϵ ℝ2 

 

Using similar triangles, the mapping from 𝒙0 ∈ ℝ
3 ⟶ 𝒙𝑝 ∈ ℝ

2  is computed as 

(𝑥, 𝑦, 𝑧)𝑇 ⟶ (𝑓 ∙
𝑥

𝑧
, 𝑓 ∙

𝑦

𝑧
)
𝑇

. 

This projection can also be described using real projective coordinates, with the center of the reference 

frame in the optical center (point 𝒄), where a point in ℘4 is projected to ℘3. This homogenous reference 

frame is called the camera coordinate system {CCS}, and the optical center is called the camera coordinate 

origin. The Euclidian point 𝒙0 is represented in ℘4 as 𝒙̃0 = (𝑥, 𝑦, 𝑧, 1)
𝑇, and the projected ℝ2 point 𝒙𝑝 is 

represented in ℘3 as 𝒙̃𝑝 = (𝑓 ∙ 𝑥, 𝑓 ∙ 𝑦, 𝑧)
𝑇. 

The following transformation defines the projection ℘4 ⟶℘3: 

[
𝑓 ∙ 𝑥
 𝑓 ∙ 𝑦
𝑧

] =  [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑥
𝑦
𝑧
1

] (30) 

 

As stated before, often there is a displacement of the optical center with respect to the image center. In 

such case equation (30) can be expressed as follows: 

[
𝑓 ∙ 𝑥 + 𝑧 ∙ 𝑢0
𝑓 ∙ 𝑦 + 𝑧 ∙ 𝑣0

𝑧

] =  [
𝑓 0 𝑢0 0
0 𝑓 𝑣0 0
0 0 1 0

] [

𝑥
𝑦
𝑧
1

] (31) 

 

The matrix in (31) is known as the camera projection matrix 𝑷, and, thus, (31) can be rewritten as: 

𝒙̃𝑝 = 𝑷 ∙ 𝒙̃0 (32) 

 

Now, it is useful to include a transformation from the camera coordinate frame to a world coordinate 

system {WCS}. The camera coordinate frame will be then redefined, with respect to the new world 

coordinate frame. To do so, let define the rotation matrix 𝑹 and the translation vector 𝒄⃗ , which describe 
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the Euclidean transformation from {WCS} to {CCS}. A point 𝒙̃𝑤𝑐𝑠  ∈   ℘
4   in the {WCS} can be projected to 

𝒙̃𝑝𝑤𝑐𝑠
 ∈   ℘3 expanding the equation (32) as follows: 

𝒙̃𝑝𝑤𝑐𝑠
= [

𝑓 0 𝑢0 0
0 𝑓 𝑣0 0
0 0 1 0

] ∙ [
𝑹 −𝑹 ∙ 𝒄⃗ 

𝟎⃗⃗ 𝑇 1
] 𝒙̃𝑤𝑐𝑠 (33) 

 

From equation (33), it can be seen that the matrix 𝑷 can be updated to: 

𝑷 = [
𝑓 0 𝑢0 0
0 𝑓 𝑣0 0
0 0 1 0

] [ 𝑹 𝟎⃗⃗ 

𝟎⃗⃗ 𝑇 1
] [
𝑰 −𝒄⃗ 

𝟎⃗⃗ 𝑇 1
] (34) 

 

The matrix 𝑷  is then a composition of an upper-triangular matrix and a transformation matrix. The 

coefficients of the upper-triangular matrix depend only on the building properties of the camera, so it is 

called the intrinsic parameters matrix (𝑰𝒑). The second part depends on an external world coordinate, 

which can be changed. The second part is then called the extrinsic parameter matrix (𝑬𝒑). 

 

Extrinsic and intrinsic parameters 

When talking about cameras, the ℝ3 ⟶ℝ2 mapping decreases the space dimension and converts length 

units into pixel units. The unit conversion is done using factors. Let these factors be 𝑚𝑥 for the x-direction 

and 𝑚𝑦 for the y-direction. The focal length will be represented in pixel dimensions by 𝛼𝑥 and 𝛼𝑦, and the 

displacement of the image origin in pixel units is represented by (𝑢𝑥 , 𝑣𝑦). Making use of these factors the 

intrinsic matrix can be converted from length domain to pixel domain, obtaining: 

𝑰𝒑 = [
𝑓𝑚𝑥 0 𝑢0𝑚𝑥 0
0 𝑓𝑚𝑦 𝑣0𝑚𝑦 0

0 0 1 0

] =  [
𝛼𝑥 0 𝑢𝑥 0
0 𝛼𝑦 𝑣𝑦 0

0 0 1 0

] (35) 

 

There is still one parameter missing to create the general case of the intrinsic matrix, the skew parameter 

s. The main axes of the retinal coordinate system may be non-orthogonal, so the skew parameter (ideally 

zero) gives the cosine of the angle between the retinal axes. All in all, the intrinsic parameters would be 

written as: 

𝑰𝒑 = [
𝛼𝑥 𝑠 𝑢𝑥 0
0 𝛼𝑦 𝑣𝑦 0

0 0 1 0

] (36) 

 

On the other hand, the extrinsic parameters can be defined as a transformation matrix defining the new 

reference of the camera system: 

𝑬𝒑 = [
𝑹 −𝑹 ∙ 𝒄⃗ 

𝟎⃗⃗ 𝑇 1
] = [ 𝑹 𝟎⃗⃗ 

𝟎⃗⃗ 𝑇 1
] ∙ [

𝑰 −𝒄⃗ 

𝟎⃗⃗ 𝑇 1
] = 𝑹[𝑰 | −𝒄⃗ ] (37) 

 

Finally, the general form of the camera projection matrix is given in the following equation: 
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𝑷 = 𝑰𝒑 ∙ 𝑬𝒑 = [

𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34
0 0 0 1

] (38) 

 

Estimating the camera projection is carried out by a camera calibration procedure, which is the topic of 

section 4.5.4. 

 

Units of the intrinsic and extrinsic parameters 

Before going ahead with the C-arm calibration, the units of the parameters in the matrices would be 

clarified. Starting with the extrinsic matrix 𝑬𝒑, the elements of 𝑹 are dimensionless since it is a rotation 

matrix [35]. Each of the elements of the vector 𝒄⃗  are in mm. To find the dimensions of 𝑰𝒑, the following 

equality will be enforced 𝑷 =  𝑰𝒑, which happens naturally when 𝑬𝒑 is the identity matrix, i.e., no extrinsic 

rotation nor translation. 

From equation (32) and (36), it is possible to find that: 

[

𝑥𝑝
′

𝑦𝑝
′

𝑧𝑝
′

] =  [
𝛼𝑥 𝑠 𝑢𝑥 0
0 𝛼𝑦 𝑣𝑦 0

0 0 1 0

] [

𝑥
𝑦
𝑧
1

] (39) 

Developing every component of the projection, it can be seen that: 

𝑥𝑝
′ = 𝛼𝑥 ∙ 𝑥 + 𝑠 ∙ 𝑦 + 𝑢𝑥 ∙ 𝑧 

𝑦𝑝
′ = 𝛼𝑦 ∙ 𝑦 + 𝑣𝑦 ∙ 𝑧 

𝑧𝑝
′ =  𝑧 

(40) 

 

With 𝑥𝑝
 =

𝑥𝑝
′

𝑧𝑝
′   and 𝑦𝑝

 =
𝑦𝑝
′

𝑧𝑝
′  , the equation (40) reads 

𝑥𝑝 = 𝛼𝑥 ∙
𝑥

𝑧
+ 𝑠 ∙

𝑦

𝑧
+ 𝑢𝑥 

𝑦𝑝 = 𝛼𝑦 ∙
𝑦

𝑧
+ 𝑣𝑦 

(41) 

 

𝑥𝑝 and 𝑦𝑝 are points on the X-ray image, so their dimension is in pixels. The coordinates 𝑥, 𝑦,  and 𝑧 are in 

millimeters. From equation (41), it can be seen that 𝛼𝑥 , 𝛼𝑦 and s have pixel dimensions. From equation 

(35), it can be noticed that 𝛼𝑥 , 𝛼𝑦, 𝑢𝑥 and 𝑣𝑦 contain a 𝑚𝑥 and 𝑚𝑦 component. As this process transforms 

from millimeters to pixels, 𝑚𝑥 and 𝑚𝑦 are seen with pixel/mm units and can be physically associated with 

the detector pixel size. The quantities 𝑓, 𝑢0 and 𝑣0 are in accordance with the pinhole camera model in 

millimeters. 

 

4.5.4. C-Arm Calibration Using the Pinhole Camera Model 

This procedure has been studied previously in the literature [36] [37] [38]. In this work, the C-arm is 

calibrated using the direct linear transformation (DLT) algorithm [31]. It requires at least six 
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correspondences 𝒙̃𝑖 → 𝒙̃𝑝𝑖 ,i.e., having the homogenous coordinates of at least six points in ℘4 and their 

locations on the projected ℘3space. 

From equation (32) using the general form of 𝑷  in equation (38), it can be found that the point 

𝒙̃𝑖 =  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 , 1)
𝑇 has a projection 𝒙̃𝑝𝑖 = (𝑥𝑝𝑖 , 𝑦𝑝𝑖)

𝑇
 that follows the next relation: 

𝑥𝑝𝑖 = 
𝑝11 ∙ 𝑥𝑖 + 𝑝12 ∙ 𝑦𝑖 + 𝑝13 ∙ 𝑧𝑖 + 𝑝14
𝑝31∙𝑥𝑖 + 𝑝32 ∙ 𝑦𝑖 + 𝑝33∙𝑧𝑖 + 𝑝34

 

𝑦𝑝𝑖 = 
𝑝21 ∙ 𝑥𝑖 + 𝑝22 ∙ 𝑦𝑖 + 𝑝23 ∙ 𝑧𝑖 + 𝑝24
𝑝31 ∙ 𝑥𝑖 + 𝑝32 ∙ 𝑦𝑖 + 𝑝33 ∙ 𝑧𝑖 + 𝑝34

 

(42) 

 

Solving these relations for the 𝑷 coefficients, it can be found that: 

𝑝11 ∙ 𝑥𝑖 + 𝑝12 ∙ 𝑦𝑖 + 𝑝13 ∙ 𝑧𝑖 + 𝑝14 − 𝑝31 ∙ 𝑥𝑝𝑖 ∙ 𝑥𝑖 − 𝑝32 ∙ 𝑥𝑝𝑖 ∙ 𝑦𝑖 − 𝑝33 ∙ 𝑥𝑝𝑖 ∙ 𝑧𝑖 − 𝑥𝑝𝑖 ∙ 𝑝34 = 0 

𝑝21 ∙ 𝑥𝑖 + 𝑝22 ∙ 𝑦𝑖 + 𝑝23 ∙ 𝑧𝑖 + 𝑝24 − 𝑝31 ∙ 𝑦𝑝𝑖 ∙ 𝑥𝑖 − 𝑝32 ∙ 𝑦𝑝𝑖 ∙ 𝑦𝑖 − 𝑝33 ∙ 𝑦𝑝𝑖 ∙ 𝑧𝑖 − 𝑦𝑝𝑖 ∙ 𝑝34 =  0 
(43) 

 

So, for each pair of points, there are two equations with 12 unknowns; for this reason, it is required to 

have a minimum of six corresponding points. A homogenous system of equations of the form 𝑨 ∙ 𝒒⃗⃗ 𝒑 = 𝟎⃗⃗  

can be obtained with six points, but the general case with n points is described here. Using a least square 

solution of homogenous system of linear equations, see Appendix A.6, 𝒒⃗⃗ 𝒑  can be found as the unit 

singular vector of 𝑨, which corresponds to the smallest singular value [39]. 

The system 𝑨 ∙ 𝒒⃗⃗ 𝒑 = 𝟎⃗⃗  has the form: 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1 𝑦1 𝑧1 1 0 0 0 0 𝑥𝑝1𝑋1 𝑥𝑝1𝑌1 𝑥𝑝1𝑍1 𝑥𝑝1
0 0 0 0 𝑥1 𝑦1 𝑧1 1 𝑦𝑝1𝑋1 𝑦𝑝1𝑌1 𝑦𝑝1𝑍1 𝑦𝑝1
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛 1 0 0 0 0 𝑥𝑝𝑛𝑥𝑛 𝑥𝑝𝑛𝑦𝑛 𝑥𝑝𝑛𝑧𝑛 𝑥𝑝𝑛
0 0 0 0 𝑥𝑛 𝑦𝑛 𝑧𝑛 1 𝑦𝑝𝑛𝑥𝑛 𝑦𝑝𝑛𝑦𝑛 𝑦𝑝𝑛𝑧𝑛 𝑦𝑝𝑛]

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑝11
𝑝12
𝑝13
𝑝14
𝑝21
𝑝22
𝑝23
𝑝24
𝑝31
𝑝32
𝑝33
𝑝34]

 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 
 
 
 

 (44) 

 

𝒒⃗⃗ 𝒑 contains the 12 coefficients of the 𝑷 matrix. However, for this work, it is more useful to represent the 

decomposed matrix 𝑷 in its intrinsic and extrinsic parameters, i.e., matrix 𝑰𝒑 and 𝑬𝒑. This decomposition 

is done through an RQ-decomposition, which is the product of right-triangular matrix (𝑰𝒑 ) and an 

orthogonal matrix (𝑬𝒑). It is common to find in literature a QR-factorization method like Gram-Schmidt or 

Householder, but it does not apply for this case as the required factorization is the RQ. The process to 

calculate the RQ-decomposition is explained in Appendix A.4. 

The 12 non-zero coefficients of the matrix 𝑷 can be taken as a 3x4 matrix, that can be split in a 3x3 matrix 

called 𝑷𝑹 and a column vector 𝒑⃗⃗ 𝑪, such as: 
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𝑷 = [𝑷𝑹 𝒑⃗⃗ 𝑪 ] (45) 
 

From equation (45), the 𝑷𝑹 matrix is factorized using RQ-decomposition. The result is the product 𝑰𝒑 ∙ 𝑹. 

The translation of the extrinsic matrix, i.e., point 𝒄 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐)
𝑇  can be found solving the following 

equation: 

𝒄 =  −𝑷𝑹
−1 ∙ 𝒑⃗⃗ 𝑪 (46) 

 

The proof of equation (46) is out of the scope of this work. However, it can be illustrated with a 

geometrical interpretation [40]. Three non-zero rows form the 𝑷 matrix. The third row describes the focal 

plane, and the first and second rows describe two normal planes, whose intersect with the retinal plane 

forms its X- and Y- axes. The intersection of those two planes is the line, which goes from the optical center 

(point 𝒄) to the origin of the image in the retinal plane (point 𝒄0). The intersection of these three planes 

defines the optical center of the camera, which is on the focal plane, as Figure 4-17 shows. Equation (46) 

calculates the intersection of the three planes that compose the matrix 𝑷 and then finds the optical 

center. 

 

Figure 4-17. Geometrical Interpretation of the row vectors in matrix 𝑷 

 

4.6. Registration Procedures for Images from Different Modalities 

Imaging registration is a standard procedure not only in medical applications but also in robotics and 

computer vision. It consists of finding the transformation between the reference frames of two images 

regardless of their dimensionality, i.e., 2D or 3D [41]. The classification of the registration is based on nine 

criteria, and they are dimensionality, nature of registration basis, elasticity of the transformations, domain 

of the transformations, interaction, optimization procedure, modalities involved, subject, and object [42]. 

These criteria work as a guideline for implementing the most suitable registration procedure in a specific 

application. The primary goal of the imaging registration is finding the best alignment of one image against 
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the other. When using an iterative approached, the goal is achieved by comparing the improvement 

reached in the current stage with respect to a previous state. This process consists of three components: 

problem statement, registration model, and optimizer. The three registration components implicitly 

describe the former nine criteria [43]. The following classification criteria are elaborated in the next 

sections: image modalities, image dimensionality, feature basis, and processing level. They are worthy of 

elaborating as they are the basis for finding a suitable implementation for this work. 

 

4.6.1. Imaging Modalities for Generation of 2D and 3D Image Data 

In this section, an introduction to 2D and 3D modalities is presented. They are sorted by order of 

appearance in a surgical workflow, i.e., pre-operative modalities: image modalities taken before the 

surgery; and intra-operative modalities: image modalities taken during the surgical procedure. 

 

Pre-Operative Modalities 

Pre-operative modalities are medical imaging used for the diagnosis of patients and planning surgical 

interventions. Such modalities have a top-notch resolution and image quality and are commonly found 

outside of the operating room. Pre-operative modalities can also be defined as imaging modalities taken 

before the medical procedure but inside the operating room. For this work, the elapsed time and location 

of the modality acquisition are not included in the definition. Only imaging quality for the correct diagnosis 

and planning, and acquisition before the medical procedure are considered for the classification. 

Depending on the nature of the intervention, pre-operative modalities can be 2- or 3-dimensional (2D or 

3D) [44]. In spine surgery, 3D modalities are preferred. A 3D imaging modality of the spine structure gives 

a better overview of the complex vertebra anatomy, which offers better detail for diagnosis purposes. For 

planning, deviations on planned pedicle screws can compromise screw fixation, spinal nerves, and visceral 

organs during executing a non-invasive procedure due to lack of spatial information [45] [46]. For the 

reasons mentioned above, this work is concentrated only on 3D pre-operative modalities. 

 

Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging devices create a 3D image of a biological specimen. MRI devices rely on the 

principle of nuclear magnetic resonance, which establishes a relation of energy absorption of a specific 

nucleus within an electromagnetic field. Human beings are made up to 60% of water. MRI devices are 

calibrated with the hydrogen nuclei energy absorption taking advantage of the large amount of 𝐻2𝑂 

molecules in the human body [47]. Using strong magnetic fields, up to 8 teslas, MRI scanners can create 

3D images with high resolution and high contrast comprising different types of soft tissues [48]. As its 

working principle is based on electromagnetism, the subject is not exposed to ionizing radiation during 
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data acquisition [49]. The ability to generate high-quality images without using ionizing radiation is the 

most significant advantage of the MRI devices. An MRI device is depicted in Figure 4-18. 

 

Figure 4-18. Magnetic Resonance Imaging Device 
By KasugaHuang, 2006, https://commons.wikimedia.org/wiki/File:Modern_3T_MRI.JPG. Used under Creative 
Commons Attribution 2.5 Generic License: https://creativecommons.org/licenses/by-sa/2.5/deed.en 

 
CT- Scan (Computed Tomography Scan)  

CT-scans devices are also able to create 3D volumes from an object. The difference with respect to an MRI 

is the working principle. CT-scans use ionizing radiation, like an X-ray, which gives better contrast for bone 

structure. Building a 3D model from a set of 2D images was first demonstrated in 1917 by J. Radon, who 

proved that a 3D object can be reconstructed by an infinite number of its projections [50] It is out of the 

scope of this work to clarify the CT-scan image creation process, but it is found in the literature that the 

number of images required to create a 3D volume in a conventional CT is about 180 projections [51] [52]. 

Modern CT-scans work based on the same fundamental principle, but every year the technology 

improves, enabling results with better contrast and spatial resolution, and reducing the radiation dose 

[53]. A CT-scanner is depicted in Figure 4-19. 

 

Figure 4-19. Computed Tomography Scanner 
By daveynin, 2012, https://commons.wikimedia.org/wiki/File:UPMCEast_CTscan.jpg. Used under Creative 

Commons Attribution 2.0 Generic License: https://creativecommons.org/licenses/by/2.0/deed.en 
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CT-scans demonstrate higher sensitivity to bone structure than MRIs, which helps to discriminate better 

bone from soft tissue and, consequently, achieve a better registration [54] [55]. In medical guidelines for 

trauma in the spine, CT-scans are suggested as primary screening for injured patients [56]. Additionally, 

registering X-ray imaging with MRI has reported inconvenient for finding similarities due to differences in 

tissue contrast [57] [58]. There are some studies reporting ways to overcome the lack of similarities in the 

image information, but the reported registration errors are higher than the expected to achieve in this 

work [59]. In other cases, there has been attempts to create a pseudo-CT from the MRI, but it leads to a 

higher error when compared to a registration with a CT [60]. For this reason, CT-scan imaging is used as 

the 3D pre-operative modality. 

 
Intra-Operative Modalities 

Those are modalities used at the moment of the medical intervention. Therefore, they are found inside 

the operating room. Although it is also possible to use CT-scans as intra-operative modalities, it is rare to 

find a CT-scanner inside an operating theater. It is also possible to find ultrasound imaging as a 3D intra-

operative modality. However, it is uncommon to use this modality in spine surgery for pedicle screw 

fixation because it creates imaging artifacts, and bone boundaries appear some millimeter thicker [61]. 

Therefore, 2D images as the intra-operative modality are expected during the development of this work, 

specifically X-ray images coming from a C-arm. As explained in chapter 4.5, C-arm devices are ubiquitously 

found inside operating theaters. Consequently, using images from C-arms as the default intra-operative 

modality makes it the most logical and practical solution for a real-life application. 

 

Digital Imaging and Communications in Medicine (DICOM) 

DICOM is the standard for managing medical imaging data. It is not just an image or file format. It is an 

all-encompassing data transfer, storage, and display protocol built and designed to cover all functional 

aspects of digital medical imaging [62]. DICOM files store both data and metadata of the images. The 

image itself is considered the data and is the core of the information, but the metadata, e.g., width, height, 

bits per pixel, is also part of the DICOM files. 

The DICOM Data Dictionary is the registry of all standard data items (attributes) used in digital medicine. 

The list contains more than 2,000 items, which are organized in groups. The group number and the 

element number of each item form its tag. CT images are organized in the DICOM standard as a set of 

slices. A slice is a 2D image composed of rows and columns with a certain thickness. Some necessary 

information about the pixels and slices of a CT file is in Table 4-1, reproduced from the original “Table C.7-

10. Image Plane Module Attributes” of DICOM object definition [63]. 
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Table 4-1. Relevant DICOM Tags for CT-scans 

Attribute Name Tag Attribute Description 
Pixel Spacing (0028,0030) Physical distance in the patient between the center of each pixel, specified 

by a numeric pair - adjacent row spacing (delimiter) adjacent column 
spacing in mm. 

Image Orientation 
(Patient) 

(0020,0037) The direction cosines of the first row and the first column with respect to 
the patient. 

Image Position 
(Patient) 

(0020,0032) The x, y, and z coordinates of the upper left-hand corner (center of the first 
voxel transmitted) of the image, in mm. 

Slice Thickness (0018,0050) Nominal slice thickness, in mm. 

Slice Location (0020,1041) Relative position of the image plane expressed in mm 

 

The standard definition of the anatomical orientation frame in a DICOM image is given in the section 

"C.7.6.2.1.1 Image Position and Image Orientation" of the DICOM object definition [64]. It states that the 

X-axis increases towards the left-hand side of the patient. The Y-axis increases to the patient's posterior 

side, and the Z-axis increases toward the patients' head. The previous definition can be seen in Figure 

4-20. 

 

Figure 4-20. Anatomical orientation of the DICOM reference frame 

 

4.6.2. Registration Based on Image Dimensionality 

3D to 3D Registration 

The 3D to 3D registration, also called 3D/3D registration, consists of finding the transformation in ℝ3 

between reference frames of one 3D dataset to another 3D dataset. The 3D/3D registration is classified 

between two different approaches, rigid and non-rigid. In rigid registration, it is assumed that there is no 

deformation between models, so six DoF are enough to represent the registration. In the end, the result 

is a rigid transformation. On the other hand, non-rigid transformations require more parameters to 

characterize the deformation between 3D sets. This non-rigid behavior can be described by applying 

sheering, projective, and deformable transformations [65]. The result of a non-rigid registration is an 

affine transformation, which includes the sheering and projective effects, and a non-linear transformation 

matrix for the deformation. 
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The selection of the 3D/3D registration approach is mostly based on the body segment being 3D/3D 

registered. For instance, in the case of soft tissues, non-rigid registration is suitable for changes caused by 

patient's movements or manipulation during the procedure [66]. Registrations in orthopedic applications 

allow using rigid transformations. There is no significant deformation in bone structure between pre- and 

intra-operative modalities, so a rigid approach accurately describes the transformation between volumes. 

 

2D to 2D Registration 

For 2D to 2D (2D/2D) registration, it is expected to find a transformation matrix in ℝ2 , which defines the 

transformation from the reference frames of a 2D image to another. As in the 3D/3D registration, it has 

rigid and non-rigid variants. However, the reduction of dimensionality gives to this registration a 

complexity of an order of magnitude less than the 3D case [43]. 2D/2D registration is useful for registering 

different modalities or following the evolution of treatment [67]. 

 

2D to 3D Registration 

The result of a 2D to 3D registration, also called 2D/3D registration or 3D/2D registration, is a 

transformation matrix in ℝ3. This matrix gives the spatial alignment of the 3D data to the projective plane 

of the 2D data. This procedure can be executed in two different ways. One approach requires a set of 2D 

images, which are used to build a 3D volume. Then a 3D/3D registration is executed using the pre-

operative 3D volume and the built 3D volume. The obtained result gives the pose of pre-operative data 

with respect to the created volume. This approach has the drawback that creating a good quality volume 

requires a large set of images, e.g., between 50 to 100 [68]. The need for many X-ray acquisitions shifts 

this approach away from the main objective of this work, which is using as low ionizing radiation as 

possible. 

A second approach consists of creating projections from different poses of the 3D volume on a 2D plane. 

These projected images are compared with the original X-rays. The idea with this approach is to find the 

3D volume pose that makes the projected and original 2D images look the most alike [58]. This approach 

requires as few as one X-ray, but it works optimally with two [69]. Some studies suggest that increasing 

the number of X-rays by more than two does not improve the quality of the registration as long as the 

two used X-rays are orthogonal [70]. Based on the amount of radiation required, the second approach is 

considered the most suitable for this work. 

 

4.6.3. Feature Basis for Registration 

2D to 3D registration relies on finding similarities between unique features between the 2D and the 3D 

modalities. Another methodologic division consists of determining the type of used features. It is possible 

to use artificial elements attached to the body segment to find the registration. This approach is classified 
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as extrinsic registration. One more way involves finding a relation between modalities using the natural 

elements of the human body. When the registration relays only on patient features, the registration is 

called intrinsic registration. 

 

Extrinsic Methods 

This method relies on artificial objects that can be seen by the 3D and 2D imaging systems, e.g., intra-

muscular beads, fiducials on the skin, or a rigid reference attached to bone structure [71]. Since these 

artificial objects can be observed in both modalities and are distinguishable from human elements, this 

process can be automated without significant difficulties [72]. When rigid frames are used for extrinsic 

registration, the registration is so accurate that it was considered for a long time, the gold standard [73] 

[74] [75]. Intra-muscular beads and skin fiducials are less traumatic for the patient, but the accuracy is 

lower than with using rigid frames [76]. Extrinsic methods have shown a high accuracy under low 

computational power [77]. The biggest drawback of these methods is that they rely on external elements 

attached to the patient since the pre-operative modality is taken [78]. As reducing the amount of 

additional external object is wanted for the development of this work, this method is discarded. 

Therefore, extrinsic methods are not going to be considered further on. 

 

Intrinsic Methods 

On the other hand, intrinsic methods rely only on the patient anatomical structures captured by the 

modalities. As a difference with the extrinsic methods, there is no predefined landmark to be used as the 

base point for the registration [79]. Possible landmarks are bone edges or other anatomical features, and 

then the registration is further classified as feature-based method. 

When using X-ray images, the elements with better visualization are bone structures. Methods using the 

gradients of bone edges in 2D images, or gradients of bone surfaces in the 3D case as the base for 

registration are known as gradient-based methods. There is a third variant called intensity-based method, 

which relays only on the pixel and voxel intensities in the different modalities. The division of the intrinsic 

methods is further elaborated in this works as processing methods for registration. 

 

4.6.4. Processing Methods for Registration 

From now on, all approaches that can be taken for executing a registration using intrinsic methods will be 

referred to as processing methods. The following methods will be explained in detail below: 

feature-based, gradient-based, and intensity-based methods. 
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Feature-Based Methods 

Feature-based methods aim at finding geometrical entities like isolated points, point sets, curves, 

contours, or surfaces. In general, 3D models are transformed into a silhouette, while 2D images are 

transformed into contours. Once the features are selected in both modalities, the registration runs by 

projecting the 3D modality features in different poses into a 2D plane. The registration is achieved when 

the minimum distance between the 2D image contour and the projected image contour is found [80]. In 

the case of bone structure, this approach is considered attractive because they have a well-defined 

contour [81]. This procedure works best when the modalities are previously segmented and later 

geometrical features extracted. However, segmenting 2D and 3D images is not a trivial process. Poor 

segmentations directly impact the result of the 2D/3D registration, so robust segmentation methods must 

be implemented [82]. There are some approaches to overcome this problem using manual segmentation, 

but they can be tiresome and prone to error depending on the user's skills [83]. An additional problem 

arises as unmatched features appear, i.e., features that appear only in one modality. These features are 

not used for the registration and do not have an effect on the registration error, but they must be handled 

carefully to avoid mismatching [84]. Some solutions to the problems of using feature-based methods are 

found in the literature [85] [86] [87] [88] [89]. Nevertheless, this work will focus on other methods that 

have shown better accuracy in spine applications [90] [91]. 

 

Gradient-Based Methods 

Gradient-based methods work considering the gradients of surfaces and contours. From a geometrical 

point of view, it is known that both straight lines and planes can be characterized by their corresponding 

normal vectors. In the case of contours and surfaces, normal vectors change at every point of the 

geometry due to its non-zero curvature. Gradients are more intense at the borders of anatomical 

structures [92]. The gradient-based method creates a gradient image of the X-ray and a 3D gradient 

volume from the 3D modality. Later, the projection of the 3D gradient volume generates a 2D gradient 

image, which is compared with the gradient created out of the X-ray [93]. Projections of different 

directions are tried out and the registration is attained by finding the one that yields the best alignment 

between the projected image and the X-ray gradient image [94]. 

 

Intensity-Based Methods 

These registration methods rely on the intensity in pixels of 2D images and voxels of 3D images [95]. 

Specifically, the voxels in the volume are projected into a 2D plane using a ray-casting approach called a 

digitally reconstructed radiograph (DRR). This projection depends on the six degrees of freedom (three in 

translation and three in rotation) that a volume has in the 3D space [96]. The intensity-based method 

makes a registration using pixel-wise information of 2D images. A merit function is used to determine the 
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similarity of the images quantitatively [5]. Consequently, the registration is achieved by finding the 

maximum of the merit function by varying the pose given to the DRR [97]. It is worth to mention that 

intensity-based registration is the most reported method for 2D/3D registration [58] [98]. 

Although there is not a consensus about the best method for 2D to 3D registration, common patterns in 

the literature show that best results are obtained from intensity-based methods when working with 

imaging modalities from CT and X-rays images [58] [5] [99] [91]. As CT-scans and X-rays are based on the 

same natural phenomenon, creating a DRR from a 3D model made from slides of X-rays leads to similar 

results. On the other hand, creating a DRR from an MR generates a different outcome than an X-ray, so 

the results would not be optimal [57]. 

For this work, the 3D-volume data sets were created from CT-scans and the 2D images from X-rays. 

Therefore, intensity-based methods will be used as the base for the registration procedure. In the 

following chapters, more details regarding 2D/3D registration using intensity-based methods are 

discussed, i.e., the working principle of the DRR, type of merit functions, optimizers, and the registration 

algorithm. 

 

4.7. Intensity-Based Methods Based on Digitally Reconstructed Radiograph 

(DRR) 

This work will focus on a 2D/3D registration using intensity-based methods, registering two types of 

modalities, 2D and 3D. The 2D modality is an X-ray image, and the 3D modality is a CT-scan. The 

registration is an optimization process that compares the CT-scan with a set point established by the X-

ray image. The comparison is executed in the ℝ2 space by projecting the CT-scan into ℝ2 with a digitally 

reconstructed radiograph (DRR) procedure, which is explained in section 4.7.1. The projection of the DRR 

depends on the six DoF available in ℝ3. The DRR image and the X-ray are compared with a similarity 

measurement function, explained in section 4.7.2. The union of the two modalities, the six DoF to 

generate a DRR image, and the image similarity function define the 2D/3D registration cost function. To 

create the gradient of the cost function, the X-ray is compared with DRR images created with delta 

changes in every DoF. Then the gradient is evaluated by an optimization function that gives a new pose 

for the DRR. More development on the optimizers is given in section 4.7.3. From this basic introduction, 

it can be noticed that the selected registration procedure is an iterative process, elaborated in more detail 

in section 4.7.4. Most of the numerical optimization algorithms require an initial guess to find the optimal 

result. The algorithm for 2D/3D registration is not an exemption to this rule; on the contrary, initialization 

is a fundamental step to achieve a successful result. In sections 5.7 and 7.2, there are more details 

regarding the initial pose selection. 
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4.7.1. Digitally Reconstructed Radiograph (DRR) Module 

The digitally reconstructed radiograph (DRR) module is one of the fundamentals pieces that form the 

2D/3D registration. It helps to render images that are compared with a baseline X-ray image. One way to 

understand the working principle of the DRR module is by making an analogy with the C-arm. As explained 

in section 4.5, a C-arm consists of an X-ray source at one end of its C-shape structure and an X-ray detector 

at the other end. The radiation pierces a patient lying in the C-arm, and the detector forms an X-ray image 

by capturing the attenuated radiation due to the body segment. Now imagining a C-arm in the digital 

world, but instead of a patient, there is a digital 3D volume, e.g., a CT-scan. The rays go through the 

CT-scan and generate an X-ray image out of a 3D volume. Thus, the resulted X-ray image is instead called 

a digitally reconstructed radiograph. 

In computer vision, creating a 2D image from a 3D object is called rendering [100]. One of the most usual 

rendering methods is volume ray-casting. It offers high-quality rendering as no simplifications are involved 

[101] [99]. In brief, a virtual ray is created from each pixel of the resulted image to the ray source. A line 

integral is calculated for each of the rays while the ray goes through the 3D object [102]. In the DRR 

module, the ray source is punctual and is located in a known position with respect to the 3D object. Then 

the resulted image is created with a perspective projection. Following this idea, the DRR model follows 

the same principle as the pinhole camera explained in section 4.5.3, so the nature of the DRR is equivalent 

to that of the C-arm. It can be noticed that the reference frame of the DRR module and the 3D object 

belongs to a three-dimensional space, so the description of the object with respect to the DRR frame 

requires six DoF: three positions and three orientations. Consequently, a DRR image can be generated by 

defining three translations, [𝑡𝑥, 𝑡𝑦, 𝑡𝑧], and three rotations [𝑟𝑥, 𝑟𝑦, 𝑟𝑧]. This six DoF are gathered in the 

vector 𝒑⃗⃗ 𝜖ℝ6 described in in equation (47). 

𝒑⃗⃗ = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧]
𝑇

 (47) 

 

Figure 4-21 shows how the input of the DRR, i.e., a CT-scan of a spine model, is projected into a 2D image 

given the impression of an X-ray image. 

 

Figure 4-21. CT-scan to X-ray using the DRR module 
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As a point of comparison, an X-ray of the same spine model taken with the C-arm is shown in Figure 4-22. 

 

Figure 4-22. Patient to X-ray using the C-arm 

 

It can be noticed that the visualization of both images shows similarly the bone structure, i.e., showing 

darker spots where the bone density is higher, lighter ones when the bone density is lower. As a formality, 

the mathematical function representing the creation of a digitally reconstructed radiograph of a CT-scan 

at a specific pose 𝒑⃗⃗ 𝜖ℝ6 is denoted as: 

𝑓𝐷𝑅𝑅( 𝑽𝐶𝑇𝑠𝑐𝑎𝑛  , 𝒑⃗⃗ ) (48) 
 

The DRR process has its reference frame {DRR}, and it actuates over the DICOM modality, which has a 

reference frame {DICOM}. Then 𝒑⃗⃗  expresses the transformation 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . One desired feature of the 

DRR module is to match the DICOM reference frame (see Figure 4-20) when there is no rotation and 

translation. Additionally, the ray source is located in the negative Y-axis, and the rays move along the 

positive Y-axis until reaching the rendering plane. The origin of {DRR} lies in the middle point between the 

rendering plane and the ray source. The distance from the source to the rendering (detector) plane is 

known as the focal length (𝑓) in the pinhole camera model. In the DRR module, 𝑓  is a user-defined 

parameter. It influences the DRR image rendering as if the source-detector distance could be adjustable 

in a C-arm device. On the rendering plane, the X-axis expresses the first element and the Z-axis the second 

element of the 2D coordinate representing a pixel position within the rendered image. The previous 

considerations are depicted in Figure 4-23. 
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Figure 4-23. DRR reference frames representation 

 
Siddon Algorithm 

For radiological applications, the first ray casting algorithm was called the Siddon algorithm [103]. The 

algorithm performs the volume ray casting by establishing the equation for the radiological path as: 

𝑑 =∑∑∑𝑙(𝑖, 𝑗, 𝑘)𝜌(𝑖, 𝑗, 𝑘)

𝑘𝑗𝑖

 (49) 

 

Where 𝜌(𝑖, 𝑗, 𝑘) is the voxel intensity value and 𝑙(𝑖, 𝑗, 𝑘) the ray length contained by that voxel. 

 

Equation (49) is a weighted sum that substitutes the line integral in discrete space, where the weights in 

the sum are the lengths of the ray segments inside each voxel. 

Considering voxels as the intersection volumes of orthogonal sets of equally spaced parallel planes, the 

Siddon algorithm calculates the intersection of a ray with the planes, as Figure 4-24 shows. The algorithm 

represents the position of every single ray with three parametric equations, one for each axis: 

𝑋(𝛼) = 𝑋𝐴 + 𝛼(𝑋𝐵 − 𝑋𝐴) 
 

𝑌(𝛼) =  𝑌𝐴 +  𝛼(𝑌𝐵 − 𝑌𝐴) 
 

𝑍(𝛼) =  𝑍𝐴 + 𝛼(𝑍𝐵 − 𝑍𝐴) 

(50) 

 

Where the parameter 𝛼 is zero at point A and one at point B [103]. 
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Figure 4-24. Working principle of the Siddon algorithm. Intersections with vertical planes marked with green dots. Intersections 
with horizontal planes marked with red dots 

 
The points 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥, where the ray goes in and out of the volume, are shown in Figure 4-25. The 

Siddon algorithm determines the ray intersection values with each set of planes and merges the three 

resultant sets of parametric values into one set. Thus, the length of the ray 𝑙(𝑖, 𝑗, 𝑘) contained in every 

voxel can be determined knowing the consecutive intersects. The corresponding intensity value 𝜌(𝑖, 𝑗, 𝑘) 

is obtained from the CT voxel, and the radiological path can be calculated using equation (49). 

 

Figure 4-25. Visualization of the points 𝛼min and 𝛼max in the Siddon algorithm 

 

Siddon-Jacobs Algorithm 

There is a faster version of the previous algorithm, the Siddon-Jacobs algorithm. It follows the same flow 

as the Siddon algorithm, but the Siddon-Jacobs algorithm does not calculate the ray intersection with 

every single plane. Instead, it calculates only the value of the first intersection point of the ray with the 

planes after the ray entered the volume. Then the length of the ray between planes is calculated and 

decomposed in the length of each axis. Figure 4-26 shows the lengths as 𝛼𝑥𝑢 and 𝛼𝑦𝑢. It can be noticed 

that those lengths remain constant for the entire ray path. Knowing these lengths and the distance 

between planes, 𝑑x  and 𝑑y  , the intersects are calculated. When the intersects are found, the same 
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procedure used for the Siddon algorithm is used. The authors claim to achieve a speedup of 7.5 for 

calculating the radiological path compared with the Siddon Algorithm [104]. A 2D representation of the 

Siddon-Jacobs principle is shown in Figure 4-26. 

 

Figure 4-26. Working principle of Siddon-Jacobs algorithm 

 

4.7.2. Image Similarity Measurements (Merit) Functions 

An X-ray from the patient and a DRR image projected from the pre-operative CT-data are used to guide 

the algorithm to find the registration. The typical approach uses a merit function with the two images as 

inputs and a numerical value as the output [105]. Two images can be compared qualitatively by expressing 

how similar they look, but the result could not be used as the input of a subsequent mathematical 

procedure. Then it is required to use a quantitative measurement that computes a number depending on 

the similarity of two images. In this sense, an image similarity measurement, also called merit function, 

assigns a value to the similarity of two images.  

It is possible to compare images considering only the intensities contained in the image pixels. These 

functions are called intensity-only similarity measurements. Other measurements use the pixel values and 

their spatial distribution among the images, known as spatial-information similarity measurements. 

Further measurements compute the numerical distribution of the pixel values, called histogram-based 

similarity measurements. 

Now some concepts will be introduced to define more precisely the similarity measurements: 

An image is defined as a bi-dimensional discrete function, 𝑰(𝑥, 𝑦) [106]. The independent variables 𝑥 and 

𝑦 represent the columns and rows of the image, respectively. The intersection of a row and a column 

represents a pixel, which has a discrete intensity value. The domain of the image is defined by 𝑢 ∈ ℤ, the 

number of columns, and 𝑣 ∈ ℤ, the number of rows. The range of the function is limited by 𝑄‍ ∈ ℤ, the 

maximum intensity level. In this work, only grayscale images are considered; therefore, only one channel 

is used. 𝑄‍  is the largest number that the binary representation allows, i.e., 2𝑞 − 1 , where 𝑞 ∈ ℤ 

represents the bit depth. Mathematically, the previous definitions are described by equation (51). 
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𝑄‍ =  2𝑞 − 1 
 

{𝑰(𝑥, 𝑦), 𝑥, 𝑦, 𝑢, 𝑣 ∈ ℤ ; (𝑥, 𝑦) ∈ ℤ2|  0 ≤ 𝑰(𝑥, 𝑦) ≤ 𝑄‍  ;  0 ≤ 𝑥 ≤ 𝑢 − 1  ;  0 ≤ 𝑦 ≤ 𝑣 − 1 } 
(51) 

 

The domain of the image will be further defined as the set 𝑇. The image boundaries are still valid if 𝑥 and 

𝑦 belong to the set 𝐓 as equation (52). 

(𝑥, 𝑦) ∈ 𝑻 𝑖𝑓 (0 ≤ 𝑥 ≤ 𝑢 − 1) ∧  (0 ≤ 𝑦 ≤ 𝑣 − 1) (52) 
 

The number of pixels in an image is defined as 𝑁 ∈ ℤ, which is the product of 𝑢 and 𝑣. 

𝑁 = 𝑢 ∙ 𝑣 (53) 
 

Mathematically, the operation of finding the similarity between two images regardless of the used 

function will be denoted as:  

𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑰1,  𝑰2) (54) 
 

4.7.2.1. Intensity-Only Similarity Measurements 

This first set of merit functions computes the similarity value using the intensity values pixel-wise. That 

means, they do not consider the intensity values of neighboring pixels or the spatial distribution of the 

intensity values. Because of their definition, it is necessary that each pixel of one image has a unique 

correspondence in the other image. It means both images must have the same size. 

 

Sum of Squared Differences (SSD) 

SSD is the simplest of the merit functions. It consists of the pixel-wise difference of both images followed 

by a pixel-wise square operation. After that, the mean value of the resulting image is calculated as 

equation (55) shows. If the two images only differ by Gaussian noise, SSD is the most optimal 

measurement [107]. SSD is very sensitive to small images with large differences in grayscale values, i.e., 

the images have different contrast [108]. 

𝑆𝑆𝐷(𝑰1, 𝑰2)  =  
1

𝑁
∑ ( 𝑰1(𝑥, 𝑦) − 𝑰2(𝑥, 𝑦))

2

(𝑥,𝑦)𝜖𝑻

 (55) 

 

Sum of Absolute Differences (SAD) 

This merit function is also known as ℓ1 norm or Manhattan distance. It consists of the pixel-wise difference 

of both images followed by an absolute value operation. After that, the mean value of the resulting image 

is calculated as equation (56) shows. SAD improves the SSD sensitivity problem for small images and 

images with a large difference in contrast [109]. This merit function is widely used in video encoding due 

to its simplicity and accurate matching results [110]. 

𝑆𝐴𝐷(𝑰1, 𝑰2)  =  
1

𝑁
∑ |𝑰1(𝑥, 𝑦) − 𝑰2(𝑥, 𝑦)|

(𝑥,𝑦)𝜖𝑻

 (56) 
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Normalized Cross-Correlation (NCC) 

This merit function is used to evaluate the linear dependence of two variables. For the case of two images, 

it is used to find the linear dependency of the pixels on the first image, with respect to the second [111]. 

It is also known in statistics as the Pearson product-moment correlation, or simply Pearson correlation 

coefficient, and is shown in equation (57). It has the advantage of being insensitive to differences in the 

noise levels of the input images [112]. 

𝑁𝐶𝐶(𝑰1, 𝑰2) =
1

𝜎1𝜎2𝑁
∑ (𝑰1(𝑥, 𝑦) − 𝑰̅1)(𝑰2(𝑥, 𝑦) − 𝑰̅2)

(𝑥,𝑦)𝜖𝑻

 (57) 

 

Where 𝑰̅𝑘 is the average of the image k, and 𝜎𝑘is the standard deviation of the image k. 
 

Normalized Absolute Cross-Correlation (NACC) 

This metric function based on the NCC is proved to be a more accurate estimator than NCC [113]. Using 

NCC, some inversely-related values are compensated, which is not the case where using NACC. The 

equation for computing NACC is presented in (58). 

𝑁𝐴𝐶𝐶(𝑰1, 𝑰2) =
1

𝜎1𝜎2𝑁
∑ |(𝑰1(𝑥, 𝑦) − 𝑰̅1)(𝑰2(𝑥, 𝑦) − 𝑰̅2)|

(𝑥,𝑦)𝜖𝑻

 (58) 

 

4.7.2.2. Spatial-Information Similarity Measurements 

The following merit functions still use the pixel intensity but also consider the pixel spatial distribution 

within the image. The spatial information is obtained by considering the surrounding pixels, as it is the 

case with pattern intensity, sum of local normalized cross-correlation and variance-weighted sum of local 

normalized correlation, or with a pre-operation that uses the neighboring pixels, e.g., gradient operation, 

in the case of gradient correlation and gradient difference. 

For these merit functions, some further definitions will be introduced. 

Define the image difference of 𝑰1(𝑥, 𝑦) and 𝑰2(𝑥, 𝑦), as the pixel-wise difference of 𝑰1 and 𝑰2 multiplied 

by a scaling factor 𝑠 ∈ ℤ, which balances the contrast between the images. The difference operation is 

written in equation (59). 

𝑰𝑑𝑖𝑓𝑓(𝑥, 𝑦) = 𝑰1(𝑥, 𝑦) − 𝑠 ∙ 𝑰2(𝑥, 𝑦) (59) 

 

Pattern Intensity (PI) 

PI works directly with the image difference created by the X-ray and the DRR image. Each pixel of the 

image difference is evaluated along with its surrounding pixels within a circle of radius 𝑟. PI defines that a 

pixel belongs to a structure if the intensity of the evaluated pixel and their surroundings is high. From 

another perspective, if two images are identical, there would not be any structure [114]. PI evaluates the 

“structuredness” by assigning small values where there are significant changes in intensities and high 

values where the intensity values do not change too much [115]. A small PI measurement indicates, 
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therefore, that the images are not similar, while a high PI value indicates that both images are very similar. 

PI is defined by the equations (60), and (61). The output of PI increases with the similarity of both images 

and with the size of the evaluated images. It is important to keep the same size of the images for the 

entire registration procedure as the results must be used by comparing with other PI values. Define the 

circle of neighbored pixels as: 

𝑑2 = (𝑥 − 𝑥𝑣)
2 + (𝑦 − 𝑦𝑤)

2 < 𝑟2 (60) 
 

where (𝑥𝑣 , 𝑦𝑤) are pixels belonging to the image domain and within the circle center in (𝑥, 𝑦) with radius 𝑟. 𝑑 is 

the distance of the coordinates (𝑥𝑣 , 𝑦𝑤) and the circle center (𝑥, 𝑦).  

 

Keeping the circle of neighboring pixels in mind, the pattern intensity can be computed as: 

𝑃𝐼(𝑰1, 𝑰2, 𝜎𝑠) =  ∑ ∑
𝜎𝑠
2

𝜎𝑠
2 + (𝑰𝑑𝑖𝑓𝑓(𝑥, 𝑦) − 𝑰𝑑𝑖𝑓𝑓(𝑣, 𝑤))

2

𝑑2≤𝑟2(𝑥,𝑦)𝜖𝑻

 (61) 

 

where 𝜎𝑠 is a sensitivity parameter defining the intensity level to be considered a structure.  

 

The values used for 𝜎𝑠 and 𝑟 were 10 and 3 respectively, which are commonly used in literature [114] 
[115] [116]. 
 

Gradient Correlation (GC) 

GC starts by differentiating the two input images, 𝑰1(𝑥, 𝑦), and 𝑰2(𝑥, 𝑦). The derivatives are calculated 

using isotropic 3x3 image gradient operators, known as Sobel kernels [117]. For each image, the vertical 

and horizontal gradients are computed, i.e., 
𝜕𝑰1

𝜕𝑥
, 
𝜕𝑰1

𝜕𝑦
, 
𝜕𝑰2

𝜕𝑥
 and 

𝜕𝑰2

𝜕𝑦
. The vertical gradients of image 1 and 2, 

i.e., 
𝜕𝑰1

𝜕𝑦
 and 

𝜕𝑰2

𝜕𝑦
 , are used to compute the normalized cross-correlation using the equation (57) and the 

result is denoted as NCC 𝜕

𝜕𝑦

. Also, the correlation is calculated for the gradients of the columns, 
𝜕𝑰1

𝜕𝑥
 and 

𝜕𝑰2

𝜕𝑥
 

and is named as NCC 𝜕

𝜕𝑥

. At the end, both results are averaged, creating the GC value [118]. The equation 

(62) shows the expression for the gradient correlation. 

𝐺𝐶(𝑰1, 𝑰2) =

(𝑁𝐶𝐶 𝜕
𝜕𝑥

+𝑁𝐶𝐶 𝜕
𝜕𝑦

)

2
 

(62) 

 

It is worth to note that the application of vertical and horizontal Sobel kernels incorporates in the 

measurement the knowledge of neighbor pixels. Additionally, the application of Sobel kernels focused on 

well-defined edges. It implies that soft tissue is not considered in the correlation measurement, and bone 

structures are the main contributors to the measurement [57]. 
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Gradient Difference (GD) 

As in the case of GC, GD also starts by differentiating 𝑰1(𝑥, 𝑦), and 𝑰2(𝑥, 𝑦). The difference operator in 

(59) is applied over 
𝜕𝑰1

𝜕𝑦
 and 

𝜕𝑰2

𝜕𝑦
., and the result is called 𝑰𝑑𝑖𝑓𝑓𝑉(𝑥, 𝑦). Likewise, the same operation is 

applied using 
𝜕𝑰1

𝜕𝑥
 and 

𝜕𝑰2

𝜕𝑥
 in equation (59). The result is named 𝑰𝑑𝑖𝑓𝑓𝐻(𝑥, 𝑦). These operations can be seen 

in equation (63). The same form 
𝑎

𝑎+𝑥2
  as in Pattern Intensity, see equation (61), is used in both image 

differences. Then both results are added, founding the GD value [118]. The operation can be seen in 

equation (64). 

𝑰𝑑𝑖𝑓𝑓𝐻(𝑥, 𝑦)  =  
𝜕𝑰1
𝜕𝑥

− 𝑠 ∙
𝜕𝑰2
𝜕𝑥

 
 

𝑰𝑑𝑖𝑓𝑓𝑉(𝑥, 𝑦)  =  
𝜕𝑰1
𝜕𝑦

− 𝑠 ∙
𝜕𝑰2
𝜕𝑦

 

(63) 

 

𝐺𝐷(𝑰1, 𝑰2, 𝑠)  =   ∑
𝐴𝑣

𝐴𝑣 + (𝑰𝑑𝑖𝑓𝑓𝑉(𝑥, 𝑦))
2

(𝑥,𝑦)𝜖𝑻

 +  ∑
𝐴ℎ

𝐴ℎ + (𝑰𝑑𝑖𝑓𝑓𝐻(𝑥, 𝑦))
2

(𝑥,𝑦)𝜖𝑻

 (64) 

 

where 𝐴𝑣 and 𝐴ℎ are sensitivity parameters defining the intensity level to be considered a structure.  

 

This measurement penalizes the formation of structures as well as PI, but in the case of GD, it provides 

sensitivity for thin edges as it works with the difference of gradient images [57]. The values used for 𝐴𝑣 

and 𝐴ℎ are set to the variance of the corresponding gradients of the X-ray image [57] [118] [99]. 

 

Sum of Local Normalized Cross-Correlation (SLNCC) 

Although NCC is insensitive to differences in the noise levels of the input images [112], the C-arm adds 

spatially intensity distortions due to non-uniformities in the image intensifier, leading to bias errors when 

using NCC [27]. A way to overcome this phenomenon is to evaluate NCC in sets of small neighborhoods 

that together cover the totality of the images. It is important to mention that each set evaluates the same 

pixels in image 1 and image 2. The result of the NCC of every set is added and divided by the size of the 

number of pixels in the set [119] [99]. See equation (65). This process is called sum of local normalized 

cross-correlation. 

Define a sub-image of the image 𝑛 of size 𝑝 × 𝑞 starting in the position 𝑖, 𝑗 as 𝑰𝑛𝑝𝑞
𝑖𝑗

. 

𝑆𝐿𝑁𝐶𝐶(𝑰1, 𝑰2, 𝑝, 𝑞, 𝑑) =
1

𝑝 ∙ 𝑞 
∑ ∑ 𝑁𝐶𝐶( 𝑰1𝑝𝑞

𝑖𝑗
, 𝑰2𝑝𝑞
𝑖𝑗

)

𝑣−𝑞

𝑗=1,(1+𝑑),(1+2𝑑),...

𝑢−𝑝

𝑖=1,(1+𝑑),(1+2𝑑),...

 (65) 

 

where 𝑑 is the stride of the set displacement of pixel that moves each time. 

 

The measurement range of this function goes from 1, when the images are correlated, to -1, which 

indicates anticorrelation. The selected values for 𝑝  and 𝑞  are 7 and 1 for 𝑑 , based on the reported 
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literature [119] [99]. The pixels in a set may have the same intensity value, which makes the standard 

deviation zero; therefore, the NCC is undetermined as equation (57) shows. To avoid this problem, 

Gaussian-noise of a small magnitude is added to the DRR image. 

 

Variance-Weighted Sum of Local Normalized Correlation (VWSLNC) 

Previously with SLNCC, it was shown how the set of small neighboring areas is evaluated with NCC and 

then added. However, all sets are weighted equally. In order to give more importance to areas with higher 

information, the NCC value of each region is multiplied by the variance within that region of one of the 

images used to compute the NCC. After that, the NCC weighted values are added, and the result is divided 

by the summation of all the variances [119]. See equation (66). 

Define the standard deviation of the sub-image 𝑰𝑛𝑝𝑞
𝑖𝑗

.as σ𝑛𝑝𝑞
𝑖𝑗

 

𝑉𝑊𝑆𝐿𝑁𝐶(𝑰1, 𝑰2, 𝑝, 𝑑) =  
∑ ∑ [ 𝜎1𝑝𝑞

𝑖𝑗
∙ 𝑁𝐶𝐶( 𝑰1𝑝𝑝

𝑖𝑗
, 𝑰2𝑝𝑝
𝑖𝑗

)] 
𝑣−𝑞
𝑗=1,(1+𝑑),(1+2𝑑),...

𝑢−𝑝
𝑖=1,(1+𝑑),(1+2𝑑),...

∑ ∑ 𝜎1𝑝𝑞
𝑖𝑗

 
𝑣−𝑞
𝑗=1,(1+𝑑),(1+2𝑑),...

𝑢−𝑝
𝑖=1,(1+𝑑),(1+2𝑑),...

 
 

(66) 

 

The measurement range of this function goes from 1, when the images are correlated, to -1, which 

indicates anticorrelation. The selected values for 𝑝,𝑞 and 𝑑 are the same as is in the case of SLNCC.  

 

4.7.2.3. Histogram-Based Similarity Measurements 

The merit functions described in this chapter do not operate on the images. Instead, they are applied to 

the image histograms [120]. The pixels intensities are still used to create the histogram, but the spatial 

information of the pixels is replaced by the distribution of the intensities within the image. As a 

consequence, these measurements have the advantage that images with different sizes can now be 

compared, but they have the disadvantage of lacking spatial information. 

Before entering in detail to these similarity measurements, some further definitions must be introduced. 

Within this section, the process is assumed to be ergodic. Although these measurements are called 

histogram-based, they make use of the empirical estimate of the probability distribution of the image by 

means of a normalized frequency of occurrence. The probability distribution is approximated, dividing the 

frequency of each bin of the histogram by the number of pixels in the image. Let 𝛀 be the sample space 

of the intensities of an image with maximum intensity 𝑄‍ as: 

𝛀 = {0, 1, . . . , 𝑄‍} (67) 
 

Now let 𝐀 ⊆ 𝛀 be the sample space of the image 𝑰1, and the intensity 𝑎 ∈ 𝐀 an event of the sample space 

𝐀. The probability of finding a pixel of intensity 𝑎 in  𝑰1 is denoted as: 

ℙ1(𝑎) (68) 
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Another measurement used is the joint probability distribution, which is estimated from the joint 

histogram divided by the product of pixels in two independent images, image 1 and image 2. let 𝐁 ⊆ 𝛀 

be the sample space of the image 𝑰2, and the intensity 𝑏 ∈ 𝐁 an event of the sample space 𝐁. The joint 

histogram is two dimensional and is done by “plotting the intensity 𝑎 of each voxel in image 1 against the 

intensity 𝑏 of each voxel in image 2” [121]. The joint probability distribution of two images can be read as 

the probability to find a pixel of intensity 𝑎 in the image 1 and a pixel of intensity 𝑏 in image 2, and it is 

denoted as: 

ℙ(𝑎, 𝑏) (69) 
 

Mutual Information (MI) 

MI acts over the discrete probability distribution of the images. Mutual information was initially applied 

to stochastics methods as a way to express the increase of information of a discrete random variable 

based on the knowledge of a second random variable [122]. MI measures the distance between the joint 

probability distribution function using equation (69) and the joint probability distribution function 

assuming independent random variables using (68). In other words, it measures the dependence of two 

images [123]. MI is defined in equation (70) as:  

𝑀𝐼(𝑰1, 𝑰2) =∑ℙ(𝑎, 𝑏) ∙ 𝑙𝑜𝑔
ℙ(𝑎, 𝑏)

ℙ1(𝑎) ℙ2(𝑏)
𝑎,𝑏

 (70) 

 

where ℙ1(𝑎) is the probability of the intensity 𝑎 in the image 1, and ℙ2(𝑏) is the probability of the intensity 𝑏 in the 

image 2. 

 

Mutual Information gets close to zero the more independent the both probability distributions are, i.e., 

when the images are entirely unrelated. However, the upper border is unknown. It is only known that the 

Mutual information is less than the Shannon's entropy of any of both images [124]. 

 

Normalized Mutual Information (NMI) 

As the upper range of MI is unknown, NMI is an attempt to normalize MI, so that its range is between 0 

to 1 [125]. The mathematical formulation for calculating NMI can be seen in equation (71). 

𝑁𝑀𝐼(𝑰1, 𝑰2)  =  
2  ∙ 𝑀𝐼(𝑰1, 𝑰2) 

−∑ ℙ1(𝑎)𝑎 ∙ 𝑙𝑜𝑔(ℙ1(𝑎)) − ∑ ℙ2(𝑏)𝑏 ∙ 𝑙𝑜𝑔(ℙ2(𝑏))
 (71) 

 

Correlation Ratio (CR) 

CR was designed as an extension of normalized cross-correlation, which was explained in section 4.7.2.1. 

Instead of measuring the linear dependence of variables as NCC, CR measures the functional dependence 

of two discrete random variables [126]. An image can be depicted as a discrete random value by using the 

estimate of the underlying probability distribution function obtained from its histogram, as outlined 
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before. The more functional dependent is an image with respect to the other one, the more similar they 

are. It can be seen in equation (72), that the two variables do not have the same purpose in the functional 

relationship. It makes CR asymmetrical by nature, which means 𝐶𝑅(𝑰1, 𝑰2) ≠ 𝐶𝑅(𝑰2, 𝑰1) [127].  

𝜎2 = (∑𝑏2 ∙ ℙ2(𝑏)

𝑏

) − (∑𝑏 ∙ ℙ2(𝑏)

𝑏

)

2

 

 

𝜎𝑎
2 = (

1

ℙ1(𝑎)
∑𝑏2 ∙ ℙ(𝑎, 𝑏)

𝑏

) − (
1

ℙ1(𝑎)
∑𝑏 ∙  ℙ(𝑎, 𝑏)

𝑏

)

2

 

 

𝐶𝑅(𝑰1, 𝑰2) = 1 −
1

𝜎2
∑𝜎𝑎

2

𝑎

∙ ℙ1(𝑎) 

(72) 

 

The range of CR goes from 0, when there is no functional dependence between images, and 1, when the 

dependence is at highest, meaning both images are purely deterministically dependent [127]. Care must 

be taken when selecting which image is the reference image, 𝑰1, and which the floating, 𝑰2, because the 

results vary with such selection. During the registration process, the X-ray image remains constant while 

several DRR images are generated. Therefore, the X-ray is selected to be the reference image in CR, and 

the DRR image is chosen as the floating image. 

 

4.7.3. Optimization Algorithms in 2D/3D Registration 

Up to this point, it is clear that an X-ray image and a DRR image can be compared using a merit function 

as the ones explained in section 4.7.2. Bearing that in mind, an optimization process is used to find the 

minimum value of a cost function depending on the input pose. The cost function is built by evaluating 

the merit function with the DRR image and the X-ray image. In other words, the cost function is the 

pipeline starting with the creation of the DRR image from the CT-Volume, defined in equation (48), using 

the parameters 𝒑⃗⃗ 𝜖ℝ6 as in equation (47), and comparing the result, i.e., DRR image with the X-ray using 

a merit function described in equation (54). Then, the cost function depends on six independent variables, 

𝒑⃗⃗ , an X-ray image, 𝑰𝑋𝑟𝑎𝑦, and a 3D CT-scan volume, 𝑽𝐶𝑇𝑠𝑐𝑎𝑛. 

𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ ) = 𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑰𝑋𝑟𝑎𝑦 , 𝑓𝐷𝑅𝑅(𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )) (73) 

 

The DRR algorithm includes non-linear operations, and all merit functions are non-linear. That means the 

function to optimize is non-linear. Therefore, a non-linear optimizer is suitable for this work. Due to the 

nature of the problem, there is no information beforehand about the possible range of the DRR pose for 

a specific 3D dataset, making it difficult to constrain the optimization [128]. In other words, this is an 

unbounded optimization problem, which will be approached with a non-linear optimizer. As a final 

consideration, it has been reported that non-gradient-based optimizers, as downhill simplex, take several 

hundreds of function evaluations before reaching the convergence point [119] [129] [130]. One function 
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evaluation takes in the order of tens of milliseconds; therefore, the registration would take tens of 

seconds. One of the purposes of this work is to make a registration in a few seconds; consequently, the 

evaluated optimizers are unbounded non-linear gradient-based optimizers. Gauss-Newton and 

Levenberg-Marquardt are an excellent option for optimizers when the cost function is the sum of non-

linear squared functions [131], which is the case only in sum of square difference (SSD). For that reason, 

these two optimizers were not considered in this work as an option for the registration process. 

Before introducing the specific optimizers considered in this work, some definitions must be presented. 

The cost function 𝑓c(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ ) is assumed to be differentiable ∀𝒑⃗⃗ ∈ ℝ6. 

Defining the gradient of the cost function with respect to 𝒑⃗⃗ , ∇𝒑⃗⃗ 𝑓c(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ ). The gradient with 

respect to 𝒑⃗⃗  is also an ℝ6 vector made of the partial derivative of the cost function as the equation (74) 

shows. 

𝛻⃗ 𝒑𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ ) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )

𝜕𝑡𝑥
𝜕𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )

𝜕𝑡𝑦

𝜕𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )

𝜕𝑡𝑧
 𝜕𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )

𝜕𝑟𝑥
𝜕𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )

𝜕𝑟𝑦

𝜕𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )

𝜕𝑟𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (74) 

 

The optimization process, to obtain the parameters 𝒑⃗⃗ 𝜖ℝ6  that make the cost function minimum, is 

defined mathematically in equation (75), 

𝑎𝑟𝑔𝑚𝑖𝑛
𝒑⃗⃗ 𝜖ℝ6

 𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ ) (75) 

 

using 𝒑⃗⃗ 0 as the process initial pose. 

 

It is worth noting that, although the results of the optimization are affected by 𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛 these 2D 

and 3D imaging remain constant throughout the optimization process. That means, once the optimization 

process starts, only 𝒑⃗⃗  changes, and therefore only the gradient with respect to 𝒑⃗⃗  is defined. For the 

following definition of the optimizers, the cost function, 𝑓𝑐 , will be considered to depend only on the 

variable  𝒑⃗⃗ 𝜖ℝ6, i.e., 𝑓𝑐(𝒑⃗⃗ ). 
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Best Neighbors (BN) 

BN is a non-gradient optimizer best known in the literature as Hill-Climbing. It has been tested, despite 

being mentioned in the preface of this chapter, that non-gradient-based optimizers can require a vast 

amount of function evaluations to converge. However, its implementation is fast and straightforward, 

making it an excellent first-to-try method to get initial tests on the registration procedures as well as to 

get baseline results [132]. The BN optimizer requires (2 ∙ 𝑁 + 1) cost function evaluations per step, 

defining 𝑁 as the number of parameters (or dimensions) to optimize. In this case, there are six parameters 

to optimize (three rotations and three translations), meaning 13 function evaluations per optimization 

step. Using 𝒑⃗⃗  from (47), where each component of the vector represents one of the parameters to 

optimize, the 13 cost function evaluations can be expressed as to 12 function evaluations and the cost 

function evaluated at the initial pose 𝒑⃗⃗ 0𝜖ℝ
6. The pose at each iteration is interpreted as the initial pose 

plus an offset vector, and the cost function is evaluated for this sum. This offset vector is added only at 

one of the parameters per evaluation, and one time is added with a positive sign and other with a negative 

sign. Mathematically, this offset vector is described as 𝜟⃗⃗ 𝜖ℝ6, which is shown in the equation (76), and the 

definition of the 𝑖𝑡ℎ pose to evaluate 𝒑⃗⃗ 𝑖𝜖ℝ
6 can be found in the equation (77). 

𝜟⃗⃗ (𝑖)  =  

{
  
 

  
 
[(−1)𝑖𝛥 0 0 0 0 0] 𝑇       𝒊𝒇 𝑖 = 1, 2      

[0 (−1)𝑖𝛥 0 0 0 0]𝑇        𝒊𝒇 𝑖 = 3, 4      

[0 0 (−1)𝑖𝛥 0 0 0]𝑇        𝒊𝒇 𝑖 = 5, 6      

[0 0 0 (−1)𝑖𝛥 0 0]𝑇        𝒊𝒇 𝑖 = 7, 8      

[0 0 0 0 (−1)𝑖𝛥 0]𝑇        𝒊𝒇 𝑖 = 9, 10   

[0 0 0 0 0 (−1)𝑖𝛥]𝑇        𝒊𝒇 𝑖 = 11, 12

  (76) 

 

𝒑⃗⃗ 𝑖 = 𝒑⃗⃗ 0 + 𝜟⃗⃗ (𝑖) (77) 
where: 
𝑖 ∈  {1, . . . ,12}  
𝒑⃗⃗ 0 is the initial pose 

𝒑⃗⃗ 𝑖  is the 𝑖𝑡ℎ pose to be evaluated. 

𝛥 is the offset added to the initial pose. 

𝜟⃗⃗ (𝑖) is the offset vector describing which parameter is changing. 

 

Now assuming a cost function 𝑓c(𝒑⃗⃗  
(𝑘)) with  𝒑⃗⃗  

(𝑘)𝜖ℝ6, the 13 poses will be evaluated for the iteration 𝑘. 

The cost function value evaluated at 𝒑⃗⃗ 0, i.e., 𝑓c(𝒑⃗⃗ 0
(𝑘)
), is considered as the best value at the beginning of 

the step 𝑘. A new step is executed only, i.e., 𝑘 + 1, if at least one of the cost function evaluations 𝑓𝑐(𝒑⃗⃗ 1
(𝑘)) 

to 𝑓𝑐(𝒑⃗⃗ 12
(𝑘)) is smaller than 𝑓c(𝒑⃗⃗ 0

(𝑘)
). The pose with the smallest cost function value is promoted as the 

𝒑⃗⃗ 0
(𝑘+1)

, see equation (78). A new set of evaluations is created and compared once again. When there is 

no better value in a step than 𝑓c(𝒑⃗⃗ 0
(𝑘)
), the optimization stops, and the optimized result is 𝒑⃗⃗ 0

(𝑘)
. 
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𝑊ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒): 

 𝑖𝑓 𝑚𝑖𝑛 ({𝑓𝑐 (𝒑⃗⃗ 1
(𝑘)
) ,… , 𝑓𝑐 (𝒑⃗⃗ 12

(𝑘)
)})   <  𝑓𝑐 (𝒑⃗⃗ 0

(𝑘)
): 

 𝑡ℎ𝑒𝑛: 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛 
1≤𝑖≤12

 𝑓𝑐 (𝒑⃗⃗ 𝑖
(𝑘)
) 

𝒑⃗⃗ 0
(𝑘+1)

= 𝒑⃗⃗ 𝑖
(𝑘)

 

 𝑒𝑙𝑠𝑒: 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒑⃗⃗ 𝜖ℝ6

𝑓𝑐(𝒑⃗⃗ )   =  𝒑⃗⃗ 0
(𝑘)

 

𝑏𝑟𝑒𝑎𝑘; 
 

(78) 

 

BN is similar in implementation to the Downhill-Simplex method [133], with the difference that Downhill-

Simplex uses (𝑁 + 1) evaluations per step. 

 

Gradient Descent (GRDE) 

As its name indicates, GRDE uses the gradient of the cost function to find its minimum. From an initial 

pose, 𝒑⃗⃗ 𝟎, the gradient, 𝛻⃗ 𝒑𝑓c(𝒑⃗⃗ 𝟎), is calculated using the equation (74). The gradient indicates the slope of 

the function at that point. Assuming that the function is convex, or at least in the neighborhood of the 

minimum, it is logical to move into the next step proportionally to the gradient [132]. In gradient descent, 

this movement is regulated by a learning rate, 𝜆, which is set experimentally based on the problem [134]. 

The GRDE updating rule is described by equation (79). 

𝑊ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒): 

 𝑖𝑓  𝑓𝑐 (𝒑⃗⃗  
(𝑘) − 𝜆 ∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  

(𝑘)))  <  𝑓𝑐(𝒑⃗⃗  
(𝑘)): 

 𝑡ℎ𝑒𝑛: 𝒑⃗⃗  
(𝑘+1) = 𝒑⃗⃗  

(𝑘) − 𝜆 ∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘)) 

 𝑒𝑙𝑠𝑒: 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒑⃗⃗ 𝜖ℝ6

 𝑓𝑐(𝒑⃗⃗ )  = 𝒑⃗⃗  
(𝑘) 

𝑏𝑟𝑒𝑎𝑘; 
 

(79) 

 

After finding the next pose,  𝒑⃗⃗  
(𝑘+1) , the cost function is evaluated, and the value is compared with 

𝑓𝑐(𝒑⃗⃗  
(𝑘)). If the cost function value of the new pose, 𝑓𝑐(𝒑⃗⃗  

(𝑘+1))is smaller than the value of the initial pose, 

𝑓𝑐(𝒑⃗⃗  
(𝑘)), a new step is carried out. Otherwise, the iterative process stops, and the initial pose of the step 

is considered as the minimum of the function, i.e., 𝒑⃗⃗  
(𝑘). 

 

AdaGrad (AG) 

AG is an updated version of gradient descent, which adapts the learning rate, 𝜆, of the optimizer for each 

step and each parameter. AG achieves the learning rate adaption by accumulating the sum of squares of 

the past gradients. The learning rate is then divided by the squared root of the past gradients. The 

accumulation is done individually per each parameter and represented in the vector 𝒈⃗⃗ 𝑡𝜖ℝ
𝑚 where 𝑚 
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refers to the number of parameters, and each component contains the gradient accumulation of the 𝑚th 

parameter [135]. In this case 𝑚 = 6 and 𝒈⃗⃗ 𝑡𝜖ℝ
6. The AG updating equation is presented in equation (80). 

𝑊ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒): 

 
𝒈⃗⃗ 𝑡
(𝑘)

=∑𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑖))

2
𝑘

𝑖=1

 

𝑖𝑓  𝑓𝑐

(

 
 
𝒑⃗⃗  
(𝑘) −

𝜆 ∙ 𝟏⃗⃗ 

√𝒈⃗⃗ 𝑡
(𝑘)
+ 𝜚 ∙ 𝟏⃗⃗ 

∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘))

)

 
 
 <  𝑓𝑐(𝒑⃗⃗  

(𝑘)): 

 𝑡ℎ𝑒𝑛: 
𝒑⃗⃗  
(𝑘+1) = 𝒑⃗⃗  

(𝑘) −
𝜆 ∙ 𝟏⃗⃗ 

√𝒈⃗⃗ 𝑡
(𝑘)
+ 𝜚 ∙ 𝟏⃗⃗ 

∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘)) 

 𝑒𝑙𝑠𝑒: 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒑⃗⃗ 𝜖ℝ6

𝑓𝑐(𝒑⃗⃗ )  = 𝒑⃗⃗  
(𝑘) 

𝑏𝑟𝑒𝑎𝑘; 
 

(80) 

 

The vector 𝟏⃗⃗ 𝜖ℝ6 is a column vector of all ones. The term 𝜚 is added to avoid division by zero and is usually 

set to a small constant, e.g., 1 × 10−8. It is worth to notice that 𝒈⃗⃗ t keeps growing after each iteration, 

which forces the learning rate to decrease. This behavior makes the update of the 𝒑⃗⃗  
(𝑘+1)  each time 

smaller up to a point, where the updates have no effect on the estimate. This problem is addressed in the 

next optimizer. 

 

AdaDelta (AD) 

AD is a parallel implementation of AG that intents to reduce its monotonic decreasing learning rate. It is 

achieved by accumulating the squared of the past gradients as a decaying average, also known as running 

average, 𝒓⃗ 𝑎 (𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘))

2
) 𝜖ℝ6. See equation (81). The decay is controlled by term 𝛾 usually set to 0.9. 

𝒓⃗ 𝑎 (𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘))

2
) = 𝛾 ∙ 𝒓⃗ 𝑎 (𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  

(𝑘−1))
2
) + (1 − 𝛾) ∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  

(𝑘))
2

 (81) 

 

The running average of the element-wise square parameters, 𝒓⃗ 𝑎 (𝒑⃗⃗  
(𝑘)2) 𝜖ℝ6, is additionally introduced 

in equation (82) 

𝒓⃗ 𝑎 (𝒑⃗⃗  
(𝑘)2) = 𝛾 ∙ 𝒓⃗ 𝑎 (𝒑⃗⃗  

(𝑘−1)2) + (1 − 𝛾) ∙ (𝒑⃗⃗  
(𝑘)2) (82) 

 

The vector 𝒈⃗⃗ 𝑡 in equation (80) is changed by the running average of gradients from equation (81). The 

learning rate, 𝜆, is changed by the running average of parameters from equation (82) [136]. The update 

rule can be seen in equation (83) 
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𝑊ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒): 

 

𝑖𝑓  𝑓𝑐

(

 
 
𝒑⃗⃗  
(𝑘) −

𝒓⃗ 𝑎 (𝒑⃗⃗  
(𝑘−1)2)

√𝒓⃗ 𝑎 (𝛻⃗ 𝒑𝑓𝑐 (𝒑⃗⃗  
(𝑘)2)

2
) + 𝜚

∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘))

)

 
 
 <  𝑓𝑐(𝒑⃗⃗  

(𝑘)): 

 𝑡ℎ𝑒𝑛: 

𝒑⃗⃗  
(𝑘+1) = 𝒑⃗⃗  

(𝑘) −
𝒓⃗ 𝑎 (𝒑⃗⃗  

(𝑘−1)2)

√𝒓⃗ 𝑎 (𝛻⃗ 𝒑𝑓𝑐 (𝒑⃗⃗  
(𝑘)2)

2
) + 𝜚

∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  
(𝑘)) 

 𝑒𝑙𝑠𝑒: 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒑⃗⃗ 𝜖ℝ6

 𝑓𝑐(𝒑⃗⃗ )  = 𝒑⃗⃗  
(𝑘) 

𝑏𝑟𝑒𝑎𝑘; 
 

(83) 

 

An additional advantage of AD over AG is that it does not require a learning rate. 

 

Adaptive Moment Estimation (Adam) 

Adam is another optimizer that uses gradients and computes adaptive learning rates for each parameter 

[137]. The learning rate is updated based on the concept of momentum. It gives the gradients a physical 

concept of a sphere with heavy mass. The optimization is seen as the sphere going down a hill with friction. 

Consequently, in case of facing a mound when going down, the sphere can climb it and keep going down 

due to its inertia. This concept helps to overcome local minima and gives preferences to flat minima in 

error surfaces [138]. Let the decaying average of gradients and squared gradients be defined as 𝒎⃗⃗⃗ (k)𝜖ℝ6 

and 𝒗⃗⃗ (k)𝜖ℝ6 . Equation (84) describes 𝒎⃗⃗⃗ (k)  and 𝒗⃗⃗ (k) , which are estimations of the first and second 

moments of the gradients, respectively. 

𝒎⃗⃗⃗ (𝑘) = 𝛽1 ∙ 𝒎⃗⃗⃗ 
(𝑘−1) + (1 − 𝛽1)  ∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  

(𝑘))
 
 

 

𝒗⃗⃗ (𝑘) = 𝛽2 ∙ 𝒗⃗⃗ 
(𝑘−1) + (1 − 𝛽2)  ∙ 𝛻⃗ 𝒑𝑓𝑐(𝒑⃗⃗  

(𝑘))
2

 
(84) 

 

With these estimations, the update rule can be computed as equation (85) shows. The change in the 

current step is proportional to the first moment, 𝒎⃗⃗⃗ (k), divided by the squared root of the second moment, 

𝒗⃗⃗ (k), and regulated by the learning rate 𝜆. 

𝑊ℎ𝑖𝑙𝑒(𝑡𝑟𝑢𝑒): 

 

𝑖𝑓  𝑓𝑐

(

 𝒑⃗⃗  
(𝑘) −

𝜆 ∙ 𝟏⃗⃗ 

√𝒗⃗⃗ (𝑘) + 𝜚 ∙ 𝟏⃗⃗ 

∙ 𝒎⃗⃗⃗ (𝑘)

)

  <  𝑓𝑐(𝒑⃗⃗  
(𝑘)) 

 𝑡ℎ𝑒𝑛: 
𝒑⃗⃗  
(𝑘+1) = 𝒑⃗⃗  

(𝑘) −
𝜆 ∙ 𝟏⃗⃗ 

√𝒗⃗⃗ (𝑘) + 𝜚 ∙ 𝟏⃗⃗ 

∙ 𝒎⃗⃗⃗ (𝑘) 

 𝑒𝑙𝑠𝑒: 𝑎𝑟𝑔𝑚𝑖𝑛 
𝒑⃗⃗ 𝜖ℝ6

 𝑓𝑐(𝒑⃗⃗ )  = 𝒑⃗⃗  
(𝑘) 

𝑏𝑟𝑒𝑎𝑘; 
 

(85) 
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The terms 𝛽1 and 𝛽2 are suggested by the literature to be set as 0.9 and 0.999, respectively [137]. 

 

4.7.4. 2D/3D Intensity-Based Registration Procedure 

The 2D to 3D registration procedure is a logical interconnection of different subtasks aiming to find the 

transformation between a 3D volume and a 2D image. A CT-scan is projected as a 2D image, as explained 

in section 4.7.1, and the DRR image is compared with an X-ray image using a merit function, as seen in 

section 4.7.2. In the end, an optimizer, as shown in section 4.7.3, is used to find the CT-scan pose with 

respect to the {DRR}, equation (47), that matches the projection of the 3D image with the 2D image. As 

said before, the 2D/3D registration is an iterative process that keeps creating a DRR image based on the 

new pose calculated by the optimization algorithm and compares it with the X-ray. The process is 

represented in the block diagram of Figure 4-27. Notice the loop DRR - merit function - optimization that 

only breaks when the registration is over. 

 

Figure 4-27. Block diagram of the 2D to 3D intensity-based registration 

 

The registration process is represented mathematically in equation (86) by direct application of (75). The 

names used in the function also match the names in Figure 4-27, 

𝒑⃗⃗ 𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒑⃗⃗ ∈ℝ6

(𝑓𝑐(𝑰𝑋𝑟𝑎𝑦 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ )) (86) 

 

using 𝒑⃗⃗ 𝟎 as the initial pose for the registration process, and obtaining 𝒑⃗⃗ 𝑅 as the registered pose. 

The implementation of the registration process is developed in sections 5.1 and 5.2. 

 

4.8. Deep-Learning Applied to the 2D/3D Registration 

During the last years, artificial intelligence (AI), more specifically deep-learning, has become a powerful 

ally of the medical field. Some applications such as diagnosis, medical image enhancement, and disease 
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prediction and control are examples of notable deep-learning contributions. As time has passed, 

computational power has been increasing exponentially. The amount of publicly accessible data expands 

every year, e.g., Microsoft Common Objects in Context (COCO) dataset, Open Images dataset, PASCAL 

VOC (Visual Object Classes) dataset, ImageNet dataset, among others. The combination of those facts has 

raised the interest in the development of data-driven approaches that make use of significant amounts of 

data and high-performance computational hardware. An approach of AI is machine learning that uses 

statistical techniques to give learning capabilities to computers. One of the most typical structures within 

machine learning is the artificial neural network, which uses an underlying structure called a neuron. The 

neurons are interconnected with each other, forming a mesh, as the biological neuronal circuitry found in 

the brain, to learn complex patterns. However, machine learning approaches require some expertise to 

preprocess the data, label datasets, and handcraft the relevant features before they can be used. It is 

worth saying that the results are highly dependent on the handcrafted features and annotations quality. 

Here is when the deep-learning approaches play an interesting role. Deep-Learning models are end-to-

end learning algorithms, which autonomously learn to extract relevant features. Those models require a 

massive amount of data to be adequately trained, but it finally depends on the network size and 

complexity. 

One of the models that boosted the deep-learning approaches in the image processing field was the 

development of the convolutional neural network (CNN). Its fundamental component is a convolutional 

kernel, which executes a convolution operation over the input image. By design in CNNs, the size of the 

convolution kernels is fixed, but the kernel values are learned during training. A representation of the 

convolution operation over an image is depicted in Figure 4-28.  

 

Figure 4-28. Convolution operation on an image 
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Two parameters drastically change the convolution operation output, namely stride and padding. The 

stride controls the sliding behavior of the kernel over the input image. It means the kernel can be set to 

move a specific number of elements over the image in each step. It is worth noting that a stride different 

than one will reduce the output layer size. Additionally, the kernel movement is delimited by the input 

image edges. A simple approach consists of restricting the kernel movement, such as the kernel edges do 

not overpass the input edges. In this case, the output image is reduced in dimension as the kernel center 

does not move within the entire input. To keep the input size, an artificial border, usually filled with zeros, 

is added to the input, such as the central kernel element can move around all the input elements. Enabling 

the kernel movement by extending the input edge is called padding. It is usually set such as it preserves 

the size of the output feature map and uses the information on the image corners. Changes in size are 

usually executed by a particular layer called pooling, added after convolution layers. A pooling kernel of 

size 𝑛 × 𝑛 reduces the image size by 𝑛 times. A typical size for a pooling kernel is 2 × 2.  

The convolution kernels are the CNN portion extracting the relevant features for the application. It is 

common to use a fully connected artificial neural network (FCNN) after the cascade of convolutions and 

pooling layers. The FCNN is in charge of learning patterns from those selected features and infers results. 

The output nodes of FCNN and convolutions layers are connected to activation functions, adding 

non-linearities. These non-linear functions enable artificial neural networks to compute non-trivial 

problems. The selection of an activation function for a particular application is based on trends in the 

literature. The hyperbolic tangent (Tanh) was years ago a widely used activation function option, but 

nowadays, the rectified linear unit (ReLU) is one of the most popular choices for an activation function as 

it shows better results than the former [139].  

Two concepts must be addressed in deep-learning, overfitting and underfitting. They are used to describe 

the representation of the problem by a deep-learning model. The main goal of deep-learning approaches 

is to build learning models that can generalize unseen scenarios. If the model adjusts perfectly to the 

training data instead of learning patterns, the model is overfitted. An overfitted model fails when it is 

subjected to unseen data. Conversely, underfitting describes models that perform poorly on training data. 

A proper choice of model capacity can control its ability to fit the task and avoid overfitting and 

underfitting problems [140]. 

One of the most time-consuming tasks in solving a problem with a deep-learning approach is finding the 

model architecture. This is commonly addressed using one well-known model architecture, e.g., ResNet, 

VGGNet, Inception, which has shown outstanding results in a similar application. Another common 

practice is fine-tuning a pre-trained model to learn a new task instead of training them from scratch. 

Unlike training from scratch, fine-tuning does not require high computational power or vast data for 

model training. This approach is used to develop the initial pose generator. See Section 7.2. 
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CNNs bring the advantage of achieving a self-feature extraction behavior, which requires a cascade of 

several layers. For instance, DenseNet-BC uses several hundreds of sequential convolutions, classifying an 

object within 100 categories with an accuracy of 96.54% [141]. The entire layout of a CNN self-extracts 

numerous features by connecting the output of one convolution kernel with a new one. It starts extracting 

edges, which are combined to distinguish objects, and deeper in the CNN, these learning objects are used 

to detect big-end features such as faces or people. As the convolution is an operation that moves over the 

entire image, the prediction contains spatial robustness, meaning the system can detect a specific pattern 

regardless of the location within the image [142]. 

In medicine, CNNs have been used in the diagnosis of cancer, tuberculosis, cataract, and tumors, among 

others [143] [144] [145] [146]. One application that has fostered the use of deep-learning is the 

registration of medical modalities. 2D to 3D registration focusing on Total Knee Arthroplasty kinematics, 

Virtual implant planning system, and X-ray echo fusion have introduced deep-learning into the 

registration process [147] [148]. In these works, intensity-based registration is still used, employing DRR 

and X-ray images. The deep-learning adaptation is made by including a CNN as a replacement of the merit 

function and the optimizer. In other words, the system is still an iterative process, and the X-ray image 

and DRR are the CNN inputs. The CNN infers the following pose for the DRR. Similarly, another study 

focused on the registration of brain images using a CNN to replace the merit function and the optimizer 

[149]. 

Another application of 2D to 3D registration is tracking lung deformation during the exhaling and inhaling 

phase for use in radiotherapy. A deformation set matrix expresses the change in the lungs between 

images. A CNN architecture is used in that study to compute the coefficients of the deformation matrix 

[150]. In another application for lungs, where pre-operative CT data is registered with X-ray images, a CNN 

is used for tracking and triangulation using a point-of-interest network. This deep-learning approach 

manages to find correlated points in the X-ray images and the CT-scan. After those points are calculated, 

the registration is calculated analytically [151]. 

It is worth noting that up to the moment that this work was written, no research was found in 2D to 3D 

registration focusing on spine applications. Some implementations of deep-learning to improve the 2D to 

3D registration are developed in chapter 7. 

 



 

 



Evaluation and Optimization of the Selected 2D/3D Image Registration Approach 

59 
 

5. Evaluation and Optimization of the Selected 2D/3D Image 

Registration Approach 

5.1. Reference Frames Involved in the 2D to 3D Registration 

Systems with multiple reference frames require to bring elements, e.g., vectors and points, to a common 

coordinate system. Once the elements are in the same coordinate system, operations among them can 

be carried out. Then it is necessary to know the transformations among references to change elements 

from one frame to another. In the case of the 2D/3D registration, there are several reference frames 

involved. Some of them are auxiliary frames created to facilitate calculations, while others have a physical 

meaning. Commonly, rigid bodies (RB) define a physical frame, which a navigation system recognizes. The 

navigation system is a stereo vision sensor, containing an accuracy component that must be understood 

to determine the maximum theoretical accuracy of the registration. 

This section presents an overview of rigid bodies, coordinate systems, and navigation system properties. 

As stated in chapter 3, the number of foreign objects in the operating room (OR) should be kept to a 

minimum. Some considerations about the number of used RBs are given, and a diagram of the used 

reference frames in the developed 2D/3D registration is shown. A complete picture of the involved 

coordinate systems gives a clear idea about the number of transformations that must be calculated before 

reaching a useful result. In other words, the equation of the 2D/3D registration is calculated, but there is 

no discussion about the meaning of the equation terms. The method to obtain each of those 

transformations is explained individually in the coming sections. It means the objectives of each of the 

following chapters are contextualized within a single term of the 2D/3D registration equation. 

 

5.1.1. Considerations of the Navigation System Measurements 

During the development of this work, an NDI Vega optical navigation system is used. The specifications 

given by the manufacturer are analyzed to find the accuracy of the reported poses. Since two cameras 

compose the navigation system, the measures are limited to a range in the space. Both cameras must see 

the element of interest, and it must be close enough to create pixel disparity between images [152]. This 

range, where the measurements are valid, is known as the measurement volume. The entire volume is 

shown in Figure 5-1. It is split into an accurate pyramid volume in green and a less precise extended 

volume in blue. 
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Figure 5-1. NDI Vega measurement volume 

 
The manufacturer guarantees that the RMS values of accuracy and repeatability within the pyramid 

volume are less than or equal to 0.25mm and 0.10mm, respectively [153]. The manufacturer suggests 

using the navigation system only for relative measurements, i.e., the measurement of an RB of interest is 

taken with respect to another RB. Contrary to absolute measurements, when the measurement of an RB 

of interest is considered directly with respect to the camera reference frame. When the relative 

measurements are used, the repeatability error is the acting source of error; consequently, a more 

accurate measurement is guaranteed.  

Only relative measurements are used in this work, so the correct error to consider is the repeatability 

error. It can be said that the navigation system accuracy is 0.1mm when the measurements are under the 

pyramid volume. 

 

5.1.2. Reference frames involved in the 2D/3D Registration 

The RBs that are tracked by the navigation system have pre-defined reference frames, which are loaded 

into the camera as definition files (one definition file per RB). The reported pose of the RB is the 

transformation from the navigation system reference frame to the RB reference frame. The navigation 

coordinate frame, hereafter referred to as the optical tracking system (OTS), is depicted in Figure 5-2. In 

short, the navigation system reports the transformation 𝑻 𝑅𝐵
 

 
𝑂𝑇𝑆 . 
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Figure 5-2. NDI Vega reference frame and reported transformation with RB 

 

Taking advantage of the RBs feedback from the navigation system, it seems intuitive to use as many as 

possible to facilitate the registration process. However, it is essential to limit the use of foreign elements 

inside the OR. It means that the number of RBs must be limited to a minimum. As part of the 2D/3D 

registration, only two RBs will be used. One RB is used as the reference frame for the C-arm, CRB, which 

stands for C-arm Rigid Body. A second RB is attached to the patient's anatomy, referred to as ARB, which 

stands for Aim Rigid Body. The reference frames created by those RBs are called {CRB} and {ARB}, 

respectively. The {CRB} frame, despite its similar name, should not be confused with {C-ARM}. {CRB} is a 

frame created from a physical device while {C-ARM} is an auxiliary reference frame used to describe the 

X-ray source of the C-arm. The frames involved in the 2D/3D registration are depicted in Figure 5-3. 

A third RB is attached to the robot end-effector, helping to track the robot tool, a drill bit for pedicle screw 

insertion. This third RB is known as the Tool Rigid Body, TRB, which plays no role during the registration 

process, but it is necessary during the robot-assisted surgery. In addition to those reference frames, the 

camera frame {OTS} is also considered. 

In the computer, a planning software displays the 3D modality taken by a CT-scanner. This planning 

software aids the physician in evaluating the patient's condition and plans the screw insertion. In this 

work, the reference frames that have meaning only in a digital environment are known as virtual reference 

frames. 3D modalities have the typical medical format for images, DICOM format, which has its virtual 

reference frame {DICOM}. Every implant planned on the planning software has coordinates on the 

{DICOM} frame.  
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Figure 5-3. Frames involved in the 2D/3D registration 

 

To execute the surgical procedure, the robot control requires the target coordinates to be associated with 

its external RB, {TRB}. The patient's data is transformed to the patient frame, {ARB}, as ARB is rigidly 

attached to the patient. Then the robot can execute a pose of the type 𝑻 𝐴𝑅𝐵
 

 
𝑇𝑅𝐵  as the target coordinate. 

To connect the planned (pre-operative) data, which is done in the {DICOM} frame, the very fundamental 

goal of the registration process would be to find the transformation from {DICOM} to {ARB} frame, 

𝑻 𝐷𝐼𝐶𝑂𝑀
 

 
𝐴𝑅𝐵 . This transformation closes the path to send coordinates in {DICOM} to the robot end-effector 

{TRB}. 

To find the transformation 𝑻 𝐷𝐼𝐶𝑂𝑀
 

 
𝐴𝑅𝐵 , it is necessary to use auxiliary frames. A mere mathematical 

representation of the reference frames involved in the 2D/3D registration can be seen in Figure 5-4. In 

the diagram, {TRB} is omitted as it is not used for the registration procedure, and an additional reference 

frame {DRR} is introduced. In section 4.7.1, it is explained the digitally reconstructed radiograph (DRR) 

algorithm. The DRR, which makes operations on the 3D modality, has a reference frame; therefore, this 

module is defined by the virtual reference frame {DRR}. 
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Figure 5-4. Mathematical representation of frames involved in the 2D/3D registration 

 

5.1.3. Equation of the 2D/3D registration 

As the primary purpose of the registration is finding the transformation 𝑻 𝐷𝐼𝐶𝑂𝑀
 

 
𝐴𝑅𝐵 , it is possible to use 

Figure 5-4 to define the chain of transformations. Starting on {ARB}, it is possible to move back to {OTS} 

and from there to {CRB} using the navigation system feedback. The next step is moving from {CRB} to the 

auxiliary {C-ARM} frame. In the step from {C-ARM} to {DRR}, the transition from physical reference frames 

to virtual frames is carried out. The final transformation is done within the virtual frames, from {DRR} to 

{DICOM}. Equation (87) shows the set of transformations described above. 

𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
    =   𝑻 

𝐴𝑅𝐵 
 𝑂𝑇𝑆
    ∙ 𝑻 

𝑂𝑇𝑆 
 𝐶𝑅𝐵
    ∙ 𝑻 

𝐶𝑅𝐵 
 𝐶−𝐴𝑅𝑀
    ∙ 𝑻 

𝐶−𝐴𝑅𝑀 
 𝐷𝑅𝑅
    ∙ 𝑻 

𝐷𝑅𝑅 
 𝐷𝐼𝐶𝑂𝑀
    (87) 

 

The first two terms of the equation (87), i.e., 𝑻 
𝐴𝑅𝐵 

 𝑂𝑇𝑆
    ∙ 𝑻 

𝑂𝑇𝑆 
 𝐶𝑅𝐵
  , are known transformations reported 

by the navigation system, so there is no need for further development on these two terms. The third 

element of the equation, namely, 𝑻 
𝐶𝑅𝐵 

 𝐶−𝐴𝑅𝑀
  , represents the transformation from {CRB} to the C-arm 

X-ray source. This transformation is found by the parametrization of the C-arm, as explained in section 

4.5.4. The specifics of the implementation are shown in detail in section 5.4. The fourth term of the 

equation (87), 𝑻 
𝐶−𝐴𝑅𝑀 

 𝐷𝑅𝑅
  , explains the connection between the C-arm and the DRR module, which is 

the transition from real to virtual reference frames. This transition is clarified in section 5.2. The final term, 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  , results from the DRR module when the optimization process is complete. The optimization 

for the 2D/3D registration is explained in section 4.7.3, and the actual implementation is discussed in 

section 5.5. 
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5.1.4. Discussion and Conclusions 

Analyzing the information given by the navigation system manufacturer, it is found that the NDI Vega 

system can give RMS measurement errors as good as 0.1mm when using the pyramid volume. 

The maximum number of RBs being used for the 2D/3D registration is limited to two, which is the 

minimum of RBs necessary to compute the 2D/3D registration and to fulfill the requirement to minimize 

the number of RBs in the operating room. A third RB on the robotic system, though, is required to execute 

the surgical procedure. 

The reference frames used for the 2D/3D registration are established and depicted in Figure 5-4. From 

there, it is possible to determine the transformation to bring the pre-operative data into the operation 

theater, i.e., 𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
  .  

The equation of the 2D/3D registration, expressed by equation (87), describes the transformations 

required to find 𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
  . 

 

5.2. Basic Structure of the 2D/3D Registration Using Intra-Operative X-ray 

Images and Pre-operative CT-Scan 

In this chapter, a more detailed explanation about the interconnection of internal modules is given, and 

the transformation 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   is explained in detail. Additionally, some considerations regarding the 

feedback of the navigation system are explained. From equation (87), it is deduced that the registration 

results are transformed into a useful frame with the help of the camera feedback. When using one image 

to execute the registration, the camera feedback is not involved during the optimization process that 

carries out the registration. When two or more images are used for the registration, the camera feedback 

plays an important role. The connection between X-rays is achieved by finding the transformations from 

the C-arm on position A with the C-arm in position B, 𝑻𝐶−𝐴𝑅𝑀B
 

 
𝐶−𝐴𝑅𝑀A . For example, an image with 

anterior-posterior (AP) projection and another with lateral (LAT) projection can be used for the 

registration once the registration 𝑻𝐶−𝐴𝑅𝑀B
 

 
𝐶−𝐴𝑅𝑀A  is known. In other words, 𝑻𝐶−𝐴𝑅𝑀B

 
 

𝐶−𝐴𝑅𝑀A is the 

transformation that incorporates both images into the registration process.  

Furthermore, the idea of the region of interest (ROI) is introduced, which delimits the X-ray image area to 

be registered. The main idea of the ROI is to focus the registration on important structures so that the ROI 

can be selected individually in every image used for the registration. The output of the image after the 

ROI is used as the input for the merit function. In the case of two images, two merit functions act 

simultaneously, but the optimizer still works in the same manner. The value given to the optimizer is the 

weighted average of the merit functions. As the ROIs in each image may have different sizes, the ROIs 

areas are used as the weights. 
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At the end of this chapter, a new procedure is introduced to automate the computation of the 2D/3D 

registration accuracy. The registration accuracy is indirectly computed using a landmark in the CT-scan of 

a testing device. The same landmark is identified in the physical object, and the registration result is used 

for transforming the landmark from the CT-scan to the testing device. The deviation between the 

transformed landmark and the measured landmark on the tested device can be calculated. This deviation 

is used as a metric for the registration quality. The computation of the accuracy can be automated to 

calculate the error of several registration results. Therefore, the accuracy assessment can be done through 

hundreds of registrations, which gives a better estimation of the implemented 2D/3D registration process. 

 

5.2.1. Structure of the 2D/3D registration 

It has been previously mentioned that the implemented solution is an intensity-based 2D/3D registration. 

The two main inputs of the registration are a 3D CT-scan in DICOM format and two X-ray images. In theory, 

the registration can be done with only one X-ray image. It works optimally with two X-rays, but it is also 

possible to use more than two images. However, some studies have shown no advantage of using more 

than two X-ray images, as long as the images are taken physically perpendicular [70]. The case with one 

X-ray image is used as primary base to explain the registration process. The two images case is then 

introduced and further generalized to make a 2D/3D registration using 𝑁 X-ray images. 

The registration process will compare the X-ray image with several DRR images. The minimization process 

starts with an initial pose, which is applied to the DRR module. In this work, two novel approaches are 

taken to generate the initial pose. A manual approach, where the user can create a DRR image from the 

same perspective as the current CT-scan visualization, is explained in section 5.7. The second approach, 

an automatically generated initial pose using deep-learning, is developed in detail in section 7.2. 

The registration process, introduced in section 4.7.4, consists of an optimizer that finds the minimum of 

a cost function, which follows the equation (86). The cost function has as inputs an X-ray image and a DRR 

image, and it uses an image similarity measurement, explained in section 4.7.2, to return a numerical 

output. The updating rules for each optimizer, explained in section 4.7.3, differ from each other, but a 

common calculation is finding the cost function gradient with respect to the pose.  

For calculating the gradient in iteration 𝑘 , let the starting point be the pose 𝒑⃗⃗  
(𝑘). The cost function is then 

evaluated as it is explained for the best neighbors optimizer, in section 4.7.3, using the equation (76) and 

(77). 𝛥 in equation (76) is set to 0.1mm for 1 ≤ 𝑖 ≤ 6 and set to 0.1° for 7 ≤ 𝑖 ≤ 12. The derivative for 

any specific cost function parameter is approximated by following the symmetric (central) difference 

quotient. The literature shows that a better approximation of the derivative is given by the symmetric 

difference quotient than one-side quotient approximations when using a small 𝛥 [154]. The symmetric 

difference quotient equation can be seen below. 
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𝑑𝑓(𝑥)

𝑑ℎ 
|
𝑥=ℎ0

 

 ≈  
𝑓( ℎ0

  + 𝛥))  − 𝑓( ℎ0
  − 𝛥))

2 ⋅ 𝛥
 (88) 

 

Using equation (88), it is possible to generalize the partial derivatives of the vector 𝒑⃗⃗ , by denoting 

indexation with the operator []. That means, the component 𝑗 of the vector 𝒑⃗⃗  is denoted as 𝒑⃗⃗ [𝑗]. The 

function 𝜟⃗⃗ (𝑖) is defined in equation (76) such as 𝒑⃗⃗ + 𝜟⃗⃗ (2 ⋅ 𝑗 − 1) represents a negative 𝛥 change and 

𝒑⃗⃗ + 𝜟⃗⃗ (2 ⋅ 𝑗)  represents a positive 𝛥  change in the component 𝑗  of the vector 𝒑⃗⃗ . Using the same 

considerations stated in section 3.5.3, any partial derivative of the cost function 𝑓c(𝒑⃗⃗ ) is calculated as 

follows: 

𝜕𝑓𝑐(𝒑⃗⃗ )

𝜕𝒑⃗⃗ [𝑗] 
|
𝒑⃗⃗ =𝒑⃗⃗ 0

(𝑘)
 ≈  

𝑓𝑐(𝒑⃗⃗  
(𝑘) + 𝜟⃗⃗ (2 ⋅ 𝑗))  − 𝑓𝑐(𝒑⃗⃗  

(𝑘) + 𝜟⃗⃗ (2 ⋅ 𝑗 − 1))

2 ⋅ 𝛥
 ;  𝑗 ∈ [1, . . . ,6] (89) 

 

Equation (89) indicates that the partial derivative of the component 𝑗 is created using the image similarity 

measurements calculated by the fixed X-ray image and the two DRR images created by changing the 

component 𝑗 with a positive and a negative 𝛥. The obtained gradient is given to the optimization function, 

which computes a new pose to be evaluated. 

 

5.2.2. Finding the C-arm Coordinate System 

Based on the C-arm mathematical model in section 4.5.3, a real C-arm and a C-arm represented by the 

DRR will generate a similar image if the patient's (or image modality) position with respect to the C-arm 

(or virtual C-arm) is approximately the same. The objective of this section is to find the connection 

between the virtual and real C-arm reference frames.  

It is then necessary to build the reference frame of the used C-arm, Ziehm Vario 3D, using the 

mathematical model in section 4.5.3. This reference frame is constructed experimentally by taking an X-

ray of an object, defining X and Y coordinates in the image, i.e., finding the X-ray reference frame on the 

image. After that, the corresponding axes in the setup can be obtained, i.e., finding the retinal plane of 

the C-arm reference frame. On the left side of Figure 5-5, it can be seen the X-ray of an RB. The X 

coordinate is defined as the first element of the tuple defining the pixel position on the image, and the Y 

coordinate defines the second element of the tuple. The green coordinate system (on the left side of 

Figure 5-5) is drawn, such as the previous definition is fulfilled. Then the retinal plane of the C-arm is built 

consistent with the X-ray reference frame. That means the retinal plane axes match the X-ray reference 

frame as the right image in Figure 5-5 shows. 
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Figure 5-5. Experimental definition of the X-ray reference frame and the retinal plane reference frame 

 

Once the retinal plane is built, it can be extended to create the C-arm reference frame. By definition of 

the C-arm mathematical model in section 4.5.3, the retinal plane and the focal plane, formed by the X-Y 

plane of the C-arm reference frame, are distanced by the focal length in the Z-coordinate without any 

rotation. Bearing that, the {C-ARM} frame can be found as Figure 5-6 shows. 

 

Figure 5-6. Experimental definition of the C-arm reference frame, {C-ARM} 

 

5.2.3. Finding the Transformation from the DRR to the C-arm 

Now that {C-ARM} is contextualized with respect to the physical C-arm and the DRR reference frame is 

known (see Figure 4-23), the next step is to find the transformation between the two frames. In Figure 

5-7, the reference frames of the C-arm and the DRR are shown side by side. The DRR image and the X-ray 

image are compared during the registration process, so the connection between the DRR and the C-arm 

is created through the center of the images. 
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Figure 5-7. Comparison of the reference frames of virtual C-arm (DRR) on the left side and a real C-arm on the right 

 

The transformation from the virtual to the real C-arm can be calculated, from Figure 5-7, using the 

transformations expressed in equation (90). 

𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
  = 𝑻 

𝐷𝑅𝑅 
 𝑅𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝑒
  ∙ 𝑻 

𝑅𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝑒 
 𝐼𝑚𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟
  ∙ 𝑻 

𝐼𝑚𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 
 𝐶−𝐴𝑅𝑀
   (90) 

 

The transformation 𝑻 
𝐷𝑅𝑅 

 𝑅𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝑒
   is expressed as a translation of -𝑓/2 on the Y-axis. The rotation 

between the DRR render frame and the X-ray image frame is represented by 

𝑻 
𝑅𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔𝑃𝑙𝑎𝑛𝑒 

 𝐼𝑚𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟
  . The DRR rendering is explained in section 3.5.1, and the X-ray image 

frame is explained above. To compare both images, their origins are aligned to be the same, so this 

transformation is reduced to a negative 90° rotation in the X-axis. The transformation 

𝑻 
𝐼𝑚𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑒𝑟 

 𝐶𝑎𝑟𝑚
   is a positive 𝑓 displacement in the Z-axis. With the above considerations, equation 

(90) can be evaluated as: 

𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
   =  [

1 0 0 0
0 1 0 −𝑓/2
0 0 1 0
0 0 0 1

] ∙ [

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

] ∙ [

1 0 0 0
0 1 0 0
0 0 1 𝑓
0 0 0 1

] (91) 

 

Simplifying (91), 𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
    is found to be:  

𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
   =  [

1 0 0 0
0 0 1 𝑓/2
0 −1 0 0
0 0 0 1

] (92) 

 

The same C-arm device is used during the development of this work, and the mathematical conventions 

used for the DRR and the C-arm model does not change. Consequently, 𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
   remains constant. 
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5.2.4. Transforming the 2D/3D Registration Result into a Useful Frame 

During the registration process, the optimization parameter, as shown in equation (47), is 𝒑⃗⃗ . The output 

of the registration is the optimized transformation 𝒑⃗⃗ 𝑅, which can also be expressed as 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . In a 

graphical interpretation, from equation (86), 𝒑⃗⃗ 𝑅 is the pose that makes the DRR image look most alike 

with respect to the X-ray image. Although the optimized 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   is explained with the previous 

graphical interpretation, it does not give useful information as the used frames are abstract, i.e., {DRR} 

and {DICOM}.  

Therefore, it is meaningful to transform the registration result into a physical reference frame. The 

transformation obtained from the registration result uses reference frames given by the camera feedback, 

which are not used during the registration process. Later, it will be seen that the camera feedback is not 

used for the registration, in the case when only one X-ray image is used. 

Making use of the equation (87), the registration results 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   can be transformed into 𝑻 

𝐴𝑅𝐵 
 𝐷𝐼𝐶𝑂𝑀
   

using the camera feedback, i.e., 𝑻 
𝑂𝑇𝑆 

 𝐶𝑅𝐵
   and 𝑻 

𝑂𝑇𝑆 
 𝐴𝑅𝐵
  , and the transformation from the virtual to the 

real C-arm, 𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
  . The registration result in 𝑻 

𝐴𝑅𝐵 
 𝐷𝐼𝐶𝑂𝑀
   brings the advantage to be already on a 

reference frame that a robotic surgical system can use as a target, see section 5.1.2. In addition, since ARB 

is the rigid body attached to the patient, it keeps the registration aligned with the patient regardless of 

any patient movement. That means the DICOM reference frame is bound to {ARB}. In other words, as long 

as ARB is fixed to the patient, any patient movement is inherently compensated by having the registration 

on this frame. Guaranteeing the attachment of ARB to a patient is out of the scope of this work. In the 

used phantoms, ARB is attached to a rigid acrylic structure using screws, but in an actual surgical scenario, 

keeping an RB fixed to a patient is a complex topic still under development [155]. 

 

5.2.5. Introduction to the Region of Interest (ROI) Selection for the Registration Process 

The size of the X-ray images used for the registration is 568x568 pixels, as this is the size of the Ziehm 

Vario 3D output image. However, the C-arm raw images contain some labels on the image edges, which 

are not important for the 2D/3D registration. A part from that, the entire body segment captured by the 

X-ray may not be relevant for the registration. For example, an X-ray image captures four vertebrae plus 

some surrounding soft-tissue, but it is desired to register a specific vertebra. It is computationally cheaper 

and procedurally more meaningful to reduce the area of the image that is used for the registration. The 

specific part of the image that the user can define is called the region of interest (ROI). Using the definition 

of an image proposed in (52), the image domain is defined by the set 𝐓. Let two points in the image, 𝒄1 

and 𝒄2, be define as 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐓 | 𝒄1 = (𝑥1, 𝑦1), 𝒄2 = (𝑥2, 𝑦2)} (93) 
 

The ROI is a square defined by points 𝒄1 and 𝒄2, representing the end-points of the square diagonal. 
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Mathematically the ROI can be described as a function that receives an image and two points and returns 

the sub-image inscribed by the squared defined by points, 𝒄1 and 𝒄2. 

𝑰𝑅𝑂𝐼 = 𝑓𝑅𝑂𝐼(𝑰𝑋𝑟𝑎𝑦 , 𝒄1, 𝒄2)   (94) 

 

An implicit property following from equation (93) indicates that the image dimension after the ROI process 

is at most equal to the input image. Nevertheless, the idea behind the ROI operation is to focus on a 

specific part of the input image, i.e., the output image size is generally smaller than the input image size. 

From 𝒄1 and 𝒄2, it is possible to compute the area of the ROI as: 

𝐴𝑅𝑂𝐼 = |𝑥1 − 𝑥2| ∙ |𝑦1 − 𝑦2| (95) 
 

It is worth mentioning that the ROI selection is made on the X-ray image. The coordinates of the ROI are 

later on included in the DRR module, which renders the DRR image only within the selected ROI, allowing 

the DRR generation to be faster. In addition, only the area of the X-ray and DRR images defined by the ROI 

is used in the calculation of the similarity measurement. It makes the similarity measurement calculation 

faster, and it only compares the part of the images defined by the ROI. 

 

5.2.6. Synchronization of AP and LAT Images in the Registration 

Until this point, the registration procedure has considered only the utilization of one X-ray image, but the 

possibility of using 𝑁  X-ray images has been stated. Since 𝑁  images are aimed to calculate one 

registration, it is necessary to modify the current procedure to accept more images. The modification 

requires synchronizing the generation of DRR images followed by averaging the calculation of every 

similarity measurement. The synchronization requires the C-arm poses with respect to the navigation 

system in the moment of acquiring each of the 𝑁 X-ray images. These poses are used to calculate the 

C-arm transformation from position A to position B, i.e., 𝑻𝐶−𝐴𝑅𝑀B
 

 
𝐶−𝐴𝑅𝑀A . See Figure 5-8. 

 

Figure 5-8. Reference frame in order to synchronize two X-ray images 
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𝑻𝐶−𝐴𝑅𝑀𝐵
 

 
𝐶−𝐴𝑅𝑀𝐴 = 𝑻 

𝐶−𝐴𝑅𝑀𝐴 
 𝐶𝑅𝐵𝐴
    ∙ 𝑻 

𝐶𝑅𝐵𝐴 
 𝑂𝑇𝑆
    ∙ 𝑻 

𝑂𝑇𝑆 
 𝐶𝑅𝐵𝐵
    ∙ 𝑻 

𝐶𝑅𝐵𝐵  
 𝐶−𝐴𝑅𝑀𝐵

    (96) 

 

Where ( 𝑻 
𝐶𝑅𝐵𝐴 

 𝐶−𝐴𝑅𝑀𝐴
  )

−1
  and 𝑻 

𝐶𝑅𝐵𝐵  
 𝐶−𝐴𝑅𝑀𝐵

   are found with the C-arm calibration procedure explained 

in section 3.3.4, and ( 𝑻 
𝑂𝑇𝑆 

 𝐶𝑅𝐵𝐴
  )−1  and 𝑻 

𝑂𝑇𝑆 
 𝐶𝑅𝐵𝐵
   are giving by the optical tracking system. Then 

equation (96) is used to find the transformation from the DRR representing the C-arm position A to the 

DRR representing the C-arm position B, 𝑻 
𝐷𝑅𝑅𝐴 

𝐷𝑅𝑅𝐵
  . It goes as follows: 

𝑻 
𝐷𝑅𝑅𝐴 

𝐷𝑅𝑅𝐵
   =  𝑻 

𝐷𝑅𝑅𝐴 
 𝐶−𝐴𝑅𝑀𝐴
   ∙ 𝑻𝐶−𝐴𝑅𝑀𝐵

 
 

𝐶−𝐴𝑅𝑀𝐴 ∙ 𝑻 
𝐶−𝐴𝑅𝑀𝐵 

 𝐷𝑅𝑅𝐵
   (97) 

 

As the same C-arm is used for both images, then the same mathematical model, 𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
  , can be used 

in position A and B. It means, from equation (92), 𝑻 
𝐷𝑅𝑅𝐴 

 𝐶−𝐴𝑅𝑀𝐴
  = 𝑻 

𝐷𝑅𝑅𝐵  
 𝐶−𝐴𝑅𝑀𝐵
  = 𝑻 

𝐷𝑅𝑅 
 𝐶−𝐴𝑅𝑀
  . 

Using equation (97), the equation of the synchronization can be found, which relates the optimizing 

transformation in image A, 𝑻 
𝐷𝑅𝑅A 

 𝐷𝐼𝐶𝑂𝑀
  , to the optimizing transformation in image B, 𝑻 

𝐷𝑅𝑅B 
 𝐷𝐼𝐶𝑂𝑀
  : 

𝑻 
𝐷𝑅𝑅𝐵  

 𝐷𝐼𝐶𝑂𝑀
   =  ( 𝑻 

𝐷𝑅𝑅𝐴 
𝐷𝑅𝑅𝐵
  )−1  ∙ 𝑻 

𝐷𝑅𝑅𝐴 
 𝐷𝐼𝐶𝑂𝑀
   (98) 

 

The equation of the synchronization, (98), automatically generates the changes in the DRR module B while 

the optimizer keeps iterating with respect to transformations in the DRR module A. The DRR module A 

and module B transformations can be represented as the vectors 𝒑⃗⃗ 𝐴  and 𝒑⃗⃗ 𝐵 , respectively. The X-ray 

image A is compared with the DRR image A and the X-ray image B is compares with the DRR image B. The 

output of both similarity measurements is weighted averaged. The weight used for the average is the area 

of the ROI used in the respective X-ray image. The cost function, initially expressed in (73), is updated for 

two images, as follows: 

𝑓𝑐2_𝑖𝑚𝑎𝑔𝑒𝑠(𝑰𝑅𝑂𝐼𝐴 , 𝑰𝑅𝑂𝐼𝐵 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ 𝐴, 𝒑⃗⃗ 𝐵, 𝐴𝑅𝑂𝐼𝐴, 𝐴𝑅𝑂𝐼𝐵)    =   
𝐴𝑅𝑂𝐼𝐴∙𝑓𝑐(𝑰𝑅𝑂𝐼𝐴 ,𝑽𝐶𝑇𝑠𝑐𝑎𝑛,𝒑⃗⃗ 𝐴)+𝐴𝑅𝑂𝐼𝐵∙𝑓𝑐(𝑰𝑅𝑂𝐼𝐵 ,𝑽𝐶𝑇𝑠𝑐𝑎𝑛,𝒑⃗⃗ 𝐵)

2∙(𝐴𝑅𝑂𝐼𝐴+𝐴𝑅𝑂𝐼𝐵)
  (99) 

 

Equation (99) can be further generalized to the 𝑁 images case, as equation (100) shows. It can be noticed 

that the equation (97) must be used 𝑁 times to find from 𝑻𝐷𝑅𝑅𝐵
 

 
𝐷𝑅𝑅𝐴  until 𝑻𝐷𝑅𝑅𝑁

 
 

𝐷𝑅𝑅𝐴 . Then, the 𝑁 DRR 

modules will create 𝑁 DRR images that will be compared 𝑁 times with the 𝑁 X-ray images using 𝑁 image 

similarity measurements using the ROI of each of the 𝑁 images. 

𝑓𝑐𝑁_𝐼𝑚𝑎𝑔𝑒𝑠(𝑰𝑅𝑂𝐼𝐴 , . . . , 𝑰𝑅𝑂𝐼𝑁 , 𝑽𝐶𝑇𝑠𝑐𝑎𝑛, 𝒑⃗⃗ 𝐴, . . . , 𝒑⃗⃗ 𝑁 , 𝐴𝑅𝑂𝐼𝐴, . . . , 𝐴𝑅𝑂𝐼𝑁) =  
∑ 𝐴𝑅𝑂𝐼𝑖∙𝑓𝑐(𝑰𝑅𝑂𝐼𝑖 ,𝑽𝐶𝑇𝑠𝑐𝑎𝑛,𝒑⃗⃗

 𝑖)
𝑁
𝑖=𝐴

𝑁∙∑ 𝐴𝑅𝑂𝐼𝑖 
𝑁
𝑖=𝐴

  (100) 

 

Regardless of the number of used images for the registration, the optimizer will receive the same gradient 

as in equation (89), and the pose to be optimized is 𝑻 
𝐷𝑅𝑅𝐴 

 𝐷𝐼𝐶𝑂𝑀
  . This 𝑻 

𝐷𝑅𝑅𝐴 
 𝐷𝐼𝐶𝑂𝑀
   can be converted to 

any of the 𝑻 
𝐷𝑅𝑅𝑁 

 𝐷𝐼𝐶𝑂𝑀
  , and using the camera feedback for that specific C-arm position, e.g. 𝑻 

𝑂𝑇𝑆 
 𝐴𝑅𝐵𝑁
   

and 𝑻 
𝑂𝑇𝑆 

 𝐶𝑅𝐵𝑁
  , will be transferred to 𝑻 

𝐴𝑅𝐵 
 𝐷𝐼𝐶𝑂𝑀
   using the equation (87). 
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5.2.7. Evaluating the 2D/3D registration accuracy 

Once the registration procedure is executed, there is no direct indication about the registration accuracy. 

Another laboratory experiment can be used to determine the registration accuracy indirectly. As 

requirements for the 2D/3D registration procedure, a CT-scan and a navigation system are required. 

Instead of using the robot system, a pointer that the navigation system tracked, is used for the 

experiment. As the pointer and testing device pose can be recorded, the following evaluation process can 

be automated. It means more samples can be analyzed to reach a better estimation of the 2D/3D 

registration accuracy, and only using the navigation system avoids the risk that the robot introduces some 

errors. 

For the experiment, a testing device with an RB attached to it is required. The RB installed on the testing 

device is called DRB. The testing device must contain at least one well-defined landmark. This landmark 

must be known in the CT-scan, i.e., the point where the mark is located is uniquely distinguishable in the 

CT-scan. The landmark in the DICOM reference frame is expressed using the transformation 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝐼𝐶𝑂𝑀 . With the help of the pointer, the landmark is also determined in {OTS}, 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝑂𝑇𝑆 , 

and transformed to {DRB}, i.e., 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝑅𝐵 . 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝑅𝐵  =  𝑻𝑂𝑇𝑆 

𝑇𝑅𝐵 ∙ 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝑂𝑇𝑆  (101) 

 

The main conclusion from section 5.1.3 is to summarize the registration results as the transformation from 

{DICOM} to the physical frame attached to the element to be registered, the testing device in this case. 

Consequently, the result of registering the testing device with its CT-scan is 𝑻𝐷𝐼𝐶𝑂𝑀 
𝐷𝑅𝐵 . The evaluation of 

the registration is done by transforming the landmark pose in DRB, 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝑅𝐵  , to the DICOM frame, 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ 
𝐷𝐼𝐶𝑂𝑀  

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ = ( 𝑻𝐷𝐼𝐶𝑂𝑀 
𝐷𝑅𝐵 )−1 ∙ 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝐷𝑅𝐵
 

𝐷𝐼𝐶𝑂𝑀  (102) 
 

The translation and rotation of the same landmark due to the registration result is expressed as 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ . With the help of (102), 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′  is found as 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ =  ( 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ 

𝐷𝐼𝐶𝑂𝑀 )−1 ∙ 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝐼𝐶𝑂𝑀   (103) 

 

Consequently, 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′  is used as the metric for evaluating the accuracy of the 

2D/3D registration. The translation vector that expresses the landmark movement due to the registration, 

i.e., 𝒑𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′  is taken from the transformation 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ . The error of the 

registration due to the translation mismatch is computed as the squared root of 𝒑𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′  

magnitude, i.e. ℓ2 norm. 

𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟_𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 =  √( 𝒑𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ )𝑇  ∙ 𝒑𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′  (104) 
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An additional procedure is introduced to evaluate the rotation accuracy of the registration. There are two 

purposes behind this procedure: facilitating the comprehension of rotation mismatching and having both 

errors in the same units. 

In this procedure, the landmark is assumed to be touched by the tip of a 40mm length pedicle screw, a 

standard pedicle screw size in spine surgery [156]. Let the origin of the screw coordinate frame be located 

on the screw tip, and the Z-axis be aligned to the pedicel screw length. The point containing the coordinate 

from screw tip to head is defined as 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 . The displacement between the planned and 

the measured screw head, i.e., 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑  is calculated using the equation (105) 

 

where 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′′  =   [0 0 −40]𝑇 , 𝒑𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑  =   [0 0 40]𝑇 , and 

𝑹𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′′ 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘  =  𝑹𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′ 

𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘  ,which was found in (103).  

The X and Y components of 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑  represent the screw head displacement proportionally 

to the rotation error. In this way, the rotation accuracy is transformed into a translation. The point 

𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′′ 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑  with the Z-component ignored, i.e., 𝑧 = 0, is called 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 

𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑𝑋𝑌 . The 

error of the registration due to the angle mismatch is calculated using equation (104), but using 

𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑𝑋𝑌  instead. The accuracy approach to calculate the registration error can be seen in 

Figure 5-9. 

𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =  √( 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑𝑋𝑌 )𝑇  ∙ 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 

𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑𝑋𝑌  (106) 

 

 

Figure 5-9. Rotation accuracy approach transformed into translation accuracy 

 

The registration errors due to the translation and the rotation have the same units as the coordinates. In 

this work, the desired accuracy is in the order of the millimeters. It is meaningful to express the 

coordinates, and consequently, the registration error in millimeters. 

𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑   =

 𝒑𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑  +  𝑹𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ∙ 

𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑 𝑹𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′′ ∙ 𝒑𝑠𝑐𝑟𝑒𝑤𝐻𝑒𝑎𝑑′ 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘′′

 
𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘   

(105) 
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The registration error due to the translation mismatch can be seen as the displacement of the implant tip. 

It can also be interpreted as the radius of the sphere that describes the error mismatch between the 

planned and measured screw. 

The registration error due to the angle mismatch is the displacement of the head of the implants mismatch 

if the tips of the implants were together. The registration error due to the angle can also be seen as the 

maximum radius of the circle that describes an additional error mismatch. In that way, both errors can be 

combined into a single representation, as Figure 5-10 shows. 

 

Figure 5-10. Total registration error 

 
Mathematically, the maximum registration error can be found as the arithmetic addition of equations 

(104) and (106), and the same expression can be used as the approximation of the registration error 

assuming small angle approximations. The last described calculations are expressed in equations (107) 

and (108): 

𝑀𝑎𝑥_𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟 =  𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟_𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛  (107) 
 

𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟 ≈  𝑀𝑎𝑥_𝑅𝑒𝑔_𝑒𝑟𝑟𝑜𝑟  (108) 
 

Although the implant breach, equation (29), is the standard measure for implant quality, it is not used to 

assess the registration quality. The implant breach, explained in section 4.4, ignores the deviation along 

the implant axis [18], making the assessment of the registration quality inaccurate. The error calculation 

in equation (108) considers a 3D error plus the contribution of the orientation error. The implant breach 

is a simpler 1D error. Consequently, the error calculation in equation (108) can be seen as a general case 

of the implant breach calculation. It means the implant breach would be smaller or (at most) equal to the 

registration accuracy assessed using equation (108). If the implant error is smaller than 2mm using 

equation (108), it is possible to classify this implant with Grade A+B in the Gertzbein-Robbins scale. 
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5.2.8. Discussion and Conclusions 

The numerical partial derivative of the cost function of a specific component is calculated by finding the 

image similarity measurement of the current pose plus a small offset and minus the same offset in the 

desired component. Once the two similarity measurements are found, the symmetric difference 

quotation equation is used. See equation (89). 

𝑻 
𝐷𝑅𝑅 

 𝐶−𝐴𝑅𝑀
   is calculated through a chain of transformations that has a common point, the DRR and X-ray 

image center. The calculated transformation remains constant as the same C-arm is used during this work, 

and the DRR and C-arm model does not change. 

The registration result from the minimization procedure is the transformation 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . This value 

does not present a meaningful result for a robot-assisted-surgical system. Using the surgical tracking 

system feedback, the registration result can be expressed as the meaningful 𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
   transformation, 

which links the DICOM volume reference frame with the rigid body attached to the patient. 

The region of interest selection presents a solution to optimize the computational power used during the 

registration and focus the registration procedure on a specific part of the X-ray image. 

When more than two images are used to carry out the 2D/3D registration, it is necessary to know the 

transformation among images, e.g., 𝑻 
𝐷𝑅𝑅𝐴 

𝐷𝑅𝑅𝑁
  . This transformation is the key to synchronizing the DRR 

image module A, 𝑻 
𝐷𝑅𝑅𝐴 

 𝐷𝐼𝐶𝑂𝑀
  , with the DRR image module 𝑁 , 𝑻 

𝐷𝑅𝑅𝑁 
 𝐷𝐼𝐶𝑂𝑀
  . After each DRR image is 

rendered, 𝑁 image similarity measurements are calculated between the 𝑁 X-ray images and the 𝑁 DRR 

images, respectively. The weighted average of the similarity measurements is computed using the 

corresponding ROI area of each image as the respective weight. The similarity measurements weighted-

average is used as the input for the optimizer as in the 2D/3D registration with one X-ray image. 

A procedure to automate the computation of the registration accuracy is developed. It uses a landmark 

on the testing subject as the registration accuracy cannot be directly measured from the registration 

result, i.e., 𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
  . It mixes the error due to position and the angle mismatch and gives the total 

error in millimeter units. 

 

5.3. Undistortion of X-Ray Images from Conventional Panel C-arm 

In conventional C-arms, distortions presented in X-ray images are a mixture of barrel, S-shape, and spiral 

distortions [26] [27]. One of the biggest causes for the distortions is the earth's magnetic field, which 

affects the trajectory of the electrons inside the image intensifier depending on the C-arm pose [28]. As 

this distortion is time, position, and orientation-dependent, it is hardly possible to create a general model 

of the C-arm distortion. 

C-arm images with distortion are widely accepted and used in general surgery due to their versatility and 

low-cost [157]. However, there are two reasons to use images without distortion in the 2D-3D registration. 

The first reason, the C-arm parametrization, explain in sections 4.5.4 and 5.4, uses a relation of 3D and 2D 
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positions of a set of fiducials. The set of 2D fiducial positions is extracted from an X-ray image. 

Miscalculations in detecting the centers of the fiducials lead to misestimating the C-arm parameters, and 

consequently, the 2D/3D registration result. The second reason, the registration process compares an 

X-ray image with a DRR image, which is intrinsically distortion-free. The comparison is consistent if the 

nature of both images is the same. 

In this section, an undistortion approach on C-arm images using a plate with fiducials in a grid shape is 

explained [158]. A fiducial detection method is developed and applied to warp X-ray images [159]. After 

the undistortion is carried out, the fiducials are deleted from the image using an inpainting algorithm. The 

inpainting process is incorporated to improve body segment visibility.  

Although the undistortion plate is fixed on the C-arm detector and aligned using C-arm rigid points given 

by the manufacturer, an analysis of the positions of the fiducials in the X-ray images with and without 

distortion shows a translation between image centers and a rotation between images. The results of the 

analysis are used to calculate a rigid transformation from the original X-ray image to the image without 

distortion. Incorporating this rigid transformation after the image undistortion process has not been 

previously reported in the literature.  

 

5.3.1. Mapping Algorithm for X-Ray Images Undistortion 

As explained before, X-ray images from conventional C-arm suffer several types of distortion, such as 

barrel, S-shape, and spiral distortion. Since spiral distortions are influenced by the earth's magnetic field, 

which is variable, it is hardly possible to find a general undistortion map describing distortions of future 

C-arm images. Instead, it is common to attach an undistortion device to the C-arm detector, which 

generates an undistortion map for each X-ray image. The undistortion device contains fiducials in a known 

layout. This layout is used to generate a mapping function between the currently known image with 

distortions and the future image without distortion. The mapping function is created using a bi-polynomial 

regression, and the creation of the image without distortion is done by an inverse warping procedure 

using bilinear interpolation [158] [160] [161]. 

 

Mapping Function Creation 

Let (𝑥𝑑 , 𝑦𝑑) ∈ ℝ
2 and (𝑥𝑢, 𝑦𝑢) ∈ ℝ

2 be a correspondent point in an image with and without distortion, 

respectively. The function mapping a point from the image without distortion to the original image, 

𝑓𝑚𝑎𝑝(𝑥𝑢, 𝑦𝑢), is defined as a bi-polynomial regression function. Let 𝐾 and 𝐿 be the polynomial degree of 

the variable 𝑥𝑢 and 𝑦𝑢, respectively. The previous definitions are defined in (109) as 

(𝑥𝑑 , 𝑦𝑑) = 𝑓𝑚𝑎𝑝(𝑥𝑢, 𝑦𝑢): (𝑥𝑢, 𝑦𝑢) → (𝑥𝑑 , 𝑦𝑑) 

 

𝑥𝑑(𝑥𝑢, 𝑦𝑢) = ∑∑𝑎𝑘𝑙 ∙ 𝑥𝑢
𝑘 ∙ 𝑦𝑢

𝑙

𝐿

𝑙=0

𝐾

𝑘=0

 

 

(109) 
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𝑦𝑑(𝑥𝑢, 𝑦𝑢) = ∑∑𝑏𝑘𝑙 ∙ 𝑥𝑢
𝑘 ∙ 𝑦𝑢

𝑙

𝐿

𝑙=0

𝐾

𝑘=0

 

 

where 𝑎𝑘𝑙  and 𝑏𝑘𝑙  are the coefficients of the bi-polynomial function for the coordinate 𝑥𝑑  and 𝑦𝑑 , 

respectively. For the particular case 𝐾 = 𝐿 = 2 , the mapping function has the following matrix 

representation: 

[
𝑥𝑑
𝑦𝑑
]
𝑇

= [1 𝑥𝑢 𝑦𝑢 𝑦𝑢 ∙ 𝑥𝑢 𝑥𝑢
2 𝑦𝑢 ∙ 𝑥𝑢

2 𝑦𝑢
2 𝑦𝑢

2 ∙ 𝑥𝑢 𝑦𝑢
2 ∙ 𝑥𝑢

2] ∙

[
 
 
 
 
 
 
 
 
 
𝑎00 𝑏00
𝑎10 𝑏10
𝑎01 𝑏01
𝑎11 𝑏11
𝑎20 𝑏20
𝑎21 𝑏21
𝑎12 𝑏12
𝑎02 𝑏02
𝑎22 𝑏22]

 
 
 
 
 
 
 
 
 

 (110) 

 

Let 𝒂⃗⃗ 𝑎  be the column vector formed by the 𝑎𝑘𝑙  coefficients of the bi-polynomial function, 𝒂⃗⃗ 𝑏  be the 

column vector formed by the 𝑏𝑘𝑙 coefficients of the bi-polynomial function, and 𝒙⃗⃗ c
T be the row vector 

composed by the evaluation of a point in the image without distortion following the bi-polynomial 

function. From equation (110), the convention will be taken as follows: 

𝒂⃗⃗ 𝑎 = [𝑎00 𝑎10 𝑎01 𝑎11 𝑎20 𝑎21 𝑎12 𝑎02 𝑎22]𝑇 (111) 
 

𝒂⃗⃗ 𝑏 = [𝑏00 𝑏10 𝑏01 𝑏11 𝑏20 𝑏21 𝑏12 𝑏02 𝑏22]
𝑇 (112) 

 

𝒙⃗⃗ 𝑐
𝑇  = [1 𝑥𝑢 𝑦𝑢 𝑦𝑢 ∙ 𝑥𝑢 𝑥𝑢

2 𝑦𝑢 ∙ 𝑥𝑢
2 𝑦𝑢

2 𝑦𝑢
2 ∙ 𝑥𝑢 𝑦𝑢

2 ∙ 𝑥𝑢
2]  (113) 

 

Replacing the adopted convention described in (111), (112), and (113) in (110): 

[
𝑥𝑑
𝑦𝑑
]
𝑇

= 𝒙⃗⃗ 𝑐
𝑇 ∙  [𝒂⃗⃗ 𝑎 𝒂⃗⃗ 𝑏] (114) 

 

Equation (114) can be split in two equations as follows: 

𝑥𝑑 = 𝒙⃗⃗ 𝑐
𝑇 ∙ 𝒂⃗⃗ 𝑎 (115) 

 

𝑦𝑑 = 𝒙⃗⃗ 𝑐
𝑇 ∙  𝒂⃗⃗ 𝑏 (116) 

 

A calibration device with 𝑁  fiducials gives 2 × 𝑁  corresponding points (fiducials), i.e., 𝑁  points in the 

original image with distortion and 𝑁 points in the image without distortion. The 𝑁 points in the image 

with distortion (𝑥𝑑1, 𝑦𝑑1), …, (𝑥𝑑𝑁 , 𝑦𝑑𝑁), are obtained from the X-ray image. The 𝑁 points in the image 

without distortion (𝑥𝑢1, 𝑦𝑢1), …,(𝑥𝑢𝑁, 𝑦𝑢𝑁), are obtained from the design of the undistortion device 

design (see section 5.3.2). Let 𝒙⃗⃗ 𝑑 be a column vector with the X-coordinate of the 𝑁 points in the image 

without distortion, 𝒚⃗⃗ 𝑑 be a column vector with the Y-coordinate of the 𝑁 points in the image without 

distortion, and 𝑨𝑥 a matrix that has in its 𝑘𝑡ℎ-row the respective 𝒙⃗⃗ c
T vector done with the 𝑘𝑡ℎ point of the 
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image with distortion, i.e., (𝑥𝑑𝑘 , 𝑦𝑑𝑘). With the previous definitions and considering that the 2 × 𝑁 points 

are known, equations (115) and (116) are rewritten as: 

𝒙⃗⃗ 𝑑 = 𝑨𝑥 ∙ 𝒂⃗⃗ 𝑎  (117) 
 

𝒚⃗⃗ 𝑑 = 𝑨𝑥 ∙  𝒂⃗⃗ 𝑏 (118) 
 

Equations (117) and (118) are used to compute 𝒂⃗⃗ 𝑎  and 𝒂⃗⃗ 𝑏 , containing the coefficients of the by-

polynomial function, i.e., 𝑎𝑘𝑙  and 𝑏𝑘𝑙 . Assuming that there are more points than bi-polynomial 

coefficients, i.e., 𝑨𝑥 ∈ ℝ
𝑚×𝑛 with 𝑚 > 𝑛, the equations can be solved using the least squares solution 

(see Appendix A.5). 

For this work, 𝐾 = 𝐿 = 5 as some previous studies have shown that a fifth order bi-polynomial manages 

to represent the image distortion on the C-arm properly [158] [160]. 

 

Rendering the Image Without Distortion using Image Warping 

After the coefficients of the bi-polynomial function are known, the image without distortion is filled with 

the pixel information from the image with distortion. This last image creation process is called image 

warping. Let 𝑰𝑑(𝑥𝑑 , 𝑦𝑑) and 𝑰𝑢(𝑥𝑢, 𝑦𝑢) be the images with and without distortion, respectively, which 

follow the image definition from (51). The image warping process is mathematically defined using the 

equation (109) as: 

𝑰𝑢(𝑥𝑢, 𝑦𝑢) =  𝑰𝑑(𝑓𝑚𝑎𝑝(𝑥𝑢, 𝑦𝑢)) (119) 

 

The warping process is achieved once each pixel of 𝑰𝑢(𝑥𝑢, 𝑦𝑢) corresponds with a location in 𝑰𝑑(𝑥𝑑 , 𝑦𝑑), 

as shown in Figure 5-11. 

 

Figure 5-11. Representation of the image warping process 

 

One problem arises when finding the pixels correspondences (𝑥𝑢, 𝑦𝑢), using the bi-polynomial function 

(see equation (109)) as the obtained pixels (𝑥𝑑 , 𝑦𝑑), are real numbers, i.e., they land between pixels. By 

definition in (51), image pixels belong to the integer set of numbers, so the intensity level of a sub-pixel 
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position is mathematically undetermined. A bilinear interpolation with the four closest pixels is used to 

estimate the intensity level of a sub-pixel. Figure 5-12 illustrates the sub-pixel problem and the used 

bilinear interpolation approach. 

 

Figure 5-12. Interpolation of a sub-pixel with the surrounding pixels 

 

Let (𝑥𝑖𝑑 , 𝑦𝑖𝑑) be the subpixel (𝑥𝑑 , 𝑦𝑑) point after applying the floor function, i.e., (𝑥𝑖𝑑 , 𝑦𝑖𝑑) is the lowest 

closest pixel to the subpixel (𝑥𝑑 , 𝑦𝑑). Let ℎ𝑥 and ℎ𝑦 be defined as the distances from the subpixel (𝑥𝑑 , 𝑦𝑑) 

to the left and upper edge of the square defined by the four closest pixels, respectively, i.e., ℎ𝑥 = 𝑥𝑑 − 𝑥𝑖𝑑 

and ℎ𝑦 = 𝑦𝑑 − 𝑦𝑖𝑑 . The pixel (𝑥𝑖𝑑 + 1, 𝑦𝑖𝑑 + 1) is the next in the diagonal movement with respect to 

(𝑥𝑖𝑑 , 𝑦𝑖𝑑). These last two pixels define a square of side 1px and area 1px2, which inscribes the subpixel 

(𝑥𝑑 , 𝑦𝑑). This unit square is further divided into four squares. Each of these squares is defined by the 

diagonal made with the four pixels closest to the subpixel (𝑥𝑑 , 𝑦𝑑). The interpolation of the intensity level 

for the subpixel (𝑥𝑑 , 𝑦𝑑) is defined as the weighted addition of the intensity levels of surrounding pixels. 

The weights are the areas of the opposite square. The interpolation is mathematically defined with the 

following expression: 

𝑰𝑑(𝑥𝑑  , 𝑦𝑑) ≈  (1 − ℎ𝑥) ∙ (1 − ℎ𝑦) ∙ 𝑰𝑑(𝑥𝑖𝑑 , 𝑦𝑖𝑑)  +  ℎ𝑥 ∙ (1 − ℎ𝑦) ∙ 𝑰𝑑(𝑥𝑖𝑑 + 1 , 𝑦𝑖𝑑)   

+  ℎ𝑥 ∙ ℎ𝑦 ∙ 𝑰𝑑(𝑥𝑖𝑑 + 1 , 𝑦𝑖𝑑 + 1) + (1 − ℎ𝑥) ∙ ℎ𝑦 ∙ 𝑰𝑑(𝑥𝑖𝑑  , 𝑦𝑖𝑑 + 1) 
(120) 

 

5.3.2. Design of the Undistortion Device for the X-Ray Images 

The undistortion device is designed with a set of fiducials forming a grid, which is attached to the C-arm 

detector as the literature suggests [158] [162] [161] [160]. There are two points to consider for the 

undistortion device, grid size, and the number of fiducials in the grid. It is a common practice to spread 

the fiducials all around the image to obtain a better regression function. On the other hand, there is no 

agreement regarding the number of used fiducials. In one study, 300 fiducials were used in the 

undistortion device [158], 120 fiducials in another research [162], 77 in another [161], and 37 fiducials in 

another undistortion device [160]. In this work, the grid pattern is made as a symmetrical array of 8x8 

fiducials. A black circular shape masks the X-ray images from the C-arm, so the corners of the grid are 
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removed to maximize the cover by the fiducials in the image. The pattern design is composed of a grid of 

60 fiducials, which lies between the two analyzed studies with the minimum number of fiducials. 

The device is manufactured in acrylic using steel beads of 3mm in diameter, which enter in contact with 

the C-arm detector surface. The position of the fiducials in the image without distortion are taken by the 

physical grid dimensions of the device. The distance row- and column-wise between fiducials is 21.9mm. 

The pixel spacing of the C-arm detector gives the conversion from millimeters to pixels, 0.365mm/px for 

the used Ziehm Vario 3D. The selected distance between fiducials is a multiple of the pixel spacing 

parameter, making each fiducial position in the image without distortion an integer number. 

For mounting, the undistortion device considers two threads available in the C-arm detector, which aligns 

the undistortion device with the detector. The computer-aided design (CAD) and the undistortion device 

attached to the C-arm detector are shown in Figure 5-13. 

 

Figure 5-13. Undistortion device. CAD on the left. Manufactured and installed device on the right 

 

5.3.3. X-Ray Image Undistortion Procedure and Considerations 

The undistortion procedure is implemented by combining the warping algorithm and the fiducial 

detection of the undistortion device. A test to examine the undistortion procedure is executed using a 

brand-new K-wire, guaranteed to be straight. In Figure 5-14, it can be seen a brand-new K-wire, which 

follows the edge of a metric rule. 

 

Figure 5-14. K-wire aligned with a rule 

 

After an X-ray of the brand-new K-wire is taken, the distortion effects can be noticed with bare eyes, left 

side in Figure 5-15. Keeping the setup static, the undistortion device is attached to the C-arm detector, 
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and another X-ray image is taken, right side Figure 5-15. It can be seen close to the center of both images 

that the K-wire looks straight, but the distortion is quite noticeable near the edges of the images. 

 

Figure 5-15. On the left side, X-ray of the K-wire. On the right side, same setup with the undistortion device 

 

From the right side of Figure 5-15, the centers of the fiducials, projected from the distortion device, are 

calculated. The centers are selected manually at this stage, but a novel approach using deep-learning is 

described in section 7.1. These fiducials centers are used for building the vectors 𝒙⃗⃗ 𝑑 and 𝒚⃗⃗ 𝑑 of equations 

(117) and (118). Using the procedure described in section 5.3.1, the image can be mapped into an image 

without distortion, as the left side of Figure 5-16 shows. 

 

Figure 5-16. On the left side, image with corrected distortion. On the right side, image without distortion and inpainting 
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In section 5.3.3.1, it is explained the procedure used to remove the fiducials digitally from the image 

without distortion. It is known as image inpainting, and the result can be seen on the right side of Figure 

5-16. For the rest of this section, the undistortion quality is examined. 

The following test is carried out to illustrate the undistortion effectiveness; five X-rays of the K-wire are 

taken in different rotation and translations. Each image is processed to remove the distortions. The pixels 

forming the K-wire left edge are calculated and used to compute a linear regression, then the R-squared 

and the standard error of the regression are calculated (see Appendix A.7). The results can be seen in 

Table 5-1. 

Table 5-1. Calculation of the standard error of the regression in X-ray images after distortion using a K-wire 

Image 
Number 

Original X-ray image X-ray Image after undistortion 

R2 Standard error [px] R2 Standard error [px] 
1 0.9996 2.4813 1 0.6661 

2 0.9998 1.6758 1 0.6201 

3 0.9179 41.2758 0.9984 5.6053 

4 0.9997 1.7659 1 0.7476 

5 0.9355 1.4416 0.9877 0.2481 

 

As it can be noticed, the standard error of the regression on the images without distortion is lower than 

in the images with distortion. The R-squared values are closer to one in the tested cases after the 

undistortion process, which describes the fit of the K-wire points using a linear regression model. The 

standard error represents the absolute fit of the linear regression to the K-wire points. In the tested 

images, the standard error on the images without distortion shows with one exception that the error is 

smaller than 1 pixel. Although the R-squared and standard error of the regression do not match 100% of 

the K-wire points with a line, the fit improves compared with the original image. 

Two possible reasons are explaining the obtained errors. The first reason, the edge detector introduces 

some errors as it uses a threshold operation before detecting the edges. The second reason, as the 

regression is done in ℝ2, and the image pixels ∈ ℤ2; a quantization error impacts the standard error of 

the regression. A quantization error is a common phenomenon in every analog to digital conversion, and 

measuring the fit of a straight device after being digitalized brings this inherent problem that cannot be 

ignored. 

 

5.3.3.1. Inpainting fiducials 

Image inpainting is used for removing the fiducials out of the image after the undistortion process. This 

technique is commonly used to restore old and degraded photos, where scratches, black spots, and 

imperfections are present. The inpainting procedure is carried out by growing from the boundaries 

towards the center of a defined region. Every pixel in the boundary to be inpainted is replaced by a 

normalized weighted sum of the known neighbor pixels. The process is repeated until each pixel inside 

the region is processed [163]. As the undistortion process is performed using the ideal positions of the 
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fiducials, then the positions of the fiducials after the undistortion are known. Therefore, the inpainting 

algorithm regions are circles of 3mm in diameter with the ideal fiducial positions. The definition of the 

inpainting regions is seen as the white circles in the central image in Figure 5-17. The image before and 

after the inpainting procedure is shown in Figure 5-17 left and right image, respectively. 

 

Figure 5-17. On the left side an image after the undistortion process. On the center, definition of the inpainting regions. On the 
right side, image after the inpainting process 

 

Although having images without distortion helps the image similarity measurements, if the fiducials are 

visible after the undistortion process, the image similarity measurement will not improve. The purpose of 

the inpainting algorithm in the 2D/3D registration is to minimize the impact of the undistortion device 

fiducials in the image similarity measurement. 

 

5.3.3.2. Finding a rigid transformation between X-ray Images with and without Distortion 

Even though the undistortion device is built to be centered on the detector using some available rigid 

points on the C-arm, it is hardly possible to guarantee that the fiducials will be centered and aligned on 

the X-ray image. In other words, the center position and the alignment of the original image with respect 

to the image after the undistortion process is not the same. It is crucial to determine a transformation 

between the original X-ray image and the image after the undistortion procedure, such as the processed 

image has the same center and the same orientation as the original image. To illustrate the problem, an 

X-ray image only containing the undistortion device is taken. On the left side of Figure 5-18, the original 

X-ray image and the image without distortions are overlapped using a pixel-wise difference operation. It 

can be seen how the fiducials show a general translation and rotation. 
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Figure 5-18. On the left side, overlapping of X-ray image before and after undistortion. On the right side, overlapping of X-ray 
image before and after undistortion plus translation and orientation adjustment 

 

Distortions in X-ray images from conventional C-arms are less predominant close to the image center than 

in the image edges [26]. This means that the four central fiducials are, out of the whole set of fiducials, 

the least distorted elements. In the ideal case, i.e., image without distortion, the center point of the square 

described by the four central fiducials would coincide with the center of the image. In the original image, 

the four central fiducials defined a quadrilateral, whose center is calculated. The displacement from the 

image center to the quadrilateral center defines the translation from the image without distortion to the 

original image. 

The quadrilateral corners and center in the original image and in the image after the undistortion 

procedure are considered. Four vectors per image are built using the quadrilateral center as the initial 

point and corners as the final points. The angle formed between corresponding vectors in the image with 

and without distortion is calculated. The rotation of the image without distortion to the original image is 

calculated as the average of the four angles between corresponding vectors. 

Once the translation and rotation are calculated, the image without distortions is translated and then 

rotated using the previously calculated values. An example of the obtained result using this procedure can 

be seen on the right side of Figure 5-18. It can be noticed that there is an improved alignment of the 

original image and the image after the undistortion with respect to the image center. This additional 

transformation, applied to the image without distortion, is the final step to conclude the undistortion 

process, which was not found in the available literature as part of the undistortion. This extra step was 

found due to large errors in the registration accuracy, which were backtracked to a missing transformation 

after the undistortion process. 

 

5.3.4. Discussion and Conclusions 

The image undistortion procedure for this work is based on a mapping function created by a bi-polynomial 

regression of fifth order. The image undistortion rendering is made using an image warping process, which 
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finds the pixel values using a bilinear interpolation. The undistortion device is designed to be attached to 

the C-arm detector. It contains 60 fiducials in an 8x8 grid shape without corners to maximize the spread 

of the fiducials while keeping their visibility within the X-ray. The number of fiducials used for the device 

is among the average number of beads in other undistortion devices in the literature. 

The undistortion process results are examined using a brand-new K-wire, which can be seen as a straight 

metallic line. In X-rays, coming from conventional C-arms, it is possible to notice the distortion by simple 

observation. Five X-rays of the K-wire are taken in different positions and orientations. The X-rays are 

processed by the undistortion procedure, and the resulted K-wire in the images are analyzed using linear 

regression. All in all, it is noticed that the undistortion procedure removes the distortion effects. Based on 

the linear regression metrics, i.e., R-squared and the stand error of the regression, it is concluded that the 

K-wire fits better a line equation after the undistortion process. The standard error and the R-squared 

metric do not show a 100% fit, but they could be due to the edge detection process and quantization 

error, which is inherent to every analog to digital conversion. 

An inpainting procedure is implemented to avoid adverse effects on the registration, which removes the 

fiducials in the images after the undistortion process. 

The undistortion device is found to add a translation and rotation with respect to the original X-ray image. 

This rotation and translation are computed using the four central fiducials of the undistortion grid. 

Afterward, the rotation and translation are compensated on the image after the undistortion process. 

 

5.4. Characterization of Reference Frames in the C-Arm 

The C-arm characterization is carried out using the pinhole camera mathematical model, as seen in 

chapter 4.5.3. Figure 4-14 shows the standard pinhole camera, but a more illustrative pinhole camera 

model related to the C-arm can be seen in Figure 5-19. It can be noticed that the object to be observed 

lies between the optical center and the retinal plane, which does not change the mathematics developed 

in chapter 4.5.3. 

 

Figure 5-19. Pinhole camera model in a C-arm setting 

 



Evaluation and Optimization of the Selected 2D/3D Image Registration Approach 

86 
 

The C-arm mathematical model expresses the intrinsic camera parameters and the X-ray source reference 

frame, {C-ARM}, with respect to an external frame (extrinsic camera parameters). A parametrization 

device is created using a set of fiducials and an RB, named CRB. The result of the parameterization binds 

the {C-ARM} frame with respect to {CRB}. The DLT algorithm, explained in chapter 4.5.4, is used to find 

the camera parameters, but some design considerations must be taken into account.  

This chapter focuses on a detailed analysis, design, and implementation of a parametrization device. There 

are some commercial devices sold by C-arm manufacturers, e.g., Ziehm and Siemens, for recalibrating 

their C-arms, but a novel study analyzing every stage of the implementation of a parametrization device 

is developed in this section. It begins by evaluating the robustness of the implemented DLT algorithm with 

added Gaussian noise. The design of the parameterization device is evaluated, finding a trade-off between 

the number of fiducials on the device and the parametrization accuracy. The design is tested in a 

simulation using its 3D CAD volume and creating synthetic images using the DRR module. Then, the built 

device is used to examine the nature of the C-arm stiffness, as C-arms are known to undergo structural 

bending that causes their intrinsic parameters to vary. Finally, the quality of the manufactured 

parametrization device is evaluated using an innovative approach called inverse registration. 

 

5.4.1. Evaluating the DLT Algorithm 

As seen in chapter 4.5.4, the DLT algorithm solves equation (44) to find the camera parameters (𝑷) matrix 

that is decomposed into the extrinsic (𝑬𝒑 ) and intrinsic parameters (𝑰𝒑) . A first step to test the 

implementation is to propose a set of 𝑁 points 𝐒4 = {𝒔̃𝟒𝟏, … , 𝒔̃𝟒𝑁  | 𝒔̃𝟒𝑖 ∈ ℘
4}, create a 𝑷 matrix out of 

the proposed 𝑬𝒑  and 𝑰𝒑  parameters, and project the set of 𝐒4  points into the set 

𝐒3 = {𝒔̃𝟑𝟏, … , 𝒔̃𝟑𝑁 | 𝒔̃𝟑𝑖 ∈ ℘
3}. With 𝐒4 and 𝐒3, it is possible to recalculate the used matrix 𝑷, call 𝑷′ ,  

and decomposed it into 𝑬𝒑
′  and 𝑰𝒑

′ . Testing the implementation consists of finding the difference 

between the proposed extrinsic and intrinsic parameters, 𝑬𝒑 and 𝑰𝒑 , and the computed parameters, 𝑬𝒑
′ 

and 𝑰𝒑
′. Since the number of points in 𝐒4 impacts the accuracy, ten sets of points are compared, whose 

set sizes ranges from six to sixteen points. The sets of points are randomly generated, but constraining 

that no more than four points belong to the same plane to avoid singularities in the DLT algorithm [31]. 

The comparison is run 1000 times. In each iteration a new 𝑷 matrix is generated by a random uniform 

distribution and used to test the algorithm described above in the ten sets of points. The generation of 

the 𝑷 matrix is delimited by boundaries imposed on the intrinsic and extrinsic parameters. The Boundaries 

are defined in Table 5-2. These boundaries are selected to cover the range that the intrinsic and extrinsic 

parameters of a real C-arm could have. 
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Table 5-2. Boundaries for generating the 𝑷 matrix to evaluate the DLT algorithm 

Type Parameter name Units Min value Max value 

Intrinsic 
parameters 

Focal length mm 500 1000 

Optical center X px -284 284 

Optical center Y px -284 284 

Extrinsic 
parameters 

Position X mm -100 100 

Position Y mm -100 100 

Position Z mm 100 900 

Angle X deg -179 180 

Angle Y deg -179 180 

Angle Z deg -179 180 

 

For the intrinsic parameters, the focal length is a positive value within 500mm and 1000mm, and the 

optical center is the frame origin inside the retinal plane. As the available C-arm has an image resolution 

of 568x568px, the tests are carried out using this resolution. In the pinhole camera model, the origin is 

located on the image center, so the optical center range is selected from [-284, 284]. The extrinsic 

parameters describe the external frame pose with respect to the X-ray reference frame, {C-ARM}. The X- 

and Y-translations are relatively small movements up-down and left-right, with respect to the optical 

center, see Figure 5-19. The Z-translation describes the displacement of the axis from the optical center 

and normal to the retinal plane. The external frame rotation is restricted to the range [-179, 180], which 

describes a free rotation around the three axes, but it gives boundaries to the random generation. 

The error is calculated using the (magnitude) relative error as expressed in equation (121), and Table 5-3 

shows the mean error of each parameter over 1000 samples with ten different point sets. 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑒𝑟𝑟𝑜𝑟 =  
|𝑣𝑡𝑟𝑢𝑒 − 𝑣𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑|

|𝑣𝑡𝑟𝑢𝑒|
 (121) 

 

Table 5-3. DLT algorithm error using 1000 𝑷 matrices and ten points set sizes 

Parameter error 

[%]× 10−5 

Points set size 

6 7 8 9 10 11 12 13 14 15 

Focal length 18.42 0.26 0.07 0.02 0.02 0.02 0.05 0.02 0.06 0.01 

Optical center X 72.07 0.71 0.37 0.04 0.01 0.04 0.36 0.15 0.10 0.04 

Optical center Y 13.10 0.04 0.03 0.20 0.22 0.16 0.21 0.12 0.00 0.14 

Position X 1.91 0.03 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.01 

Position Y 2.11 0.09 0.01 0.02 0.01 0.03 0.02 0.01 0.02 0.01 

Position Z 23.06 0.25 0.08 0.05 0.02 0.14 0.07 0.12 0.18 0.03 

Angle X 0.02 0.03 0.01 0.01 0.00 0.01 0.03 0.02 0.01 0.02 

Angle Y 0.01 0.01 0.01 0.36 0.00 0.00 0.00 0.00 0.00 0.00 

Angle Z 0.22 0.12 0.03 0.21 0.00 0.00 0.00 0.00 0.00 0.00 

 

Total mean error 14.55 0.17 0.62 0.10 0.03 0.05 0.08 0.05 0.04 0.03 

 

The performance of the DLT algorithm gives no doubt as the worst error, when using a set of six points, 

has an average absolute error over the computed parameters of 14.548 × 10−5%. 
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5.4.2. Evaluating the DLT Algorithm Simulating Real-Life Conditions 

One aspect to consider is that in the previous experiment, the measurements in both sets, i.e., 𝐒4 and 𝐒𝟑 

are known with infinite precision. However, this is not the case when the fiducials centers must be 

computed from X-ray images. As an image consists of pixels, the units are discrete, but the actual center 

of a fiducial can be in a sub-pixel position. The information to obtain the center of a fiducial in the image 

is discrete, i.e., pixel intensities are only defined in discrete locations. The fiducial center detection 

contains an intrinsic quantization error, which is at most 0.5px but to assume additional detection errors, 

the typical detection error is assumed as one pixel. For this reason, a similar experiment is carried out as 

in section 5.4.1, but adding Gaussian noise with a standard deviation of 1px to represent the measurement 

error of the fiducial center detection. As in section 5.4.1, starting with a set 𝐒4, it will be projected using 

a 𝑷 matrix. The result once again is the set 𝐒3. To this set, the gaussian noise will be added, obtaining 

𝐒3
′ = {𝒔̃𝟑𝟏

′ , … , 𝒔̃𝟑𝑁
′  | 𝒔̃𝟑𝑖

′ ∈ ℘3}. Using 𝐒3
′ and 𝐒4, a similar procedure as in section 5.4.1 is followed to 

obtain the 𝑷′ matrix and decomposed into 𝑬𝒑
′ and 𝑰𝒑

′. The results of the experiment are shown in Table 

5-4. 

Table 5-4. DLT algorithm error using 1000 𝑷 matrices, ten points set sizes, and gaussian noise 𝜎 = 1𝑝𝑥 in the 2D positions 

Parameter error 
[%] 

Points set size 

6 7 8 9 10 11 12 13 14 15 

Focal length 2.91 0.44 0.38 0.32 0.31 0.27 0.27 0.25 0.23 0.21 
Optical center X 97.73 23.78 15.46 13.03 10.47 11.36 12.32 8.22 11.57 9.19 
Optical center Y 447.20 24.16 49.21 24.91 40.94 35.40 19.43 28.26 16.65 20.90 

Position X 7.27 6.21 2.77 2.43 3.00 2.66 3.13 2.72 3.34 1.83 
Position Y 22.92 3.09 2.26 3.46 2.19 2.15 2.24 1.83 1.72 1.91 
Position Z 3.77 0.42 0.35 0.30 0.30 0.27 0.27 0.24 0.23 0.20 

Angle X 4.83 0.58 0.38 0.30 0.42 0.32 0.34 0.29 0.34 0.28 
Angle Y 3.94 0.40 0.27 0.21 0.27 0.21 0.22 0.20 0.22 0.19 
Angle Z 3.06 0.22 0.15 0.12 0.12 0.10 0.10 0.11 0.10 0.09 

 

Total mean error 65.96 6.59 7.91 5.01 6.45 5.86 4.26 4.68 3.82 3.87 
 

The first to note is that the error is more than six orders of magnitude higher when considering noise than 

in the ideal case. Additionally, a tendency in a lower error can be observed when the number of fiducials 

increases. This simulation shows that a device with more than twelve fiducials has an error lower than 

5%. It can also be deduced that running simulations with bigger point set sizes could lead to better results. 

The literature states that an optimal result is achieved with more than 35 fiducials [40]. However, many 

such fiducials will make an impractical solution for the 2D/3D registration, as the number of fiducials will 

substantially obstruct the body segment in the X-ray image. 

Besides the previous consideration, there is still another error source to contemplate before carrying on 

with an analysis to select the fiducial set size for developing a device. The 3D list of points 𝐒4 is taken from 

the design of the device. The location of the fiducials on the real device differs from the list of points due 
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to the manufacturing process. This manufacturing added error is simulated by adding Gaussian noise to 

the 3D list of points obtaining  𝐒4
′ = {𝒔̃𝟒𝟏

′ , … , 𝒔̃4
′ | 𝒔̃4𝑖

′ ∈ ℘4}. The set  𝐒4
′ is projected to ℘3 finding 𝐒3. 

When manufacturing devices using numerical control machining tools, the manufacturing accuracy can 

be lower than 10µm. In this case, the device is planned to be fast-prototyped using a 3D printer and 

manually assembled. The fiducials centers are calculated with the navigation system using a pointer; 

therefore, the standard deviation of the Gaussian noise is set to 0.1mm as the navigation system accuracy, 

see section 5.1.1. Using 𝐒4 and 𝐒3, a similar procedure as before is followed to obtain the 𝑷′ matrix and 

decomposed into 𝑬𝒑
′ and 𝑰𝒑

′. The results of the experiment are shown in Table 5-5. 

Table 5-5. DLT algorithm error using 1000 𝑷 matrices, ten points set sizes, and gaussian noise 𝜎 = 0.1𝑚𝑚 in the 3D positions 

Parameter error 
[%] 

Points set size 

6 7 8 9 10 11 12 13 14 15 

Focal length 10.41 0.59 0.40 0.40 0.39 0.36 0.53 0.45 0.41 0.49 
Optical center X 175.84 60.06 36.62 41.15 38.01 33.57 41.63 48.87 38.21 49.32 
Optical center Y 416.55 60.19 33.51 39.24 31.51 27.61 51.77 46.98 37.32 37.30 

Position X 14.71 3.16 2.98 3.03 2.82 2.90 2.87 2.73 2.93 3.46 
Position Y 66.57 5.43 7.31 8.49 7.94 7.17 6.59 7.04 7.15 4.14 
Position Z 4.80 0.52 0.32 0.32 0.33 0.29 0.41 0.35 0.32 0.38 

Angle X 11.11 1.74 0.96 0.94 0.93 1.00 1.25 0.95 0.96 1.25 
Angle Y 14.31 1.94 1.21 0.98 1.00 1.07 1.15 1.04 1.00 1.38 
Angle Z 17.51 2.13 1.47 1.02 1.07 1.13 1.04 1.13 1.05 1.51 

 

Total mean error 81.31 15.08 9.42 10.62 9.33 8.34 11.92 12.17 9.93 11.03 
Total mean error 
without optical 

center 
19.92 2.21 2.17 2.09 2.07 1.99 1.98 1.96 1.97 1.80 

 

At first glance, this experiment result shows a high sensitivity over the 3D set as the mean error is more 

significant than in the last experiment, almost twice in every set size. However, the most significant 

contributor of the mean error is the optical center, miscalculated due to the error in the 3D data set. This 

detail is considered in further stages when designing the solution for the physical device. This experiment 

shows that the DLT algorithm can compute the C-arm parameters with an error below 2% when the point 

set size is larger than ten. It is worth mentioning that the 2% of mean error is calculated without 

considering the optical center. 

As a final step to select an appropriate fiducial set size, an additional experiment is run, mixing both 

previous phenomena. To the 3D list of points 𝐒4, Gaussian noise with standard deviation of 0.1mm is 

added, obtaining  𝐒4
′. This set is projected to ℘3 finding 𝐒3. Gaussian noise of standard deviation of 1px 

is added to 𝐒3, obtaining 𝐒3
′. Using 𝐒3

′ and 𝐒4, a similar procedure is followed to obtain the 𝑷′ matrix 

and decompose it into 𝑬𝒑
′ and 𝑰𝒑

′. The results of the experiment are shown in Table 5-6. 
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Table 5-6. DLT algorithm error using 1000 𝑷 matrices, ten points set sizes, and gaussian noise 𝜎 = 0.1𝑚𝑚 in the 3D positions 
and 𝜎 = 1𝑝𝑥 in the 2D positions 

Parameter error 
[%] 

Points set size 

6 7 8 9 10 11 12 13 14 15 

Focal length 52.04 0.90 0.66 0.61 0.55 0.57 0.50 0.53 0.51 0.50 
Optical center X 715.29 149.90 68.40 92.77 77.61 61.60 49.49 56.60 51.57 49.94 
Optical center Y 4901.76 175.64 37.39 58.22 49.20 54.14 46.26 45.53 55.83 58.55 

Position X 91.66 4.37 4.34 5.63 4.32 4.20 4.51 4.10 3.64 4.09 
Position Y 44.42 8.17 6.96 8.16 6.47 7.15 6.24 6.43 6.61 5.31 
Position Z 9.64 0.68 0.58 0.55 0.48 0.47 0.45 0.47 0.45 0.42 

Angle X 25.88 6.67 5.34 7.85 5.17 11.81 3.78 4.47 4.16 4.77 
Angle Y 19.30 4.31 3.07 4.41 3.08 6.31 2.47 2.73 2.56 2.87 
Angle Z 12.71 1.95 0.81 0.98 1.00 0.81 1.17 0.99 0.96 0.98 

 

Total mean error 652.52 39.18 14.17 19.91 16.43 16.34 12.77 13.54 14.03 14.16 
Total mean error 
without optical 

center 
36.52 3.86 4.03 3.11 3.01 4.47 2.73 2.82 2.70 2.70 

 

As a result of two added gaussian noise sources, the mean error of the solution increases compared to 

the previous run experiments. It can be observed that, from the point set size greater than twelve, the 

mean error without optical center lies below 3%. 

The last experiments have shown that the error tends to decrease with a larger set size. A device with 

more than eight fiducials already displays an error closer to the largest set size tried, but after size twelve 

is more evident to see a slower improvement. These mathematical experiments display promising results 

with devices with more or equal than twelve fiducials. Consequently, a twelve-fiducial device is built as it 

represents a good trade-off between accuracy in the calculation of the C-arm parameters and space taken 

in the X-ray image due to the number of fiducials. 

 

5.4.3. Designing and Simulating a Parametrization Device to Perform the C-arm Resectioning 

The device is designed with four beams. Three fiducials are installed on a beam, and the positions of the 

fiducials are different in each beam. This keeps a different fiducial layout in every beam. Each beam is 

installed with a different angle out of a common point to avoid more than four fiducials on a plane. In 

Figure 5-20, it is possible to see the CAD of the parametrization device. 
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Figure 5-20. Initial design of the parametrization device 

 

The fiducials positions are designed considering the detector diameter of the Ziehm Vario 3D C-arm, 

230mm. The fiducials distribution considers that the device installation point is close to the detector. 

When an X-ray is taken, all of the fiducials are visible in the image. The fiducials positions in the reference 

frame of the 3D volume are known by construction. In context with section 5.4.1, it means the set of 

points 𝐒4 is already known. 

To test the effectiveness of this design, the DRR module will be used to replace the C-arm. Using the DRR 

offers the additional advantage of applying the DLT algorithm in a controlled environment that uses the 

same operating principle as the C-arm. Since the DLT algorithm only requires the fiducials centers, the 

shape of the calibration device is not critical in this stage, only the distribution of fiducial in space. The 

input of the DRR module is fed with a DICOM file containing the fiducials distribution of the calibration 

device. A render of the DICOM can be seen in Figure 5-21. 

 

Figure 5-21. Fiducial dispersion on the parametrization device 

 

The best advantage of using the DRR at this stage is its configurability, i.e., the focal length, image 

resolution, and pixel spacing can be set. Those are part of the intrinsic parameters of the pinhole camera 
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model. The DRR optical center is centered in (0,0) by definition, so it cannot be modified, but it is known. 

Additionally, the DICOM pose with respect to the DRR is part of the parameters that can be modified in 

the DRR. This previous pose can be used to build the extrinsic parameter matrix.  

With the list of detected fiducials in the DRR image, i.e., 𝐒3 and the list of 3D points, i.e., 𝐒4, the intrinsic 

and extrinsic pinhole camera parameters can be calculated. Through another path, the DRR settings can 

be used to find the intrinsic and extrinsic parameters too. Both results are used to calculate the error and 

validate the robustness of the mechanical design of the parameterization device. The fiducial center 

detection is carried out by finding the mass center of the fiducial, reported in the literature as an accurate 

procedure for calculating the circle center [36] [164]. In this experiment, the focal length of the DRR is set 

to 1000mm, a common source to detector distance in C-arms. Manually in the DRR module, the output 

images are analyzed to determine the range where the fiducials are visible. This range can be seen in Table 

5-7, which corresponds to the {DRR} reference frame shown in Figure 5-4. 

Table 5-7. Boundaries for generating the 𝑷 matrix to evaluate the DLT algorithm 

Parameter name Units Min value Max value 
Position X mm -10 5 

Position Y mm 350 500 

Position Z mm -10 10 

Angle X deg -5 5 

Angle Y deg -8 -1 

Angle Z deg -5 5 

 

From this range, a set of 1000 random DRR images are created using a uniform distribution. Then the DLT 

algorithm was run. The results are tabulated in Table 5-8. The absolute error is used, i.e., 

|𝑣𝑡𝑟𝑢𝑒 − 𝑣𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑|, which has the same dimension as the parameter it describes. Therefore, the set of 

errors of all parameters is no longer averaged, but analyzed individually. In this case, the relative error is 

avoided as the actual value of the optical center is zero, so the relative error becomes meaningless [165]. 

The angles and positions X and Z are in a range close to zero. It means an error of 1mm in a position with 

an actual value of 1mm gives a relative error of 100%. The relative error would lead to misinterpretations 

of the results for those ranges close to zero, so the absolute error can be more meaningful here. 

Table 5-8. Boundaries for generating the 𝑷 matrix to evaluate the DLT algorithm 

Parameter name Absolute error 
Focal length [mm] 6.82 

Optical center X [px] 12.31 

Optical center Y [px] 11.33 

External frame position X [mm] 0.86 

External frame position Y [mm] 6.48 

External frame position Z [mm] 0.21 

External frame rotation X [°] 0.23 

External frame rotation Y [°] 0.01 

External frame rotation Z [°] 0.30 
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The results show similar behavior as in the pure mathematical simulation. The optical center is the 

measurement with the highest error, followed by the focal length. As the focal length has a large and 

constant actual value, the relative error can be computed as 0.682%. This error is higher than the focal 

length errors computed in the last sections, which can be attributed to two causes. One is the accuracy of 

fiducial center detection. The second reason, the opacity of the fiducials in the DRR images is not strong 

enough due to the DICOM generation process, see Appendix A.8. On the other hand, in the real device, 

the fiducials are made of steel, a material with high opacity under the X-rays. 

The computation of the parameters with the DLT algorithm using the DRR module is considered to be 

within acceptable accuracy compared to the simulations performed in section 5.4.2. It has also been seen 

in the literature that the error in parameter estimation using a calibration device is more relevant in the 

focal length and the optical center [166].  

One interesting feature of the estimation problem can be seen by plotting the focal length histogram, 

which shows that the pinhole camera parameter calculation follows a gaussian distribution. See Figure 

5-22. This leads to the assumption that the mean of parameters calculated from many samples 

approaches the values of the actual parameters as stated by the central limit theorem [167]. 

 

Figure 5-22. Focal length histogram using 1000 DRR images 

 

Design of the Parametrization Device 

Two considerations are followed for the design of the parametrization device. First, the device can be 

fixed to the C-arm or carried by an operator. Secondly, the fiducials center references are kept by an RB 

attached to the device, named CRB, whose placement is considered in the design stage. The entire design 

can be seen on the left side of Figure 5-23. The implemented device already attached to the C-arm 

detector can be seen in Figure 5-23, right side.  
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Figure 5-23. Full design of the parametrization device on the left, installed device on the right 

 

As reported in the literature, image intensifiers C-arms suffer from distortion due to the earth's magnetic 

field [28]. Additionally, the C-shape structures are prone to bending, which creates fluctuations in the 

intrinsic parameters depending on the C-arms poses [27]. The undistortion procedure is explained in 

section 5.3, so only images without distortion are considered for the C-arm parametrization. The 

fluctuations of the C-arm intrinsic parameters are determined for a specific C-arm. The parametrization 

device is rigidly attached to the C-arm detector, so the intrinsic and extrinsic parameters found in 

consecutive images are expected to be similar. 

The Ziehm Vario 3D C-arm offers the possibility to make scans. A scan takes 130 X-ray images along the C-

arm arc, which has a 135° stroke. Ten of these scans are performed, varying the rotation point of the 

C-arm; thus creating 1300 unique images. For each of the images, the intrinsic and extrinsic parameters 

are calculated. One of the simplest parameters to analyze is the focal length, since the C-arm bending is 

expressed as a one-dimensional parameter. The parameters of the ten scans are sorted by the C-arm arc 

angle. The scans start at 90° from the LAT rotation, thorough AP (0°), and end at -35°. The values are 

further gathered in groups of 10° range. For each range, there are 100 samples, which are averaged. The 

plot of focal length vs. angle of the C-arm can be seen in Figure 5-24. 

It can be noticed how the bending of the C-arm structure affects its focal length. From the values at 90° 

(LAT projection) and 0° (AP projection), the focal length is computed to be 967.17 mm and 966.99mm, 

respectively. The intermediate positions are shifted considerably, and the range of the angles from 0° to 

-35° shows a decrease in the focal length.  
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Figure 5-24. Focal length vs angle of the C-arm 

 

5.4.4. Testing accuracy of the C-arm parametrization using the Inverse Registration Approach 

For testing the accuracy of the found C-arm parameters, the following experiment is conducted: 

Let a new device be introduced, see Figure 5-25, which has the following characteristics: 

- There is a CT-scan from the device as a DICOM image. 

- The device has seven landmarks that can be detected both physically and in its available 

modalities, i.e., X-ray and CT-scan. 

- The device has an RB rigidly attached, which keeps its registration, i.e., 𝑻𝐷𝐼𝐶𝑂𝑀
 

 
𝑅𝐵 .  

- This device registration has an error smaller than 1mm. Therefore, it will be referred from now on 

as the well-calibrated device. 

 

Figure 5-25. Well-Calibrated device to test C-arm calibration 

 

Five AP and five LAT images of this device are taken using the C-arm, while taken measurements with the 

optical tracking system. As 𝑻𝐷𝐼𝐶𝑂𝑀
 

 
𝑅𝐵  of this device is known, 𝑻 

𝐷𝑅𝑅 
 𝐷𝐼𝐶𝑂𝑀
   can be solved from equation 

(87), obtaining the inverse registration equation: 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
    = 𝑻 

𝐷𝑅𝑅
𝐶−𝐴𝑅𝑀
  ∙ 𝑻 

𝐶−𝐴𝑅𝑀
𝐶𝑅𝐵
  ∙ 𝑻 

𝐶𝑅𝐵 
𝑂𝑇𝑆
  ∙ 𝑻 

𝑂𝑇𝑆
𝐴𝑅𝐵
  ∙ 𝑻 

𝑅𝐵
 𝐷𝐼𝐶𝑂𝑀
   (122) 
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𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   is the pose that is used in the DRR module. With the DICOM of the well-calibrated device, a 

DRR image can be created. All the elements of equation (122) are known, and with an ideal 𝑻 
𝐶−𝐴𝑅𝑀

𝐶𝑅𝐵
  , 

the DRR image will look identical to the X-ray. Then the quality of the found 𝑻 
𝐶−𝐴𝑅𝑀

𝐶𝑅𝐵
   can be inferred 

from the match between the DRR image and the X-ray. The evaluation of the found 𝑻 
𝐶−𝐴𝑅𝑀

𝐶𝑅𝐵
   is carried 

out using the seven available landmarks of the device. The coordinate of each landmark center is detected 

on the DRR and X-ray image. The Euclidian distance of each pair is used, meaning seven Euclidian distances 

will be calculated per test. Since ten images are taken for this experiment, 70 pairs of corresponding 

landmark coordinates are used to find the quality of the C-arm parametrization. The testing procedure 

using one of the AP images is illustrated in Figure 5-26. 

 

Figure 5-26. Testing C-arm parameters. On the left image, the DRR image with the detected landmarks. On the center, the X-ray 
image with the detected landmarks. A subtraction operation of the DRR image and the X-ray image is visible on the right 

 

The landmarks labeling on the X-ray image can be seen in the central frame of Figure 5-26; the DRR image 

with the labeled landmarks can be seen on the left. On the right frame, a subtraction operation of the 

DRR and the X-ray image is performed to visualize the C-arm parametrization accuracy. Visually, the 

overlapping does not show a good match, corroborated in the results in Table 5-9. 

Table 5-9. Distance landmark in X-ray image to DRR image 

 Distance landmark pairs in X-ray to DRR [px] 

Landmark 

Projection 1 2 3 4 5 6 7 

AP1 30.5 30.6 30.4 30.4 30.4 30.0 30.8 

AP2 33.9 33.3 33.7 33.0 34.1 33.4 33.5 

AP3 38.0 37.1 38.2 37.8 37.7 38.7 38.8 

AP4 40.4 40.4 40.1 39.4 40.2 40.4 40.6 

AP5 33.7 34.4 34.1 34.3 34.0 34.3 34.9 

LAT1 208.1 192.5 78.5 80.2 79.5 79.1 78.5 

LAT2 39.9 38.9 42.4 39.2 39.6 39.2 38.3 

LAT3 17.2 18.3 21.1 18.0 16.9 16.8 16.4 

LAT4 5.7 5.4 5.9 5.3 4.3 3.9 4.7 

LAT5 4.3 3.8 4.1 4.0 3.6 3.9 3.9 

 

 Distance average: 35.7 
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It can be noticed that the distance average between corresponding landmarks is about 35.7 pixels. This 

average indicates a mismatching of the X-ray and the DRR image due to the C-arm parametrization. As 

the landmarks are distributed within the entire 3D volume of the well-calibrated device, the mismatch is 

a combination of rotational and translational miscalculation of the C-arm parameters. Since the distance 

between pairs within the same projection is similar, a parametrization error in the translation can be 

assumed. For example, the distance between landmarks is around 30.5px in the projection AP1. That 

means the error mostly comes from an inaccurate estimation of the optical center or the external frame 

position. Another clue comes from the images LAT4 and LAT5, where the average distance is 4.5px. To 

have a broader view of this phenomenon, the calculated optical center of each X-ray image is presented 

in Table 5-10. 

Table 5-10. Optical center of the projections to determine C-arm parametrization accuracy 

 AP1 AP2 AP3 AP4 AP5 LAT1 LAT2 LAT3 LAT4 LAT5 

Optical 
center 

X 71.7 75.6 84.9 87.8 85.0 165.6 96.0 37.5 -8.8 10.9 

Y 38.5 48.9 56.2 59.8 33.2 -155.0 -61.2 -38.2 -15.5 -11.0 

 

A strong correlation between the distance of the landmarks and the optical center can be noticed. For 

instance, the optical center of the image LAT1 is (165.6, -155.0), the farthest from (0,0), and the average 

distance of the landmarks is 113.8, the largest of the entire set. The images LAT4 and LAT5 show oppositely 

the smaller distance between corresponding landmarks and closer optical center to (0,0). 

With this observation, the experiment is elaborated further. The averaged focal length values of the AP 

and LAT projections, taken from Figure 5-24 angles 0 and -90°, respectively, and an optical center in the 

origin are used to optimize the 3D list of points during the calculation of the C-arm parameters [32]. The 

implemented optimizer is a simplex hill, and the delta steps are changes of 0.02mm in the 3D list of points. 

After optimizing the C-arm parameters, the experiment is repeated. The graphical results for the image 

AP1 can be seen in Figure 5-27. 

 

Figure 5-27. Testing C-arm optimized parameters. On the left image, the DRR image with the detected landmarks. On the 
center, the X-ray image with the detected landmarks. A subtraction operation of the DRR image and the X-ray image is visible 

on the right 
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In this case, the results look more accurate in comparison with Figure 5-26, and numerically they can be 

seen in Table 5-11. 

Table 5-11. Distance points in X-ray image to DRR image 

 Distance points in X-ray to DRR [px] 

Landmark 

Projection 1 2 3 4 5 6 7 

AP1 1.8 0.9 2.5 0.8 1.8 0.8 2.3 

AP2 1.9 1.2 2.6 1.3 1.7 2.1 2.5 

AP3 1.6 1.0 2.2 0.6 2.4 1.8 2.0 

AP4 2.3 2.6 2.6 0.6 1.8 2.3 2.2 

AP5 2.1 2.6 1.9 0.7 1.3 1.9 2.2 

LAT1 2.2 3.0 3.4 4.0 3.2 3.8 5.2 

LAT2 2.9 3.9 3.0 3.8 2.7 3.3 4.9 

LAT3 3.5 2.7 3.6 2.4 3.2 3.8 3.5 

LAT4 2.7 2.8 2.0 1.9 3.1 3.1 3.0 

LAT5 1.7 2.7 2.1 2.2 3.0 2.9 3.7 

 

 Distance average: 2.5 

 

After optimizing the camera parameters, the distance average is 2.5px compared with 35.7px when the 

parameters are calculated without additional optimization. The results in Table 5-11 indicate that the 

current approach can find a C-arm camera matrix, which projects a 3D point in 2D, matching the actual 

device with a difference of 2.5px on average. As the pixel spacing of the Ziehm Vario 3D is 0.345mm/px, 

the average distance error is 0.8625mm. This result is considered suitable for the C-arm parametrization. 

Therefore, every X-ray image used in the registration process uses this optimization procedure on the 3D 

list of points to find the C-arm parameters. That means each X-ray image calculates a 𝑻 
𝐶−𝐴𝑅𝑀

𝐶𝑅𝐵
  , which 

results from running the DLT algorithm plus the final optimization stage. 

 

5.4.5. Discussion and Conclusions 

As the C-arm images are formed from an ideal focal X-ray source, the C-arm can be mathematically 

modeled using the pinhole camera model. With this approach, the intrinsic and extrinsic parameters of 

the C-arm can be known. The intrinsic parameters refer to the constrained parameters, which ideally are 

unique for each device, but that is found to be pose-dependent in practice. The extrinsic parameters 

represent the transformation from the {C-arm} frame to the external frame describing the positions of 

the fiducials {CRB}. 

To find the camera parameters, the DLT algorithm is evaluated mathematically and in simulation. Using 

the DRR module, it is found that the DLT algorithm gives a parametrization relative error of about 0.68% 

when detecting the focal length. 

The accuracy of the results also depends on the number of fiducials that form the parametrization device. 

However, a trade-off between the number of used fiducials and accuracy must be found since the more 
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fiducials there are, the more the body segment is obstructed. After some analysis, it is found that twelve 

fiducials give enough accuracy while keeping the image obstruction to a minimum extend. 

The algorithm to detect the center of the fiducials is selected based on a literature review that states the 

advantage of using a mass center approach instead of a geometrical center computation. The 

implemented detection algorithm is analyzed, and it shows that pinhole camera parameter calculation 

can be described with a Gaussian distribution. 

A set of scans is executed, covering the entire motion range of the C-arm. The results of the scans are 

used to plot the curve focal length vs. C-arm angle, showing a volatile focal length over the motion range. 

Presumably, the C-arm bending is the cause of the focal length variation. 

A test for the C-arm parametrization is carried out using a well-calibrated device with known landmarks 

and a novel inverse registration approach. The test result provides a pose for the DRR module, which 

creates a DRR image from the DICOM of the well-calibrated device. Ideal C-arm parameters make a perfect 

match between the DRR and the X-ray image. The error in estimating the parameters is measured based 

on the Euclidian distance between corresponding landmarks in the DRR and X-ray image. The initial results 

give an average distance among corresponding landmarks of 35.7px. Later, an optimizer is implemented 

to improve the C-arm parametrization. In this final stage, the average distance of corresponded landmarks 

between DRR images created with the found camera parameters and the actual X-ray images reduces 

from 35.7px to 2.5px. This disparity between imaging modalities is considered suitable for the C-arm 

parametrization. 

 

5.5. Evaluation and Selection of Image Similarity Measurement (Merit) 

Functions and Optimization Algorithms  

In section 4.7.2 and 4.7.3, twelve image similarity measurements and five optimizers are introduced, 

respectively. An image similarity measure is used in tandem with an optimizer, following the procedure 

explained in sections 4.7.4 and 5.2 to find the pose that minimizes the 2D/3D registration cost function. 

The nearness of the initial pose to the actual registration pose impacts the 2D/3D registration accuracy 

[168], and it is influenced by the body segment to be registered, the used image measurement, and the 

optimization algorithm [124] [6] [116].  

This section discusses the unique outcome of selecting the image similarity measurement and the 

optimization algorithm for the specific lumbar spine intensity-based 2D/3D registration using pre-

operative CT-scan imaging and intraoperative X-ray images [169]. Seven combinations of optimizers 

connected in cascade are included in the evaluation, attempting to find a novel optimizer for the 

registration problem. The selection process is based on an experimental procedure that combines AP and 

LAT images to execute several 2D/3D registrations. With the help of some predefined landmarks on the 
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phantom, the registration accuracy is calculated using the procedure in section 5.2.7 and sorted, such as 

the results show the performance of specific similarity measurements and optimizers. 

 

5.5.1. Experiment Set up for the Evaluation and Selection of Image Similarity Measurement 

Functions and Optimization Algorithms 

The development of the 2D/3D registration is explained in detail in section 5.2, and it is mentioned that 

the optimal setup uses two images from perpendicular projections [70]. Consequently, the 2D/3D 

registration achieves optimal results if carried out using in tandem one AP and one LAT image. 

The implemented intensity-based registration using an iterative method requires an optimizer and an 

image similarity measurement. In section 4.7.2, twelve similarity measurements are described, and five 

optimizers are introduced in section 4.7.3. Based on some preliminary tests, the BN optimizer shows the 

most promising results. Based on that, some additional optimization algorithms are implemented as a 

cascade of two (two-stage) optimizers, using the BN optimizer in the final stage. That means, after carrying 

out a registration, an additional registration is automatically executed using the result of the first 

registration as the initial pose for the second optimizer. The following two-stage optimization algorithms 

are implemented: GRDE + BN, AD + BN, AG + BN, and Adams + BN. Also, three-stage optimization 

algorithms are implemented, finishing in GRDE + BN. These combinations are AD + GRDE + BN, AG + GRDE 

+ BN, and Adams + GRDE + BN. All in all, twelve optimizers are implemented and tested. 

A spine phantom containing the sacrum bone and the vertebra L1 to L5 is the test object. A CT-scan of the 

phantom is also available for executing the registration. The phantom and its CT-scan rendering can be 

seen in Figure 5-28. These phantoms can be found commercially, and they have similar X-ray absorption 

as real bones, so their X-ray images are comparable to X-ray images of real bones. 

 

Figure 5-28. Phantom for selecting the image similarity and optimizer. Actual phantom on the left, CT-scan render on the right 
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5.5.2. Experiment Execution 

Five AP and five LAT X-ray images of the phantom are taken using the C-arm. Since one AP and one LAT 

image are required for the registration process, a total combination of 25 AP and LAT images is created. 

For each of these 25 combinations, the registration process is executed using the twelve different 

optimizers and the twelve different similarity measurements. That means 144 registrations are carried 

out for each of the 25 combinations of the AP and LAT images. All in all, 3600 registrations are performed 

for this test. 

Using a DICOM viewer, it is possible to extract the 3D coordinates of some landmarks in the DICOM 

volume, i.e., 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝐼𝐶𝑂𝑀 . The selection process can be seen in Figure 5-29. 

 

Figure 5-29. Setup to find DICOMTLandmark 

 

Likewise, the same landmark can be pinpointed on the phantom with the help of the navigation system, 

a pointer, and an RB attached to the phantom, i.e., 𝑻𝑃𝑅𝐵 
𝐴𝑅𝐵 . This setup can be seen in Figure 5-30. When 

the pointer is touching the landmark, the position of {PRB} is considered as {landmark}, finding 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐴𝑅𝐵 . The selected landmarks are steel posts installed on the phantom that can be distinguished 

easily. 
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Figure 5-30. Setup to find ARBTLandmark, equals to ARBTPRB 

 

Each of the 3600 registrations is evaluated using equation (104) from section 5.2.7. It is worth mentioning 

that each registration is assessed using four landmarks, which are averaged to find each registration 

accuracy. Depending on the similarity measurement, an iteration takes from 60ms up to 180ms. The 

number of iterations depends on the selected optimizer and the initial pose. During these tests, BN 

required an average of 12 iterations per registration, GD four iterations, and AD five iterations. That means 

one registration can take as short as 240ms but long as 2160ms. The computation times are not 

considered for the evaluation as the primary objective of the registration is to deliver accurate results, 

and the most critical time is acceptable. Two decision tables, which are essential for any decision-making 

method, are built with the registration results [170]. The decision tables are created based on the desired 

component to be determined, i.e., optimizer and image similarity measurement. The option that 

generates the smallest RMS error is selected as the most suitable component. 

 

5.5.3. Finding a Suitable Optimization Algorithm for the Intensity-Based 2D/3D Registration 

for Lumbar Spine Surgery 

For this selection, the decision table, Table 5-12, is built with the optimization algorithms as the rows and 

the RMS error of each landmark as columns. Each landmark error is created from 300 measurements, i.e., 

registration on the combination of five AP and five LAT images using 12 Image similarity measurements. 

The final average in the last column is the average over the four RMS landmark errors. 

 

 



Evaluation and Optimization of the Selected 2D/3D Image Registration Approach 

103 
 

Table 5-12. Decision Table for selecting optimizers 

Optimizer 
RMS error 
Landmark1 

[mm] 

RMS error 
Landmark2 

[mm] 

RMS error 
Landmark3 

[mm] 

RMS error 
Landmark4 

[mm] 

Averaged 
RMS error 

[mm] 
AD 3.39 3.48 2.41 2.32 2.90 

AD + BN 2.99 3.05 2.07 2.11 2.55 

AD + GRDE + BN 2.98 3.04 2.06 2.10 2.55 

AG 3.68 3.74 2.63 2.48 3.13 

AG + BN 3.02 3.07 2.07 2.15 2.58 

AG + GRDE + BN 2.99 3.04 2.06 2.15 2.56 

Adams 5.18 5.28 4.46 4.96 4.97 

Adams + BN 3.65 3.71 2.76 2.92 3.26 

Adams + GRDE + BN 3.73 3.81 2.87 3.05 3.36 

BN 2.86 2.84 1.83 2.01 2.38 

GD 4.84 4.87 3.71 3.44 4.22 

GD+ BN 3.23 3.31 2.33 2.46 2.83 

 

Table 5-12 shows that BN gives the best average RMS error, 2.38mm, followed by AD+BN and 

AD+GRDE+BN with 2.55mm, and by AG+GRDE+BN and AG+BN with 2.56mm and 2.58mm, respectively. It 

is concluded that the best optimizer for this work is BN. BN is not the most popular choice in literature for 

2D/3D registration because it is computationally inefficient, i.e., it evaluates the cost function more than 

any other optimization algorithm before it reaches its minimum. On the other hand, one of the most 

critical elements to consider in a minimally invasive surgery is accuracy. In this case, the most accurate 

result is achieved through the highest computational-demanding method, which takes some hundreds of 

milliseconds more. 

 

5.5.4. Finding Suitable Image Similarity Measurement for the Intensity-Based 2D/3D 

Registration for Lumbar Spine Surgery 

The decision table is built in this case with the similarity measurements as the rows, while the columns 

have the RMS error of each landmark. See Table 5-13. The error of each landmark is not calculated over 

all the optimizers; instead, the best five optimization algorithms found in section 5.5.3 are used. While 

using the best five optimizers, there are still 125 samples per similarity measurement. Since the decision 

table is made with the optimizers that give the smallest landmark error, the selected image similarity 

measurement is assumed to lead to the lowest landmark RMS error. 
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Table 5-13. Decision Table for selecting Similarity Measurements 

Similarity 
Measurement 

RMS error 
Landmark1 

[mm] 

RMS error 
Landmark2 

[mm] 

RMS error 
Landmark3 

[mm] 

RMS error 
Landmark4 

[mm] 

Averaged 
RMS error 

[mm] 
CR  2.80 2.86 1.93 2.12 2.43 

GC  2.66 2.82 1.90 2.04 2.36 

GD  3.12 3.08 2.15 2.26 2.65 

MI  2.66 2.74 1.80 1.97 2.29 

NACC  3.32 3.25 2.21 2.24 2.75 

NCC  3.21 3.22 2.24 2.21 2.72 

NMI  2.84 2.83 1.92 2.03 2.41 

PI  2.76 2.80 1.93 2.04 2.38 

SAD  3.25 3.26 2.11 2.17 2.70 

SLNC  2.86 2.98 1.85 1.99 2.42 

SSD  3.35 3.39 2.28 2.13 2.79 

VWSLNC  2.80 2.85 1.90 2.07 2.40 

 

It can be seen from Table 5-13 that MI is the similarity measurement giving the most accurate 

registrations. MI gives 2.29mm of averaged RMS error, followed by GC with 2.36mm. The obtained results 

agree with the literature, which points out the effectivity of these similarity measurements for 2D/3D 

registration applications [123] [171] [172]. 

 

5.5.5. Discussion and Conclusions 

The registration error is found using a spine phantom, which has distinguishable landmarks in both the 

physical device and its CT, i.e., the landmark coordinate can be found. The error of the registration due to 

the translation mismatch is found using the procedure in section 5.2.7. 

The evaluation is carried out by comparing the twelve similarity measurements and twelve optimization 

algorithms described in sections 4.7.2 and 4.7.3. The evaluation is created using 25 registration, made 

from combining five AP and five LAT images. In total, 3600 registrations are executed using the 

combination of optimization algorithms and image similarity measurements in each pair of AP and LAT 

images. 

Best Neighbors is found as the image similarity measurement that gives the most accurate results in our 

application. BN is not commonly used in literature as it is one order of magnitude more expensive 

computationally than other optimizers. However, the increase from some hundreds of milliseconds to 

some seconds is not as critical as decreasing the registration accuracy. 

Mutual information and gradient correlation give the most accurate registration for the specific lumbar 

spine intensity-based 2D/3D registration using pre-operative CT-scan imaging and intraoperative X-ray 

images. The obtained similarity measurement and optimization algorithm are considered a novel result 

due to the specific application and implementation discussed in this work [169]. It is worth noting that the 

image similarity and optimization algorithm selection are aligned with the 2D/3D registration literature 

when evaluating image similarity measurement in other body segments [123] [171] [172]. 
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5.6. DRR Module Development Using Parallel Computing 

The DRR module is one of the most fundamental components of the intensity-based 2D/3D registration. 

It is used to project the 3D CT volume into a 2D image based on a ray-casting approach. See section 3.5. 

Some modifications have been done to the ray-casting algorithm to make it suitable for radiological 

applications, known as the Siddon-Jacobs algorithm [104]. 

The DRR algorithm must generate images as fast as possible since the intensity-based 2D/3D registration 

approach requires twelve image measurements per iteration; consequently, it generates twelve DRR 

images per iteration. 

Some implementations of the Siddon-Jacobs algorithm have been done in different frameworks in the 

past years [173] [174]. Although an own implementation is carried out in this work, a DRR module from a 

trustworthy source is used as ground-truth for validating the resulting images and testing the rendering 

times [174]. 

This section evaluates the performance of the ground-truth DRR module, creating the requirements for a 

new DRR module, which must maintain the same image quality with faster rendering times. With these 

requirements, the 2D/3D registration would keep the same accuracy with reduced time. As execution 

time vs. quality is usually mutually exclusive, a fast-parallel computing approach is developed using a novel 

pixel-step method [175]. The rendering times of the ground-truth DRR and the newly implemented 

module with a parallel computing approach are compared. The performance values indicate that 

rendering time decreases by more than three orders of magnitude when using the parallel approach. 

 

5.6.1. Native and Serial DRR Module 

The programming language used during the development of this work is C++. A medical framework 

developed by Fraunhofer called MeVisLab includes a ready-to-use DRR module [174]. The rendered 

images and the rendering times of this module are used as the ground-truth metrics of the DRR module. 

A CT-scan of a phantom is used in the 2D/3D registration process, as Figure 5-28 shows. The same CT 

volume (in DICOM format) is used as the 3D object input for the DRR module. The DICOM file has a size 

of 512x512x442 voxels, which expresses its dimension in X-, Y- and Z-Axis, respectively. 

The theory behind the DRR module is explained in section 4.7.1. Creating a DRR image requires three 

translations and three rotations gathered in 𝒑⃗⃗ ∈ ℝ6  as defined in (32). The vector 𝒑⃗⃗  expresses the 

transformation from {DRR} to {DICOM}, also represented as 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . The ray-casting algorithm goes 

through the volume and computes the line integral using the voxels in its path. Consequently, the 

computation time depends on the number of voxels to evaluate, which are a function of the CT-scan size 

and the ray trajectory that depends on 𝒑⃗⃗ . Figure 5-31 depicts the difference in the ray-path length inside 

the volume depending on 𝒑⃗⃗ . 𝒑⃗⃗ 𝟏 depicts a shorter path than 𝒑⃗⃗ 𝟐, which translates into a shorter rendering 

time for 𝒑𝟏⃗⃗ ⃗⃗  than 𝒑⃗⃗ 𝟐. 
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Figure 5-31. Ray path dependency with 𝒑⃗⃗  

 

Bearing that in mind, the performance times are executed testing extreme cases, i.e., using ray-paths that 

go through the minimum and the maximum number of voxels of the CT volume. The minimum case is 

achieved when no rotation is applied as the ray-path goes in the negative Y-axis direction. The maximum 

case can be approximated with a combination of a 45-degree-rotation around the Z- and X-axis. See Figure 

5-32. 

 

Figure 5-32. Ray-casting path evaluating the minimum and maximum number of voxels 

 

It is stated in section 5.2.5 that the registration procedure uses X-ray images of 568x568px with a pixel 

spacing of 0.365mm/px. Consequently, the DRR images, which are compared with the X-ray images, are 

generated with the same resolution and pixel spacing. The results of the performance test can be seen in 

Table 5-14. 
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Table 5-14. Ground-truth DRR module performance 

Test 

𝒑⃗⃗  

Time [s] 𝑡𝑥 
[mm] 

𝑡𝑦 

[mm] 

𝑡𝑧 
[mm] 

𝑟𝑥 
[°] 

𝑟𝑦 

[°] 

𝑟𝑧 
[°] 

1 0 0 0 0 0 0 16.12 

2 20 20 20 45 0 0 20.14 

3 50 50 0 0 0 45 21.66 

4 10 20 30 45 0 45 32.85 

 

The results of Table 5-14 indicate that a single DRR image takes around 16 seconds in the best-case 

scenario, but a time of 32 seconds has to be considered in some specific poses. The 2D/3D registration is 

achieved using two X-ray images, one AP and one LAT projection. Section 5.2.1 states that each iteration 

of the 2D/3D registration requires creating twelve DRR images, yet the registration concept is extended 

in section 5.2.6 by using two X-ray images. This registration with two simultaneous X-ray images uses an 

additional DRR module, one for each X-ray image. It means that a total of 24 DRR images are required for 

an iteration, making a time of 384 seconds per iteration. Without considering the total time for a 

registration, it can be seen that the ground-truth module is impractical for a real scenario; therefore, the 

DRR module has to be implemented more efficiently while keeping the same characteristics of the 

rendered image. 

 

5.6.2. DRR Module Implementation 

The starting point of the DRR implementation is the Siddon-Jacobs algorithm, described in section 4.7.1, 

which establishes the line integral of the ray-path as the base for the DRR module. The Siddon-Jacobs 

algorithm, defined by equations (34) and (35), requires an initial and a final point for the ray-path. Every 

DRR image must calculate a ray-path for each pixel in the rendering plane. The CT volume and the 

rendering plane are related by 𝒑⃗⃗ . 

The DRR calculations are split first in the three rotations and afterward in the space translation. It is worth 

mentioning that the rotations form a set of Euler ZXY rotations. Setting the rotation around the X-axis in 

the second position is done to avoid a gimbal lock scenario as the 90° rotation in the X-axis is hardly 

possible to achieve without a collision between the C-arm and patient. See Figure 5-33. 
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Figure 5-33. DRRTDICOM visualization 

 

It is convenient to rotate around the isocenter of the volume instead of the origin of the volume to avoid 

translations of its origin due to rotations. See Figure 5-34. 

 

Figure 5-34. Determination of the DICOM Isocenter 

 

Although 𝒑⃗⃗  is equivalent to 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  , it simplifies the calculations if the DRR is computed using the 

transformation 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
  . This calculation can be done since 𝑻 

𝐷𝐼𝐶𝑂𝑀 
 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
   is a 

constant, which depends only on the volume size as expressed in (123). 

𝑻 
𝐷𝐼𝐶𝑂𝑀 

 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
  = [

1 0 0 𝑁𝑢𝑚𝑏𝑒𝑟_𝑉𝑜𝑥𝑒𝑙𝑠_𝑋/2
0 1 0 𝑁𝑢𝑚𝑏𝑒𝑟_𝑉𝑜𝑥𝑒𝑙𝑠_𝑌/2
0 0 1 𝑁𝑢𝑚𝑏𝑒𝑟_𝑉𝑜𝑥𝑒𝑙𝑠_𝑍/2
0 0 0 1

] (123) 

 

The given pose to the DRR module is 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  , but it is transformed to 𝑻 

𝐷𝑅𝑅 
 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
   as: 
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𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
  = 𝑻 

𝐷𝑅𝑅 
 𝐷𝐼𝐶𝑂𝑀
  ∙ 𝑻 

𝐷𝐼𝐶𝑂𝑀 
 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
    (124) 

 

Pixel-Step Method 

A critical parameter in the DRR module is the source-detector distance, also known as the C-arm focal 

length, 𝑓, in section 4.5. In the DRR module, the origin is located equidistance along the Y-axis between 

the source and the detector. The ray-source is represented by point 𝒔 = [0, 𝑓/2 , 0], and the detector is 

represented by three points 𝒂, 𝒃, and 𝒄, which defined three corners of the detector. See Figure 5-35. As 

𝒔, 𝒂, 𝒃, and 𝒄 are described by the DRR frame, they can be written as 𝒑𝑠 
𝐷𝑅𝑅 , 𝒑𝑎 

𝐷𝑅𝑅 , 𝒑𝑏 
𝐷𝑅𝑅 , and 𝒑𝑐 

𝐷𝑅𝑅 , 

representing the corners of the resulted image in ℝ3.  

As the output image size and pixel spacing are inputs of the DRR module, they are used for computing 

𝒑𝑎 
𝐷𝑅𝑅 , 𝒑𝑏 

𝐷𝑅𝑅 , and 𝒑𝑐 
𝐷𝑅𝑅  as follows: 

 

𝒑𝑎 
𝐷𝑅𝑅 = [−𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒𝑋 ∙ 𝑝𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2,−𝑓/2, 𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒𝑌 ∙ 𝑝𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2]𝑻 

 

𝒑𝑏 
𝐷𝑅𝑅 = [𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒𝑋 ∙ 𝑝𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2,−𝑓/2, 𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒𝑌 ∙ 𝑝𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2]𝑻 

 

𝒑𝑐 
𝐷𝑅𝑅 = [𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒𝑋 ∙ 𝑝𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2,−𝑓/2,−𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒𝑌 ∙ 𝑝𝑖𝑥𝑒𝑙𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2]𝑻   

(125) 

 

 

Figure 5-35. DRR reference frames representation 

 

The points 𝒑𝑠 
𝐷𝑅𝑅 , 𝒑𝑎 

𝐷𝑅𝑅 , 𝒑𝑏 
𝐷𝑅𝑅 , and 𝒑𝑐 

𝐷𝑅𝑅  are the elements, where the transformation 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅
   is applied. Once the new position of those points is achieved, i.e., 

𝒑𝑠 
𝐷𝐼𝐶𝑂𝑀 , 𝒑𝑎 

𝐷𝐼𝐶𝑂𝑀 , 𝒑𝑏 
𝐷𝐼𝐶𝑂𝑀 , and 𝒑𝑐 

𝐷𝐼𝐶𝑂𝑀 , each pixel of the image can be found by adding offsets of pixel 

spacing sizes in X- and Z-axis in {DICOM} [175]. The pixel (𝑛,𝑚) of the DRR image can be calculated using 

the equation (49) and (50) with the initial point, 𝒑𝑠 
𝐷𝐼𝐶𝑂𝑀 , and the final point 𝒑PIXEL_(𝑛,𝑚) 

𝐷𝐼𝐶𝑂𝑀 . The 

above procedure is illustrated in Figure 5-36. 
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Figure 5-36. DRR pixel rendering process 

 

A DRR image is rendered after the 𝑁 ×𝑀 pixels of the image are calculated. In this particular case, the 

created images consist of 568x568 pixels, which compute 322624-line integrals, one per pixel. In the 

center of Figure 5-37, it can be seen a DRR image created with the own implementation; on the left side, 

it can be seen the DRR image from the ground-truth module using the same 𝒑⃗⃗ . Both images have the 

grayscale range [0-255]. The pixel-wise absolute difference between both images is calculated and 

displayed on the right side of Figure 5-37. The darker the resulted image, the more similar the two DRR 

images are. It can be noticed that consistent gray background color and some grayscale patches on the 

body segment are visible. The patches are due to approximation errors and edge handling between 

implementations. The whitest spots visible in the pixel-wise absolute difference image have a grayscale 

value of 11, while the darkest spots have a grayscale value of 4. In the visualization of the difference image, 

the contrast was increased to the maximum; otherwise, it would not have been possible to visualize the 

difference as the grayscale range is [4-11]. This reduced grayscale range is a good indicator of the similarity 

between the two approaches. 

 

Figure 5-37. DRR image rendering: Left ground truth, center own implementation. Pixel-wise absolute difference between DRR 
images on the right 

 

Since render quality between the two approaches is equivalent, the evaluation of the implementation can 

be focused on the rendering time. 
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The rendering time measurement is carried out following the same poses in Table 5-14, image dimension 

of 568x568 pixels, and pixel spacing of 0.365 px/mm. The results can be seen in Table 5-15. 

Table 5-15. Own DRR module performance 

Test 
𝒑⃗⃗  

Time [s] 

Speed improvement with 
respect to the ground-truth. 

[n-folds] 
𝑡𝑥 

[mm] 
𝑡𝑦 

[mm] 
𝑡𝑧 

[mm] 
𝑟𝑥 
[°] 

𝑟𝑦 

[°] 
𝑟𝑧 
[°] 

1 0 0 0 0 0 0 1.71 9.43 

2 20 20 20 45 0 0 2.41 8.36 

3 50 50 0 0 0 45 2.94 7.67 

4 10 20 30 45 0 45 4.01 8.19 

   Average speed improvement [n-folds]: 8.41 

 

It can be noticed that the implemented DRR is about 8.4 times faster than the ground-truth module. It is 

a significant improvement just based on the pixel-step method and the implementation efficiency. 

However, considering the rendering times applied to the 2D/3D registration, one iteration would take 

around 41 seconds in the best case. The new implementation does not reach an execution time to be 

practical for a real-scenario; therefore, further optimizations must be considered. 

 

5.6.3. DRR Module Implementation with Parallel Computing 

The Siddon-Jacobs algorithm was created initially for serial computing, but its working principle allows 

parallelization, which leads to an increment in the computing speed. In the implementation in section 

5.6.2, for every pixel, the required initial and final points for the ray-casting algorithm are calculated using 

the pixel-step method, and then the Siddon-Jacobs algorithm is applied by calculating the line integral. 

This procedure uses a serial approach, which means that the next pixel in line starts once the previous 

pixel is calculated. Using a parallel approach, several pixels can be calculated simultaneously as the 

calculation of one pixel is independent of any other pixel. 

One approach consists of using multi-threading. Each thread can be executed simultaneously and 

independently in the available cores inside the computer's central processing unit (CPU). This work was 

developed in a computer with an Intel i7-8800K processor, which contains six cores, two logic processors 

per core, and can execute one thread per logic process, i.e., it can run up to 12 threads. The proper 

implementation could lead to a maximum theoretical further improvement of 12 times the current speed, 

which means a DRR image could be rendered in around 230ms and a registration iteration executed in 

about 5.5 seconds. Considering synchronization and preparations for splitting the calculation in multiple 

threads, the final time would not reach the 12 times improvement, so a registration iteration would not 

reach the 5.5 seconds mark. 

Another approach is to use the computational power of the graphics processing unit (GPU). Intrinsically, 

the GPU is designed for high-speed graphics, which are inherently parallel [176]. While CPUs focus on low 

latency, GPUs focus on high throughput [177]. That means the CPU is faster than the GPU to accomplish 
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a task, but the GPU is faster to process thousands of tasks due to its parallel capabilities. With the Compute 

Unified Device Architecture (CUDA) release by NVIDIA in 2006, GPUs were brought into the general-

purpose processing applications [178]. 

CUDA is a parallel computing platform, which simplifies the programming process for parallel computing 

in the GPU. CUDA allows defining C++ functions, called kernels, which are executed 𝑁 times in parallel by 

𝑁 different CUDA threads [178]. In this work, an Nvidia GTX 1080 graphics card was used, which can 

execute 16 threads per CUDA core, and it has 2560 CUDA cores. Consequently, the GPU can execute up 

to 40960 threads simultaneously. Since the GPU processor frequency, 1.57Ghz is 2.4 times slower than 

the used CPU, 3.7Ghz, the computation of a single-pixel of the DRR image takes longer using a GPU thread. 

However, the vast number of simultaneous pixels the GPU can process is enough to increase the overall 

execution time, as Table 5-16 shows. 

Table 5-16. Parallel computing DRR module performance 

Test 

𝒑⃗⃗  

Time [ms] 

Speed improvement with respect 
to the 

𝑡𝑥 
[mm] 

𝑡𝑦 

[mm] 
𝑡𝑧 

[mm] 
𝑟𝑥 
[°] 

𝑟𝑦 

[°] 
𝑟𝑧 
[°] 

ground-truth. 
[n-folds] 

Serial 
implementation 

[n-folds] 
1 0 0 0 0 0 0 4.71 3422.5 363.1 

2 20 20 20 45 0 0 5.98 3367.9 403 

3 50 50 0 0 0 45 6.57 3296.8 447.5 

4 10 20 30 45 0 45 22.80 1440.8 175.9 

   Average speed improvement [n-folds]: 2882 347.4 

 

The Siddon-Jacobs algorithm and the pixel-step method do not change by the parallel implementation, 

only the functions invocation. That means the visual results remain the same as with the serial 

implementation. Table 5-16 shows the boost in the performance by the parallel computing 

implementation of the DRR. Now the average rendering times are around 10ms, showing an improvement 

of 347 times compared with the serial implementation and 2882 times with the ground-truth, more than 

three orders of magnitude.  

These rendering times in the 2D/3D registration context indicate that one iteration can be done in around 

240ms and a 20-iteration registration in 4.8 seconds. This implementation fulfills the overall execution 

time for the 2D/3D registration procedure in a real scenario. 

 

5.6.4. Discussion and Conclusions 

The DRR module evaluation is carried out using a CT-scan of 512x512x442 voxels and creating a DRR image 

of 568x568 pixels with a pixel spacing of 0.365mm/pixel. The ray-path is critical when it crosses many 

voxels, so the evaluation is done using a 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   that makes the ray cross the diagonal of the volume 

cube. 
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A DRR module in the Medical framework and visualization (MeVisLab) was selected as the ground-truth 

DRR. The evaluation of the module gave an average DRR image rendering time of 22 seconds. 

The Siddon-Jacobs algorithm is used as the ray-casting method to render pixels to implement a DRR for 

the 2D/3D registration. Six DoF are further added to the pixel-step method, an approach based on 

transforming four points. One point is the ray-source; the other three are the corners of the image 

detector. The position of any pixel on the transformed detector is calculated using the novel pixel-step 

method.  

With the DRR serial implementation using the pixel-step method, the average DRR rendering time is 

reduced to 2.8 seconds, which consists of an 8.4-fold improvement compared to the ground truth module. 

Further optimization of the DRR implementation is carried out using parallel computing. Using the GPU 

and the CUDA libraries for C++, the Siddon-Jacobs algorithm is adapted to run as a CUDA kernel function. 

A GPU thread can execute a kernel function, and in the case of the available Nvidia GTX 1080 card, it can 

run up to 40.960 threads in parallel. It has to be considered that the GPU frequency, 1.57Ghz, is 2.4 times 

slower than the used CPU, Intel i7-8700k at 3.7Ghz. 

The parallel computing implementation reaches an average execution time of 10ms, which is 347 times 

faster than the serial implementation and almost 3000 times faster than the ground-truth DRR module, 

more than three orders of magnitude faster. With the runtime of the parallel DRR, an iteration of the 

2D/3D registration is done in around 240ms and a complete registration of 20 iterations in 4.8 seconds. 

These times are acceptable for the 2D/3D registration in a real scenario. 

 

5.7. Manual Selection of the Initial Pose for the Registration Procedure 

The implemented intensity-based 2D/3D registration is an iterative optimization process, which requires 

an initial pose for starting the optimization, as explained in sections 4.7 and 5.2. Since the optimization 

result is the pose 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  , then the initial pose is also a 𝑻 

𝐷𝑅𝑅 
 𝐷𝐼𝐶𝑂𝑀0
  . The transformation matrix 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   expresses six DoF, which are gathered in a vector of six elements, i.e., 𝒑⃗⃗ ∈ ℝ6as defined in 

equation (47). Regardless of the used notation, the initial pose for the optimization is a multidimensional 

array, representing a challenge to be inputted manually into the 2D/3D registration. On top of that, the 

final users for this application are non-technical users, health workers, who should be unaware of the 

mathematical background involved in the registration process. Finally, it is worth mentioning that the 

selection of the initial pose influences the registration accuracy as the selection of the initial guess affects 

the results of an optimization procedure. See section 4.7.3. 

In this section, an innovative initial pose-selector is developed using only graphical interaction based on 

the nature of the inputs used for the registration, e.g., 2D and 3D medical imaging. This initial 

pose-selector gives the advantage that the technical aspects are not disclosed to the final user, and a 

close-to-the-registration pose is graphically selected by physicians, who have a well-trained eye for 
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manipulating modalities such as CT-scans and X-rays. The idea behind the graphical pose-selector module 

consists of generating a DRR image from the current view of the DICOM volume. The given pose to the 

registration process, 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀0
  , is taken from the initial pose generator. 

 

5.7.1. Reference Frames of the 3D and 2D Viewers 

The visualization of the 3D volume is carried out using a MeVisLab native module called examiner viewer. 

It allows a user to interact with a 3D object using the mouse actions, i.e., scroll, left-, and right-click. The 

most important feature of the examiner viewer is that it reports the 3D object pose with respect to the 

examiner viewer reference frame, {ExaminerViewer}. As the used 3D object is a DICOM volume, the 

reported pose is 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝐼𝐶𝑂𝑀
  . See Figure 5-38. 

 

Figure 5-38. 3D volume rendered in a MeVisLab examiner viewer 

 

The {ExaminerViewer} is fixed to the rendering window. The manual pose-selector consists of creating a 

DRR image from the examiner viewer's current scene; mathematically, it can be expressed as 

𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝑅𝑅
  . The transformation 𝑻 

𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 
 𝐷𝑅𝑅
   associates the examiner viewer view with 

the DRR view. The first step to find the previous transformation requires determining the examiner viewer 

reference frame. It is done by bringing the examiner viewer to a zero-rotation and zero-translation state. 

At that moment, the {DICOM} is aligned with the {ExaminerViewer}. It can be seen on the left side of 

Figure 5-39 the {DICOM} within the examiner viewer window. That means, {ExaminerViewer} is the fixed 

frame located on the window center, drawing on the right side of Figure 5-39. 
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Figure 5-39. Description of the examiner viewer reference frame 

 

The Y-axis of {ExaminerViewer} points up, and the X-axis goes from left to right while the Z-axis pops out 

of the examiner viewer window. 

In section 5.6, the DRR module is developed in detail. The image reference frame of the DRR module is 

explained in Figure 5-35. Making an analogy with the {ExaminerViewer}, on the right side of Figure 5-39, 

the {DRR} is shown in Figure 5-40. 

 
Figure 5-40. View of the DICOM with Zero-Rotation from the DRR Module 

 

In this case, the DRR window renders an image on the Z-X plane with the Y-axis entering onto the picture. 

Both window frames, i.e., {ExaminerViewer} and {DRR} stay put. That means the transformation 

𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝑅𝑅
   is a constant. In Figure 5-41, both reference frames can be seen side by side. It can 

be noticed that the {ExaminerViewer} must rotate negative 90 degrees in its X-axis to reach the same axes 

distribution as the DRR window. It is assumed that both windows origins do not change, so no translation 

has to be added. 
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Figure 5-41. Comparison of the DICOM Reference Frame in the Examiner Viewer and the DRR Module 

 

Bearing this in mind,  𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑻𝐷𝑅𝑅 can be found as: 

 𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑻𝐷𝑅𝑅 = [
𝑅𝑜𝑡{𝑥, −90°} 𝟎⃗⃗ 

𝟎⃗⃗ 𝑇 1
]  = [

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

] (126) 

 

5.7.2. Transformation Between the 3D-Viewer and DRR Module 

The set of reference frames involved in the manual pose selection are depicted in Figure 5-42. 

 

Figure 5-42. Transformation for Making the DRR Image from the examiner viewer View 

 

It is known from section 5.6 that the input pose of the DRR module is 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . This pose is found using 

the reference frames in Figure 5-42 as: 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  = ( 𝑻 

𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 
 𝐷𝑅𝑅
  )−1  ∙ 𝑻 

𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 
 𝐷𝐼𝐶𝑂𝑀
    (127) 

 

Replacing the constant found in (126) into (127), 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   can be expressed as: 
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𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  = [

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

]  ∙ 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝐼𝐶𝑂𝑀
    (128) 

 

Equation (128) gives the transformation to create DRR images from the same perspective as the examiner 

viewer. 

 

Interpretation of the Depth Parameter in the Examiner Viewer 

The examiner viewer presents an additional challenge. Changing the DICOM depth visualization is done 

by a zoom feature, which does not change the reported coordinates, i.e., 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝐼𝐶𝑂𝑀
  . The 

zoom feature can be seen as an additional reference frame, {ExaminerViewerZoom}, that gets closer or 

farther from the {ExaminerViewer}. The reported zoom value, 𝐻 ∈ ℝ+, represents the closeness of the 

{ExaminerViewerZoom} from the examiner viewer center. From another perspective, 𝐻  moves the 

rendering plane in the Z-Axis of the window view. A graphical explanation can be seen in Figure 5-43. 

 

Figure 5-43. Conversion from the Window Zoom to the ExaminerViewer Frame 

 

𝐻 is incorporated to find feedback from the examiner viewer that gives six DoF. Additionally, the reference 

frame that gives the full pose is the {ExaminerViewerZoom} instead of the {ExaminerViewer}. That means 

equation (128) is updated to: 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  = [

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

]  ∙ 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑍𝑜𝑜𝑚 

 𝐷𝐼𝐶𝑂𝑀
    (129) 

 

As 𝐻 is also reported from the examiner viewer, the transformation 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑍𝑜𝑜𝑚
   

is built with no rotation, and 𝐻 is included as the Z-component of the translation: 

𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑍𝑜𝑜𝑚
  = [

1 0 0 0
0 1 0 0
0 0 1 𝐻
0 0 0 1

]  (130) 
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Now 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑍𝑜𝑜𝑚 

 𝐷𝐼𝐶𝑂𝑀
   can be calculated using the transformation chain depicted in Figure 

5-43 as: 

𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑍𝑜𝑜𝑚 

 𝐷𝐼𝐶𝑂𝑀
    =  ( 𝑻 

𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 
 𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟𝑍𝑜𝑜𝑚
  )

−1
 ∙   
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 𝑻𝐷𝐼𝐶𝑂𝑀   (131) 

 

Replacing (130) and (131) into (129), and simplifying: 

𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  = [

1 0 0 0
0 0 −1 𝐻
0 1 0 0
0 0 0 1

]  ∙   
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 𝑻𝐷𝐼𝐶𝑂𝑀 (132) 

 

Equation (132) gives the transformation to create DRR images from the same perspective as the examiner 

viewer. It uses   
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 𝑻𝐷𝐼𝐶𝑂𝑀 and 𝐻, which are values provided by the examiner viewer. 

 

5.7.3. Results 

In Figure 5-44, Figure 5-45, and Figure 5-46, it is possible to see the DICOM volume rendering on the right 

side and the DRR image automatically created from that perspective. 

 

Figure 5-44. DRR image created from the examiner viewer perspective. Example 1 

 

 

Figure 5-45. DRR image created from the examiner viewer perspective. Example 2 
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Figure 5-46. DRR image created from the examiner viewer perspective. Example 3 

 

In the 2D/3D registration interface, the user is aided by the pixel-wise absolute difference between the 

generated DRR image and the X-ray used for the registration. That means a user can also see the 

overlapping between the DRR and the X-ray image as guidance to create an initial pose to the registration 

algorithm. In Figure 5-47 and Figure 5-48, the DICOM volume rendering is seen on the left side. The actual 

X-ray image is shown on the upper central part, and the DRR image is seen on the bottom center. On the 

right, the pixel-wise absolute difference of the two central images is rendered. 

 

Figure 5-47. Initial pose selection in the 2D/3D registration user interface. Example 1 

 

 

Figure 5-48. Initial pose selection in the 2D/3D registration user interface. Example 2 
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5.7.4. Discussion and Conclusions 

The initial pose selection of the 2D/3D registration is achieved using the native 3D visualizer of the used 

medical framework, MeVisLab. The 3D visualizer, called examiner viewer, reports the pose form 

{ExaminerViewer} to {DICOM}, i.e., 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝐼𝐶𝑂𝑀
  , which is a useful functionality exploited to 

create the graphical initial pose selection. 

The initial pose is taken as the pose that creates a DRR image with the same perspective as the examiner 

viewer is rendering the 3D volume. In other words, the initial pose is the transformation 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  , 

created from 𝑻 
𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟𝑉𝑖𝑒𝑤𝑒𝑟 

 𝐷𝐼𝐶𝑂𝑀
  . 

The graphical manipulation of the DICOM is conveniently presented as the pixel-wise absolute difference 

between the X-ray image to be registered and the DRR image created from the current DICOM view. That 

final absolute difference helps as a guide for the manual selection of the initial pose. 

 

5.8. Local and Global 2D/3D Registration based on the Region of Interest (ROI) 

The benefits of using a ROI in the 2D/3D registration are stated in section 5.2.5, e.g., decreasing the DRR 

rendering time and filtering undesired elements on the X-ray image. Section 5.5.4 develops the image 

similarity measurement whose inputs, the DRR and X-ray image, are evaluated only within the ROI 

boundaries. It is specified that including a ROI in the image similarity decreases the computation time and 

gives a better similarity estimation, which improves the registration result. 

These previous ideas are put together in this section, helping to define the concepts of global and local 

registration. It is shown that the current 2D/3D registration can be further classified as a local 2D/3D 

registration. After that, an experiment is carried out, validating the idea of local 2D/3D registration. Finally, 

an approach to build a quasi-global 2D/3D registration is discussed by an approximation using a piecewise 

function. 

 

5.8.1. Local 2D/3D Registration 

The region of interest is formally defined in section 5.2.5 as two points in the image space forming the 

main diagonal of a rectangle. There are a couple of advantages from the implementation side to defining 

a ROI in the 2D/3D registration process. First of all, no every feature in the X-ray image is considered for 

the registration process, e.g., calculating image similarity measurement. Also, the ROI can be used to 

reduce the size of the generated DRR image, which influences the rendering time; therefore, the 2D/3D 

registration can be executed faster thanks to the ROI definition. 

The 2D/3D registration requires a 3D volume as an input; in this work, a CT-scan. See section 4.7. CT-scans 

are taken as pre-operative images, while X-ray images belongs to the intra-operative data category. The 

definitions of pre- and intra-operative data are elaborated in 4.6.1. One procedural aspect worth 
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considering is the patient positioning during the image modalities acquisition. For the CT-scan, the patient 

lies his/her back on the operating table, supine position [179], see the left side of Figure 5-49.  

On the contrary, the patient is laid down on his/her chest, exposing the patient's back for the spine 

surgery, prone position. The difference between the patient orientation during the modalities affects the 

spine shape, as the right side of Figure 5-49 shows. During the CT-scan, the spine tends to flat while 

keeping the natural curvature during the X-ray. Although the spine changes from a macro view, some rigid 

components, vertebrae, do not deform. The spine is shaped by flexible deformations of the spine disks, 

which shifts the relative position among rigid vertebrae. 

 
Courtesy of AKTORmedTM  

Figure 5-49. Patient positioning during modalities acquisition for spine surgery. CT-scan on the left, X-ray on the right 

 

Trying to register every visible vertebra in an X-ray image with respect to the CT-scan implies that the 

spine deformations are also considered, and that one transformation represents the registration between 

the pre- and intra-operative imaging. A registration of this type represents a global 2D/3D registration, 

but the result is an elastic (non-homogenous) transformation. 

From another perspective, rigid 2D/3D registrations could be possible to achieve among rigid elements, 

i.e., one vertebra in the X-ray image with respect to the same vertebra in the 3D volume. This registration 

can be achieved without considering deformations as long as a single rigid element is used. The selection 

of this rigid element can be made using a ROI on the X-ray image. As only one of the several vertebras in 

the 3D volume is considered, the achieved registration can be perceived as a local 2D/3D registration. 

Since the local 2D/3D registration uses a ROI, then the advantages of using ROIs are brought to the local 

registration. That means the registration is done faster than using the entire image, plus a filtering stage 

on the X-ray image is implicitly added. Using a ROI also focuses on the image similarity measurement to 

one specific vertebra, given more chances to have a successful and accurate 2D/3D registration. 

To validate and test the local 2D/3D registration, a set of registrations are executed. The setup uses the 

spine model used in section 5.5. Ten AP and ten LAT X-ray images are captured in different poses. The 

registrations are made using the combinations of one AP with another LAT images, i.e., 100 combinations. 
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Additionally, four different ROIs are selected in each of the combinations, where each ROI includes a 

different lumbar vertebra, L1 to L4. Figure 5-50 illustrates the ROI selection of the L3 vertebra in both AP 

and LAT projection. 

  

Figure 5-50. ROI selecting the L3 vertebra in DICOM volume. AP projection on the left, and LAT projection on the right 

 

All in all, 500 registrations are executed, 100 registration without ROI and 400 registrations including the 

ROIs from the vertebrae L1 to L4. For this test, four screws are planned, one in each vertebra. It can be 

seen in Figure 5-51 the location of each planned implant in the CT-scan of the spine model. 

 

Figure 5-51. DICOM file with planed implants for the ROI test 
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The registration accuracy is measured using the procedure described in section 5.2.7, equation (104). The 

results are gathered in the rows by the vertebra selected with the ROI, i.e., L1 to L4. Each column shows 

each implant registration RMS error, which is distributed in different vertebrae, L1 to L4. The results of 

each row are made by 100 registration and are displayed in Table 5-17. 

Table 5-17. Local 2D/3D registration accuracy results 

ROI 
selecting 
vertebra 

RMS error in vertebra 

L1 [mm] L2 [mm] L3 [mm] L4 [mm] 

No ROI 1.10 1.68 1.59 1.81 

L1 0.93 1.79 1.79 2.23 

L2 0.91 1.50 1.56 2.01 

L3 1.05 1.40 1.31 1.60 

L4 1.51 1.56 1.20 1.56 

 

It can be seen that the accuracy of the 2D/3D registration is higher when the evaluated screw is included 

in the ROI, diagonal highlighted, in comparison with the case without ROI, “No ROI” row. In other words, 

the accuracy of the registration inside the ROI is better than without a ROI. The implant in the vertebra L1 

improves from 1.10mm to 0.93mm, the implant in L2 from 1.68mm to 1.5mm, in L3 from 1.59mm to 

1.31mm, and the implant in L4 from an RMS error of 1.81mm to 1.56mm. The use of ROIs represents an 

accuracy improvement of around 0.2mm in contrast without using ROI. The previous observations support 

the initial assumption of a local 2D/3D registration, where a zone in the image is registered with high 

accuracy, which is defined by a ROI. 

 

5.8.2. An Approach to Global 2D/3D Registration 

To avoid including deformation and non-linear transformations, the global 2D/3D registration is created 

as the union of local registrations. Analogous to the vertebra selection in a 2D image using a ROI, the 

vertebrae in the 3D volume are split using segmentation. Each segmented vertebra in the volume is 

registered with respect to the corresponding vertebra in the 2D image framed by the ROI. 

 

DICOM Segmentation 

Analog to the ROI in a 2D image defined by a square, the segmentation of the volume is done using a 

cube. Although a cube has eight vertices, it can be defined by two points. Let two points 𝐬x1 and 𝐬x2 be 

defined as:  

{(𝑥𝑥1, 𝑦𝑥1, 𝑧𝑥1), (𝑥𝑥2, 𝑦𝑥2, 𝑧𝑥2) ∈ ℤ | 𝒔𝑥1 = (𝑥𝑥1, 𝑦𝑥1, 𝑧𝑥1), 𝒔𝑥2 = (𝑥𝑥2, 𝑦𝑥2, 𝑧𝑥2)} (133) 
 

The segmentation volume is defined by 𝒔𝑥1  and 𝒔𝑥2 , representing the end-points of the cube main-

diagonal, as Figure 5-52 shows. 
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Figure 5-52. Two points describing the main diagonal of a cube 

 

The points 𝐬x1 and 𝐬x2 are expressed in {DICOM}, i.e.,  𝐷𝐼𝐶𝑂𝑀𝒑𝑠x1 and  𝐷𝐼𝐶𝑂𝑀𝒑𝑠x2. The cube defined by the 

𝐬x1  and 𝐬x2  describes a new reference frame named {SegmentedVertebraLx}, which contains only the 

voxels included within the cube. This new 3D volume is used for the 2D/3D registration as it only contains 

the vertebra Lx. The transformation  𝐷𝐼𝐶𝑂𝑀𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥 can be deduced from the points 𝐬x1 and 

𝐬x2. As explained in section 5.6,  𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀 considers the {DICOM} origin to be located at the DICOM 

volume center; therefore, the transformation  𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅 must be 

considered from the segmentation process. It can be seen in Figure 5-53 the transformations involved in 

the segmentation process using a DICOM spine model and segmenting the vertebra L3. 

 

Figure 5-53. DICOM to Segmented vertebra Lx volume center  

 

Using equation (122), it is straightforward to find  𝐷𝐼𝐶𝑂𝑀𝑻𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅  and 

 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥𝑻𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅 , which remain as constants. 

 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅 can be calculated using as follows: 

 𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅 =

  𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅𝑻𝐷𝐼𝐶𝑂𝑀  ∙    
𝐷𝐼𝐶𝑂𝑀𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥 ∙   

𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅  
 

(134) 
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In the remaining of this section, the used transformation will be  𝐷𝐼𝐶𝑂𝑀𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥, which has 

to be converted to and from  𝐷𝐼𝐶𝑂𝑀_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥_𝐼𝑆𝑂𝐶𝐸𝑁𝑇𝐸𝑅 using (134). 

Once the registration is achieved, the obtained registration pose for the segmented vertebra would be 

 𝐷𝑅𝑅𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥, which can be transformed to {DICOM} using the following relation: 

 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥
=  𝐷𝑅𝑅𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥  ∙   ( 

𝐷𝐼𝐶𝑂𝑀𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥)
−1

 
 

(135) 

 

The result of equation (135) is, in fact, 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀, but for clarity, the resulting transformation is named 

 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑋
, which indicates the local registration,  𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀, of the vertebra 𝑋. 

 

Joining Local Registrations to Build a Quasi-Global Registration 

Screws and implants are planned in the pre-operative data, i.e., CT-scan with DICOM format. As explained 

in section 5.2.7, the planned data has its coordinate in {DICOM}, meaning that the screw pose is given by 

a transformation matrix of the type  𝐷𝐼𝐶𝑂𝑀𝑻𝐼𝑀𝑃𝐿𝐴𝑁𝑇 . From the DICOM segmentation, each vertebra 

boundaries are known by the segmentation cube, which is also described in {DICOM}. 

When a planned implant lies within the boundaries of a segmentation cube, the local registration of that 

segment is assigned to that specific implant. That means a  𝐷𝐼𝐶𝑂𝑀𝑻𝐼𝑀𝑃𝐿𝐴𝑁𝑇𝑋  is assigned a 

 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥
 based on the vertebra, where it is planned. In other words, the global registration is 

approximated as a piecewise-defined function in the volume space, {DICOM}. Therefore, this approach is 

called a quasi-global 2D/3D registration. 

 

Figure 5-54. 3D volume rendered in a MeVisLab examiner viewer 

 

Formally, the global registration is defined as follows: 

 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀  =  {

 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿1
     𝑖𝑓     𝑥11 ≤ 𝑥 ≤ 𝑥12 ∪ 𝑦11 ≤ 𝑦 ≤ 𝑦12  ∪  𝑧11 ≤ 𝑧 ≤ 𝑧12

⋮                                                                                            ⋮                               
 𝐷𝑅𝑅𝑻𝐷𝐼𝐶𝑂𝑀𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝐿𝑥

     𝑖𝑓     𝑥𝑥1 ≤ 𝑥 ≤ 𝑥𝑥2 ∪ 𝑦𝑥1 ≤ 𝑦 ≤ 𝑦𝑥2  ∪  𝑧𝑥1 ≤ 𝑧 ≤ 𝑧𝑥2

  (136) 
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It can be noticed from (136) that outside the boundaries, the registration is undefined. This could be 

solved by assigning the closest transformation to the required point in space. However, as this application 

is made for spine surgery, an implant planned out of boundaries, i.e., not in a vertebra, makes no sense. 

From an application point of view, the non-definition of the registration can be seen as a feature for 

detecting wrongly planned implants. 

 

5.8.3. Discussion and Conclusions 

The results of 500 registrations show that the accuracy of planned screws inside the ROI is higher than the 

accuracy of planned screws outside the ROI. A local 2D/3D registration is the registration executed over a 

defined ROI. The area squared by the ROI in the X-ray image gives the most accurate results on the 

corresponding part of the 3D volume. 

The DICOM segmentation is created by trimming the entire 3D volume into a manually defined cube 

containing a vertebra. There are two things to consider from the segmentation: the cube vertices and the 

transformation from the DICOM volume to the defined vertebra reference frames, 

 𝐷𝐼𝐶𝑂𝑀𝑻𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎. 

The quasi-global 2D/3D registration is approximated by the union of multiple local 2D/3D registrations. 

This union is expressed as a piecewise function that depends on the DICOM coordinates. As the screws 

and implants are planned in {DICOM}, the assignment of a local 2D/3D registration is dependent on the 

position of the implants within the DICOM coordinates. 
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6. Accuracy of the Selected 2D/3D Image Registration Approach 

During chapter 5, the implementation of the 2D/3D registration is explained component by component. 

A set of experiments using a well-registered device are carried out to determine the C-arm 

characterization accuracy. In section 5.5, a set of registrations using a lumbar spine phantom is executed 

to determine the most suitable image similarity measurement and optimization algorithm. In section 5.8, 

another set of registrations are made using the spine phantom to test the local registration hypothesis 

based on the ROI selection. These previously executed registration tests have a common particularity; the 

results rely only on the error of the registration due to the translation mismatch, equation (104), as 

explained in section 5.2.7. 

The use of the error of the registration due to the angle mismatch, equation (106) in chapter 5.2.7, 

requires additional care in the experimental setup. Recalling from chapter 5.2.7, the required measures 

to compute the registration error are the transformations 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝑇𝑅𝐵  and 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 

𝐷𝐼𝐶𝑂𝑀 . These 

transformations are obtained from a corresponding landmark in the phantom and the CT-scan. To 

measure the angle error, the landmark, which is pointed by a planned implant, has to be planned with the 

exact orientation as the measured implant in the phantom. These former conditions are hardly achievable 

with the experimental setup presented so far.  

In this chapter, a new setup is explained for measuring the 2D/3D registration error, such as both errors 

of the registration due to the translation and orientation mismatch can be accurately computed. Also, the 

experiment execution is explained, and the results are analyzed. After that, the accuracy value of the 

implemented 2D/3D registration is approximated based on the normal distribution of the results. This 

chapter starts with a data analysis tool to assess normally distributed data sets. 

 

6.1. Assessing Normal Distribution in Data Sets 

Two key statistical concepts in data analysis that can determine the normal distribution of a data set are 

the skewness and the kurtosis values.  

Skewness gives an estimation of the data symmetry. Positive skewness indicates values gather to the left 

and spread with a long tail to the right, and negative skewness indicates values gather on the right with a 

tail to the left. See Figure 6-1.  

The kurtosis value has been defined as the measure of the data distribution peakedness with a positive 

kurtosis value indicating a central-peaked distribution with long thin tails. A negative kurtosis value 

indicates a flat distribution with many values on the extremes. See Figure 6-2. However, a publication in 

2014 removes the peakedness interpretation and transforms the definition only to the tail extremity, i.e., 

either measuring existing outliers or expressing the tendency to produce outliers [180]. In a normal 

distribution, skewness and kurtosis have a value of zero [181]. 
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Figure 6-1. Data distributions with different skewness: Negative skewness on the left, zero skewness on the center, and positive 

on the right. 

 

 

Figure 6-2. Data distributions with different kurtosis values: Negative kurtosis value on the left, kurtosis equals zero on the 
center, and positive kurtosis value on the right 

 

The normality assessment is computed based on a z-test, which calculates z-scores as the quotients of the 

skewness and kurtosis values with their respective standard errors. The z-scores equations are written in 

(137) [182].The equations for calculating skewness, kurtosis, and standard errors are not explicitly written 

in this work, but they can be found in [183]. 

𝑧𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠

𝑆𝐸𝑟𝑟𝑜𝑟𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠
 

 

𝑧𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠

𝑆𝐸𝑟𝑟𝑜𝑟𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠
 

(137) 

 

The assumption of normality is divided into three different criteria depending on the number of samples. 

Each of those divisions compares the z-scores with a different threshold, gathered in Table 5-14 [182]. 

Table 6-1. Determination of normally distributed data based on z-scores 

Sample size Strategy Criteria to assess data normally distributed 
<50 Use equation (137) |𝑧𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠|  <  1.96 ∧  |𝑧𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠|  <  1.96  

50 to 300 Use equation (137) |𝑧𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠|  <  3.29 ∧  |𝑧𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠|  <  3.29 

+300 Use 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 and 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 |𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠|  <  2 ∧  |𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠|  <  3 
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6.2. Experiment Description for Measuring Position and Orientation Accuracy 

The necessary conditions to calculate the 2D/3D registration accuracy are described in detail in section 

5.2.7. It is required to have a patient, represented by a spine phantom in this case, and its DICOM volume. 

An implant or screw is located in both the phantom and DICOM volume, so the 2D/3D registration result 

is used as a bridge to find inaccuracies between the planned and executed implant pose. Measuring the 

implant pose in the DICOM, 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝐼𝐶𝑂𝑀 , is done using the planning software, while the implant pose 

in the phantom, 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 
𝐷𝑅𝐵 , is obtained using the navigation system, an RB installed in the phantom 

and a pointer. See section 5.5.2. 

The accuracy measurement is split in error due to the translation mismatch, equation (104), and the error 

due to the angle mismatch, equation (106). The implant position must be aimed at the same landmark in 

the DICOM and phantom to measure the translation mismatch. Similarly, determining the angle mismatch 

requires the same implant orientation to the same landmark in the DICOM and phantom. A device is used 

to ensure the implant positioning in the phantom in the experiment performed in section 5.5.2. The exact 

position can be replicated without any difficulty in the planning software. 

However, corresponding the phantom and planning software orientations using the section 5.5.2 setup is 

prone to inaccuracies. The interaction between the phantom and pointer contains an angle backslash. It 

induces an inaccuracy of a couple of degrees between the screw in the planning software and the 

phantom. As a result, the setup in section 5.5.2 cannot accurately calculate the measurement of the error 

due to the angle mismatch. The graphical description of the orientation inaccuracies is shown in Figure 

6-3. 

 

Figure 6-3. Screw angle inaccuracies between the planning software and phantom due to current setup 
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The implant in the planning software can be seen on the right side of Figure 6-3, and on the left side, it 

can be seen the real-scenario setup. The main axis of the pointer is depicted in yellow, and around the 

main axis, a red cone illustrates the orientation uncertainty due to the setup. 

 

New Setup for the 2D/3D Registration Error Measurement 

A single vertebra model is used to avoid the source of angle inaccuracies. The new phantom, being a single 

vertebra, produces a local registration result without introducing manual segmentation in the DICOM. 

Therefore, the result obtained from the new setup gives a local 2D/3D registration, which, as explained in 

section 5.8, are the type of results obtained from the process implemented in this work. 

This single vertebra model is a 3D-printed device containing two channels of 5.1mm in diameter with an 

incidence of 15 degrees. The new phantom is depicted in Figure 6-4. 

 

Figure 6-4. Phantom for measuring the 2D/3D registration accuracy 

 

The two channels ensure that the orientation and position of the pointer in the real-scenario are fixed 

and can be duplicated accurately in the planning software. In each channel, an implant is considered, such 

as there are two error measurements per registration, i.e., 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝐿𝑒𝑓𝑡 
𝐷𝑅𝐵  and 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑅𝑖𝑔ℎ𝑡 

𝐷𝑅𝐵 . 

As the pointer tip has a diameter of 5mm and 35mm length, it enters in the phantom without backslash 

and remains stable during the measurements. The setup for finding 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝐿𝑒𝑓𝑡 
𝐷𝑅𝐵  and 

𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑅𝑖𝑔ℎ𝑡 
𝐷𝑅𝐵  can be seen in Figure 6-5, where {PRBLeft} is equivalent to {LandmarkLeft}, and 

{PRBRight} is equivalent to {LandmarkRight}. 
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Figure 6-5. DRBTLandmarkRight and DRBTLandmarkLeft explanation 

 

For calculating the error, it is necessary also to find 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝐿𝑒𝑓𝑡 
𝐷𝐼𝐶𝑂𝑀  and 𝑻𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑅𝑖𝑔ℎ𝑡 

𝐷𝐼𝐶𝑂𝑀 . The 

new phantom is developed in a computer-aided designed (CAD) software in a typical format for 3D-

printers, Stereo Lithography (STL) file, but the planning software requires a DICOM format. The conversion 

from STL to DICOM is done using an own implementation. The conversion details can be found in 

Appendix A.8. Once the DICOM of the new phantom is obtained, the planning is done using a 35mm 

implant, the same size as the pointer length. The planning views are seen in Figure 6-6, where 

{ImplantLeft} is equivalent to {LandmarkLeft}, and {ImplantRight} is equivalent to {LandmarkRight}. 

 

Figure 6-6. DICOMTLandmarkRight and DICOMTLandmarkLeft explanation 

 

6.3. Experiment Execution for Measuring the Position and Orientation Accuracy 

To measure the 2D/3D registration accuracy, ten AP and ten LAT X-rays of the new phantom device are 

taken. In Figure 6-7, it can be seen a typical setup for capturing AP and LAT X-ray images of the new model 

using the C-arm. 
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Figure 6-7. AP setup of the new phantom on the left side, and LAT setup on the right side 

 

The resulted AP and LAT X-ray images of the setup in Figure 6-7 can be seen in Figure 6-8. 

 
Figure 6-8. X-ray image with AP projection of the new phantom on the left side, and X-ray image with LAT projection on the 

right side 

 

The pair combinations of the ten AP images with the ten LAT images result in 100 pairs of AP-LAT images. 

Each of these combinations has two implants defined in the planning software, giving two error 

measurements per registration. That means the experiment results contain 200 registration errors, used 

to find the 2D/3D registration accuracy. It is worth mentioning that equations (104) and (106) are used in 

this case; using the results of the 200 registrations, the RMS errors due to the translation and angle 

mismatch are computed. The angle mismatch in (106) interprets the angle inaccuracy as a displacement 

in the entry point of the implant; therefore, the units of the angle mismatch are millimeters. 
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6.4. Result Analysis of the 2D/3D Registration Accuracy 

The RMS errors of the registration due to the translation and angle mismatch are plotted as two 

histograms, shown in Figure 6-9 and Figure 6-10.  

 

Figure 6-9. Histogram of the 2D/3D registration RMS error due to the translation mismatch 

 

 

Figure 6-10. Histogram of the 2D/3D registration RMS error due to the angle mismatch expressed in millimeters 
 

Additionally, the total registration error of the 2D/3D registration is computed using the previous results 

and the equation (108). The RMS of the total registration error is plotted as a histogram in Figure 6-11. 

 

Figure 6-11. Histogram of the total 2D/3D registration RMS error 

 

The previous histograms show a standard distribution shape, but the values gather a bit to the left and 

spread with a tail to the right. It has much sense that the data displays a gaussian distribution, based on 
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the central limit theorem [167], as there are multiple sources of error associated with the 2D/3D 

registration process, for instance, quantization errors in the X-ray and DRR images, C-arm frames 

characterization errors, errors in the RBs poses reported by the navigation system, and others. As the 

histograms have a similar shape to the normal distribution, the data could be already considered normally 

distributed; following Wheeler's recommendation: “at times, it can be best to simply inspect histograms 

to determine if the data is normally distributed” [183]. In addition to the arguments mentioned above, an 

analytical approach is also used to assess the normality of the results by means of the skewness and 

kurtosis values, as explained in section 6.1. 

In this case, the sample size is 200. Based on Table 5-14, the assumption of normality is valid when the 

absolute value of both z-scores, calculated with equation (93), are smaller than 3.29. The data analysis of 

the RMS errors due to the translation, angle, and total mismatch are presented in Table 6-2. 

Table 6-2. Data analysis of the RMS errors due to translation, angle, and total mismatch 

 Translation RMS Error Angle RMS Error Total RMS Error 

Mean [mm] 1.09 0.41 1.49 

Standard Deviation [mm] 0.37 0.22 0.48 

Kurtosis -0.77 -0.83 -0.68 

Standard Error Kurtosis 0.35 0.35 0.35 

Skewness 0.24 0.41 0.37 

Standard Error Skewness 0.17 0.17 0.17 

𝑧𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠  1.36 2.37 2.14 

𝑧𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠  2.21 2.37 1.95 

 

The z-scores, 𝑧𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 and 𝑧𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, for the translation error are 1.36 and 2.21, for the angle error 2.37 

and 2.37, and 2.14 and 1.95 for the total error, respectively. All of those z-scores satisfied the condition 

in Table 6-1. It can be concluded that a normal distribution represents the RMS errors results of the 2D/3D 

registration tests. That means the accuracy of the 2D/3D registration within a confidence interval of 

68.27% can be calculated as the mean value plus-minus one standard deviation. Bearing that in mind, the 

2D/3D registration accuracy considering only the translation match is 1.09 ± 0.37mm. The accuracy of 

the 2D/3D registration only considering the angle mismatch is 0.41 ± 0.22mm, and the total accuracy of 

the 2D/3D registration is 1.49 ± 0.48mm. 

 

6.5. Discussion 

A new vertebra phantom is developed, containing two channels of the same diameter as the pointer to 

ensure the orientation of the pointer in real-scenario and guidance in the planning software. With the 

previous constraints guaranteed, the angle error is measured safely.  

The total 2D/3D registration error is measured using ten AP and ten LAT X-ray images. The combination 

of AP with LAT image creates 100 AP-LAT pairs. A registration is executed per each of the 100 
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combinations, and for each registration, two implants are planned. As each implant gives an error 

measurement, 200 measurements are used to measure the 2D/3D registration accuracy. 

The results show that the 2D/3D registration error due to the translation mismatch, 2D/3D registration 

error due to the angle mismatch, and the total 2D/3D registration accuracy follow a normal distribution. 

It is found that the implemented 2D/3D registration process has an accuracy of 1.49 ± 0.48mm within a 

confidence interval of 68.27%. 
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7. Improvements to the 2D/3D Registration Using Deep-Learning 

In the following sections, a novel automatization of the X-ray image undistortion in conventional C-arms, 

section 7.1, and the initial pose selection, section 7.2, are developed using a deep-learning approach. 

The implemented deep-learning models are described in a result-wise style instead of process-based. That 

means the final topology for the specifics approaches are explained, and their results are shown. The 

decision-making process that brings the implementations to their final shape is omitted.  

This work does not focus on low-level details of deep-learning implementations but shows the possibilities 

and advantages of incorporating deep-learning in the 2D/3D registration field. 

 

7.1. Fiducial Detection in X-Ray Images for Undistortion of Conventional C-Arm 

Images Using Convolutional Neural Networks (CNN) 

As seen in section 5.3, X-ray images from conventional panel C-arms contain distortions mostly due to the 

earth's magnetic field effects on the C-arm image intensifier [28]. The undistortion of X-ray images relies 

on the detection of the centers of the fiducials in the radiograph. During section 5.3.3, it is considered 

that the fiducial detection is done manually; therefore, the automation of the fiducial detection is a logical 

step to facilitate the 2D/3D registration procedure. In this section, the fiducial detection is tackled using a 

classical image processing approach, and later, compared with a novel implementation based on deep-

learning [184]. It is seen that the deep-learning approach gives more beneficial results for a real-case 

scenario than the classical image processing implementation. 

 

7.1.1. Structure of the Fiducial Detection Using Image Processing 

The classical image processing approach for detecting fiducials is made as a combination of image 

processing algorithms found in the literature. It starts by applying a median filter to the original image. 

This filtered image is subtracted from the original image to make a basic background removal [162]. Later, 

the fiducial detection is carried out on the image without background using the circle Hough Transform 

(CHT), a commonly feature-extraction algorithm used in image processing [185]. The CHT uses the Canny 

edge detector to identify the pixels forming edges. These pixels are organized in sets. Each set contains 

the pixels that belong to a circumference of radius 𝑅. The pixels in each set are used to find the center of 

the circumference.  

As the used fiducials have a fixed size, the circumference radius for the CHT algorithm is delimited. After 

a circumference is detected, the center of the fiducials can be computed. However, a problem arises with 

the Canny edge detector, which uses a threshold to discern the gray levels between objects and the 

background [186]. The threshold variation impacts the fiducial detection; thus, the Canny threshold is 

kept as a user parameter. Figure 7-1 shows the detection differences by using the same image with 
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different Canny thresholds. It can be noticed that on the left side, 49 fiducials are detected, compared 

with 57 on the right. 

 

Figure 7-1. Fiducial detection algorithm based on Hugh transformation. On the left, an used a Canny threshold of 20 and 100 on 
the right 

 

Different variations among X-ray images, such as changes in patient anatomies, impact the contrast of the 

images; thus, finding a proper Canny threshold is not always possible. Indeed, the threshold must be 

adapted in each image.  

To avoid parameter tuning in the undistortion process and improve the detection rate, a CNN is 

implemented. The classical image processing approach is considered as the ground truth for the detection 

accuracy and rate. It also supports the dataset labeling process, the earliest stage of CNN development. 

 

7.1.2. Structure of the Fiducial Detection Using Deep-Learning 

For implementing the deep-learning approach, a particularity of the image distortion approach, section 

5.3, is used in favor. Regardless of the image distortion, it is possible to define squared zones centered on 

the ideal position of the fiducials, so that the fiducials fall inside those zones. A squared zone that includes 

a fiducial is determined to be about 27x27px. Every image is divided into 60 sub-images, with every sub-

image containing one fiducial, but each zone size is taken as 32x32px. It increases the security factor, i.e., 

a sub-image always contains a fiducial, and facilitates the max-pooling operations on the CNN, i.e., dividing 

the sub-image size by two. With this approach, the implemented CNN focuses on detecting 3mm diameter 

fiducials within a grayscale image of 32 by 32 pixels. In a previous stage, the offset of each sub-image with 

respect to the image is stored, such as the inferred position is added, giving the fiducial prediction in the 

reference frame of the original image. This previous process is repeated in every fiducial, i.e., sixty times 

per image. 
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Data collection and labelling 

Using the Ziehm Vario 3D C-arm, eight scans with the C-arm are made. Each scan is composed of 140 

images, giving 1120 images in total. Each scan covers the entire C-arm range of movement, 130 degrees. 

Afterward, every X-ray is split into 60 sub-images. Each of these sub-images is labeled with the X and Y 

coordinates of the fiducial center position. The dataset used to implement the convolutional neural 

network (CNN) is formed by 67200 sub-images. The image processing method, implemented in section 

7.1.1 for fiducial detection, supports the dataset labeling. The dataset is split into 60% for training, 20% 

for validating, and 20% for testing. During the CNN training and later comparison with the image 

processing method, the prediction error is calculated as the distance between the predicted and the 

actual fiducial center. The error is normalized using the maximum possible error, the diagonal of the 32x32 

pixel sub-image, i.e., 32√2 pixels. The prediction accuracy is calculated as the unit minus the normalized 

error. 

 

7.1.3. Development of the CNN Layout 

The selected topology consists of four convolutional layers. A max-polling layer follows each convolution 

except in the last convolution layer. The last convolutional layer output is connected to the input of a fully 

connected neural network (FCNN). This FCNN consists of one input, two hidden, and one output layer. 

The CNN layout can be seen in Figure 7-2, and it is described in detail in Table 7-1. 

Table 7-1. CNN Topology 

Layer Type (Out)-Size # Channels Kernel Size Stride Padding Activation 
Input Image 32x32 1 - - - - 

2 Convolution 32x32 18 5x5 1 2 ReLU 

3 Max Pooling 16x16 18 2x2 1 2 ReLU 

4 Convolution 16x16 32 5x5 1 2 ReLU 

5 Max Pooling 8x8 32 2x2 1 2 ReLU 

6 Convolution 8x8 64 5x5 1 2 ReLU 

7 Max Pooling 4x4 64 2x2 1 2 ReLU 

8 Convolution 4x4 128 5x5 1 2 ReLU 

9 FCNN 1024 - - - - ReLU 

10 FCNN 120 - - - - ReLU 

Output FCNN 2 - - - - Linear 

 

This topology is similar to a classical CNN topology called LeNet-5 [187], but instead of Tanh, the activation 

functions are replaced with ReLU. In contrast with LeNet-5, the implemented net propagates through all 

of the channels (features maps) from layer to layer, increases the number of feature maps used per layer, 

uses a bigger FCNN at the end of the network, and the network output uses a linear activation function 

instead of a classifier as done by Toshev and Szegedy [188]. The idea behind using a regression-based 

model is to predict the fiducial center coordinate. These changes are developed following the new 

improvements done in recent years to deep-learning approaches [189]. The CNN model is trained using 
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as cost function the mean squared error (squared L2-norm) and the stochastic gradient descent with a 

momentum of 0.9 as optimizer. The selected cost function and optimizer are typical settings for training 

deep-learning models. Through trial and error, the learning rate for this problem is found to be 0.3. The 

training is run through 100 epochs. 

 
Figure 7-2. CNN topology with input and outputs 

 

The training is carried out using the training dataset, and the prediction accuracy is calculated from the 

training and validation dataset. The training dataset accuracy keeps increasing, 99.55%, and the training 

loss decreasing, 0.000197, until the reach of the 100th epoch. On the other hand, the validation dataset 

reaches a plateau in epoch 60 when its accuracy, 99.234%, and the validation loss, 0.00124, remain steady, 

as Figure 7-3 depicts. Consequently, an early stop mechanism is used in epoch 60, where the CNN model 

shows a good fit for the problem. 

 
Figure 7-3. Training plot of the CNN approach for the fiducial detection 
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7.1.4. Fiducial Detection: CNN vs. Image Processing Approach 

The following results are executed over the testing dataset, i.e., 224 remaining images (20% of the 1120 

initial X-ray images.) The CNN predictions are compared against the image processing method based on 

the CHT. The results are shown in Table 7-2. It is found that the detected fiducials using the traditional 

method, in which the Canny threshold can be changed, gives a prediction accuracy of 99.13% when the 

threshold is set to 100. Nevertheless, it gives a detection rate of 89.03%, equivalent to detect 53 out of 

60 fiducials. The detection rate increases to 97.71% when the Canny threshold is set to 20, but the 

prediction accuracy decreases to 97.01%.  

On the other hand, the CNN gives a prediction accuracy of 99.24%, which surpasses the average accuracy 

of the conventional method using a Canny threshold in 100, and it increases the fiducial detection rate to 

100% compared to 97.71% when using the Canny threshold set to 20.  

Table 7-2. Accuracy results of tested methods for fiducial detection 

Method Canny Threshold Prediction Error [%] Detection Rate [%] 

Image processing 

20 97.01 97.71 

50 98.48 91.9 

80 98.98 89.89 

100 99.13 89.03 

CNN - 99.24 100 

 

As the CNN does not require any user-defined parameters after it is already trained, it can be said that 

the CNN successfully automates the fiducial detection by its intrinsical working principle of inferencing a 

result only based on the current input. With that said, asides from the low prediction error and the high 

detection rate, the CNN implementation minimizes the user intervention to the minimum extent. It can 

be concluded that the CNN achieves the automation of the X-ray image undistortion. The runtime for 

loading the CNN in the memory is less than one second. The inference of one sub-image takes around 

30ms, and the fiducials prediction over the entire image (60 sub-images) is computed in less than two 

seconds. The automatic fiducial detection requires three seconds in total. The process of having an X-ray 

image, detecting fiducials, undistorting, and inpainting the image can be seen in Figure 7-4.  
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Figure 7-4. Original image with fiducials on the upper-left. Result of inference with CNN on the upper-right. Result of the 
undistortion on the bottom-left. On the bottom-right, undistortion after inpainting 

 

7.1.5. Discussion 

A conventional image processing algorithm based on the circle Hough transformation is implemented to 

automate the fiducial detection in X-ray images. It gives a prediction accuracy of 99.13% in the best case, 

but the detection rate is not good enough to be used as an automatic process to remove distortions in 

X-ray images as it fails to detect seven fiducials on average.  

The conventional image processing algorithm for detecting fiducials is used to establish a ground truth 

and support the data labeling process to develop a deep-learning approach.  

The implementation of the CNN shows that the prediction accuracy is higher than using the conventional 

image processing method, 99.13% and 98.24%, respectively. The image preparation for the deep-leaning 

approach intrinsically increases the detection rate to 100%. These results fill the expectations to create 

an automatic unit for undistorting conventional C-arm images. 
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7.2. Automatic Initial Pose Generator for the 2D/3D Registration Using CNN 

It is seen in section 5.8 that the initial pose for the 2D/3D registration is selected using a graphical method. 

The user must select an initial pose manually, which renders a DRR image from the CT-scan that is 

registered. The initial pose is considered suitable if the rendered DRR image looks similar to the X-ray 

image to be registered. The manual selection of the initial pose presents two significant disadvantages. It 

is quite probable to end up selecting an initial pose that is not close enough to the actual registration 

pose, +/- 5 degrees and +/- 10mm in each axis [190]. Also, the manual pose selection is a time-demanding 

process. 

Those disadvantages present a risk to the 2D/3D registration accuracy and repeatability. One approach to 

deal with these drawbacks is to automate the pose generator. Some attempts in the literature to 

automate the initial pose of the 2D/3D registration have been tested using a set of random initial poses 

[81] and pre-computing sets of 2D templates of a wide range of 3D poses [191]. Although these 

approaches automate the initial pose selection, they do not guarantee the nearness of the initial pose to 

the actual registration pose; therefore, the registration accuracy is not ensured. In some studies, 

deep-learning approaches have been introduced to replace the optimizer and cost function [147], but 

there is no work in the literature suggesting an initial pose generator based on deep-learning up to the 

elaboration date of this thesis. 

The implemented 2D/3D registration process shows promising results as long as the initial pose is 

adequate. For this reason, a deep-learning approach is presented in this section, such as a CNN infers the 

initial pose, and then it is given to the 2D/3D registration process. The mix of the initial pose generator 

and the current registration process forms a fully automatic 2D/3D local registration. 

 

7.2.1. Structure of the Initial Pose Generator Using Deep-Learning 

For manually selecting an initial pose for the 2D/3D registration, there are two inputs required, an X-ray 

image and a DICOM volume. The same two inputs are used for the CNN, but the DICOM is not inputted as 

a 3D object. Instead, the DICOM is converted into two radiographs, one AP and one LAT projection, using 

the DRR module. That means the CNN inputs are three 2D images, one AP and one LAT DRR projection of 

the DICOM, and the X-ray image to be registered. Some CNNs for tuberculosis diagnosis use CT-scans as 

input, meaning the CNN processes the entire 3D volume [192]; however, implementing a 3D CNN requires 

more weights to be optimized than a 2D CNN. 

In this case, most acquired data belongs to the X-ray image side, meaning most of the changing data is 

available on the 2D CNN side. In that way, the training of a 3D CNN topology would have fewer chances 

to be successful. Although some data augmentation techniques increase the 3D data, these pitfalls are 

avoided by transforming the implementation into a CNN with three 2D inputs. 
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The CNN output is the DRR pose that makes the DRR image similar to the inputted X-ray. Following the 

notation introduced in equation (47), the CNN output is the six DoF vector 𝒑⃗⃗ . It is worth noting that the 

CNN is trained to predict only X-ray AP poses, as the initial LAT pose is analytically found using equation 

(97). 

 

Acquisition of the Dataset for Developing the CNN 

It is estimated that capturing and labeling one single X-ray image takes approximately three minutes. The 

X-ray dataset was created with 180 AP X-ray images of two different spine phantoms. It can be noticed 

that the number of images is not enough to train a deep-learning model, which is roughly estimated to 

require five thousand labeled samples to achieve acceptable results, but it requires millions of labeled 

samples to surpass human performance [140]. 

As it is highly time-demanding to increase the X-ray dataset size, another approach is taken for the CNN 

implementation. A set of 50.000 random images within the AP projection range are created using the DRR 

module and two DICOM volumes of the two available phantoms. The range of values differentiated by 

DoF is shown in Table 7-3. This created DRR dataset reduces the acquisition and labeling. The dataset is 

split into 60% for training, 20% for validating, and 20% for testing. Once the CNN is trained using the DRR 

training dataset, it is further fine-tuned using 144 of the X-ray images and tested using the remaining 36 

X-ray images. 

Table 7-3. Range of DRR parameters to create AP images 

 Position Orientation 
X [mm] Y [mm] Z [mm] X [degree] Y [degree] Z [degree] 

Min value -120 -60 -130 -15 165 -15 

Max value 120 350 130 15 195 15 

 

7.2.2. Development of the CNN Layout 

The selected topology consists of three convolution layers followed by a max-polling layer per input. The 

feature maps of the three branches are combined by concatenation, such as the feature map size remains 

constant while the number of channels increases by three. In other words, the feature maps are stacked 

together. After the concatenation, three additional convolution and max-polling layers are applied. The 

last convolutional layer output is connected to the input of a FCNN. This FCNN consists of one input, three 

hidden, and one output layer. The CNN layout can be seen in Figure 7-5 and described in detail in Table 

7-4. This network architecture is known as a multi-modal CNN due to the different nature of used images 

(modalities) for the inputs of the network. Nevertheless, the general CNN name is kept during this section 

to refer to this selected layout. 
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Table 7-4. Initial pose generator CNN topology 

Layer Type (Out)-Size # Channels Kernel Size Stride Padding Activation 
Input x3 Image 512x512 1 - - - - 

2 x3 Convolution 512x512 8 5x5 1 2 ReLu 

3 x3 Max Pooling 264x264 8 2x2 1 2 ReLu 

4 x3 Convolution 264x264 16 5x5 1 2 ReLu 

5 x3 Max Pooling 128x128 16 2x2 1 2 ReLu 

6 x3 Convolution 128x128 24 5x5 1 2 ReLu 

7 x3 Max Pooling 64x64 24 2x2 1 2 ReLu 

8 Concatenation 64x64 72 - - - - 

9 Convolution 64x64 96 5x5 1 2 ReLu 

10 Max Pooling 32x32 96 2x2 1 2 ReLu 

11 Convolution 32x32 120 5x5 1 2 ReLu 

12 Max Pooling 16x16 120 2x2 1 2 ReLu 

13 Convolution 16x16 144 5x5 1 2 ReLu 

14 Max Pooling 8x8 144 2x2 1 2 ReLu 

15 Convolution 8x8 168 5x5 1 2 ReLu 

16 FCNN 1024 - - - - ReLu 

17 FCNN 512 - - - - ReLu 

18 FCNN 128 - - - - ReLu 

Output FCNN 6 - - - - Linear 

 

 

Figure 7-5. CNN Topology of the initial pose generator 

 

The training is done using the DRR training dataset. The prediction accuracy and the cost function losses 

are calculated from the DRR training and the DRR validation dataset to control the training process. The 

training behavior is depicted in Figure 7-6. The loss function of both the training and validation stay very 
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similar, indicating the model has a good fit. The training is stopped in epoch 200, where the validation and 

training loss stay at a plateau for more than 20 epochs. 

 

Figure 7-6. Training plot of the CNN approach for the initial pose generator 

 

After training, the accuracy using the DRR testing dataset is calculated. The average accuracy is found to 

be 97.71%. Then the accuracy is once again computed but on the X-ray testing dataset. In the second test, 

the accuracy is found to be 89.53%. The detailed accuracy of the CNN on both datasets is presented in 

Table 7-5. The error of each DoF is calculated as the absolute error and normalized using the range of the 

elements (max value minus min value from Table 7-3). The accuracy and the error are expressed in 

equation (138). 

𝐸𝑟𝑟𝑜𝑟_𝐷𝑜𝐹𝑁 =
|𝑎𝑐𝑡𝑢𝑎𝑙𝐷𝑜𝐹𝑁 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐷𝑜𝐹𝑁| 

|𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒𝐷𝑜𝐹𝑁 −𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒𝐷𝑜𝐹𝑁|
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝐷𝑜𝐹𝑁 = {
(1 − 𝐸𝑟𝑟𝑜𝑟_𝐷𝑜𝐹𝑁) ∙ 100% 𝑖𝑓 (1 − 𝐸𝑟𝑟𝑜𝑟_𝐷𝑜𝐹𝑁)  >  0

  
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(138) 

 

The last column of Table 7-5 is the average prediction error of the six DoF. 

Table 7-5. CNN accuracy on DRR and X-ray dataset 

Dataset 

Accuracy [%] 

Position  Orientation 
Average 

X Y Z X Y Z 
DRR testing 98.22 97.93 97.82 97.27 97.60 97.42 97.71 

X-ray testing 94.40 94.96 89.39 85.72 93.67 79.01 89.53 

 

The CNN is fine-tuned using the X-ray training dataset after the training with the DRR dataset. There are 

different approaches to fine-tune a CNN regarding the number of layers to retrain [193]. Three different 

fine-tuning approaches regarding the retrained layers are tested: only the FCNN top layer (Figure 7-6 - 

layer16), the entire FCNN (Figure 7-6 – layers 16 to 18), and the entire CNN using the pre-trained weights.  
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7.2.3. Accuracy of the Initial Pose Generator Using CNN 

For the fine-tuning procedure, the X-ray training dataset is used, and a small learning rate is set, i.e., 1e-5. 

The training plot, visible in Figure 7-7, depicts the accuracy and loss values of the training and validation 

X-ray datasets of the best-found approach, fine-tuning the entire pre-trained weights of the CNN. 

Similarly, as in the CNN training in section 7.1, an early stop mechanism is used. It shows that the best fit 

occurs around epoch 200 when the training and validation loss show similar values. After that, overfitting 

starts to occur since the loss on the training dataset keeps decreasing, and the validation loss remains 

nearly at the same level. 

 
Figure 7-7. Fine-tuning training error of the CNN for the initial pose generator 

 

The accuracies of the trained CNNs on the X-ray testing dataset using different fine-tuning methodologies 

are shown in Table 7-6. The individual pose components to be predicted, i.e., six DoF (three positions and 

rotations), can be seen in the first six columns. In the last column, the average of the six DoF is displayed.  

Table 7-6. Accuracy results of the different fine-tuned CNNs 

Fine-tuning 

Accuracy [%] 

Position Orientation 
Average 

X Y Z X Y Z 
Upper layer FCNN 96.77 96.48 94.32 92.37 95.42 97.52 95.48 

Entire FCNN 98.26 97.19 94.88 98.25 95.62 98.04 97.04 

All CNN layers 97.21 97.57 96.29 97.64 95.94 97.95 97.09 

 

The average accuracy of fine-tuning all CNN layers and fine-tuning only the FCNN are very similar, but the 

consistency of the accuracy along the six DoF is better when all CNN layers are fine-tuned. In Table 7-7, 

the accuracy of the fine-tuned CNN is given in absolute terms while inferring on the X-ray testing dataset. 

It can be noticed that the accuracies of the prediction when fine-tuning the weights on the entire CNN fall 

within the range, where the initial position produces reliable 2D/3D registration results, i.e., +/- 5 degrees 
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and +/- 10mm in each axis [190]. Based on that behavior, the fine-tuning in all CNN layers is selected as 

the best approach. 

Table 7-7. Accuracy of the initial pose generator discretized by parameter 

Fine-tuning 
Position accuracy Orientation accuracy 

X [mm] Y [mm] Z [mm] X [degrees] Y [degrees] Z [degrees] 
Upper layer FCNN 7.75 14.43 14.77 2.29 1.37 0.74 

Entire FCNN 4.2 11.5 0.53 0.53 1.31 0.59 

All CNN layers 6.70 9.96 9.64 0.71 1.22 0.62 

 

It is worth noting that although this approach gives initial poses in an acceptable range for the 2D/3D 

registration process, its accuracy is not guaranteed in a real scenario as no human datasets are used to 

train the current CNN. 

The results of this section show the feasibility of creating an automatic initial point generator in an 

intensity-based 2D/3D registration. More DRR images from CT-scans and X-rays coming from different 

patients could obtain more accurate results and guarantee the generalization of the solution. 

 

7.2.4. Structure of the 2D/3D Registration Procedure Using the Initial Pose Generator 

In section 4.7.4, the 2D/3D registration procedure is introduced and summarized in the block diagram 

depicted in Figure 4-27. The developed initial pose generator is integrated into the registration procedure. 

The 2D/3D registration requires only the user to load the X-ray images and the DICOM volume; after that, 

the registration process initiates by running the CNN to infer the initial pose. Based on a i7-8700K CPU at 

3.7Ghz and a Nvidia GTX 1080 GPU, the runtime for loading the CNN in the memory is about four seconds, 

while inferencing is executed in less than one second. The initial pose generator requires five seconds in 

total. Once the prediction is acquired, the 2D/3D registration process starts, giving the registration pose. 

The updated block diagram of the 2D/3D registration can be seen in Figure 7-8. 

 

Figure 7-8. Updated block diagram of the 2D/3D registration with initial pose generator 
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The incorporation of the CNN for predicting the initial pose for the 2D/3D registration constitutes the last 

scaffold to achieve a fully automatic local 2D/3D registration. This achievement fulfills the automation 

objective, proposed as one of the primary outcomes of this work. 

 

7.2.5. Discussion 

A deep-learning approach for the initial pose generator is conceived using three images as inputs and six 

outputs: The AP X-ray image to be registered and two DRR images, AP and LAT projection of the DICOM 

volume used for the registration. The outputs are the three positions and three rotations that composed 

the 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   pose of the DRR module in vector form, 𝒑⃗⃗ ∈ ℝ6, used in the 2D/3D registration for the 

initial pose. 

The training is carried out in two stages. The CNN is initially trained using a large dataset based on random 

AP DRR images. In the second stage, the CNN is fine-tuned using a small dataset of X-ray images taken 

with a C-arm. This approach is taken due to the inviability of taken a large dataset of actual X-ray images. 

The results of the implemented CNN show that the achieved predictions fit the conditions of an acceptable 

initial pose for the 2D/3D registration, i.e., +/- 5 degrees and +/- 10mm in each axis [190] within an 

inference time of about five seconds.  

With the obtained results, the implemented CNN can be considered to be used as the initial pose 

generator for the 2D/3D registration, but as no X-ray and CT-scan images were coming from patients, 

further evaluation is still required.  

Additionally, the 2D/3D registration block diagram is updated, as Figure 7-4 shows. In the new structure, 

the user interaction is reduced to input the X-ray images and the DICOM volume. After the inputs are set, 

the 2D/3D registration runs autonomously until the registration pose is obtained. This updated process 

constitutes an automatic 2D/3D registration, which is one of the main objectives to be achieved in this 

work. 
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8. Conclusions and Final Discussion 

8.1. Conclusions and Discussion 

The main task of this thesis is the implementation of a fully automatic intensity-based 2D/3D registration 

using 3D pre-operative CT-scans modalities (in DICOM format) and 2D intra-operative X-ray modalities. In 

practice, it means to find a transformation matrix, 𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
  , that converts a planned pose, usually the 

pose of an implant, in the frame of the pre-operative data, {DICOM}, into a reference frame fixed to the 

patient {ARB}. The implant pose is written as a transformation matrix,  𝑻 
𝐷𝐼𝐶𝑂𝑀 

 𝐼𝑀𝑃𝐿𝐴𝑁𝑇
   the planned pose 

in the pre-operative modality, and  𝑻 
𝐴𝑅𝐵 

 𝐼𝑀𝑃𝐿𝐴𝑁𝑇
   the planned pose in the patient frame. The surgical 

robot end-defector {TRB} and {ARB} are tracked by the navigation system, allowing the transformation 

between the implant pose and the surgical robot system. 

An intermediate 2D/3D registration result is the pose in the digitally reconstructed radiograph (DRR) 

module with respect to the DICOM volume, 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . A set of mathematical transformations is 

determined, moving 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
   into the useful 𝑻 

𝐴𝑅𝐵 
 𝐷𝐼𝐶𝑂𝑀
  , which is the bridge connecting the pre-

operative planned data into the operating scenario. The planned data is transformed to {ARB}, a frame 

known for the navigated robot, where it can reach a target. Then 𝑻 
𝐴𝑅𝐵 

 𝐷𝐼𝐶𝑂𝑀
   closes the loop of making 

available pre-operative planned data to the surgical robot. 

The C-arm is mathematically defined with the pinhole camera model, which describes the C-arm with two 

matrices: the intrinsic and extrinsic parameter matrices. The characterization is done using the direct 

linear transformation algorithm [31] and a parametrization device that contains twelve steel beads. The 

characterization determines important C-arm features like the source-detector distance and the 

transformation from the source to the characterization device. A well-calibrated device containing seven 

landmarks is used to test the accuracy of the C-arm parametrization. The expected and measured 

landmarks show an average error of 2.5 pixels based on the ten X-ray images. The used C-arm, a Ziehm 

Vario 3D, has an image pixel spacing of 0.365mm/px. The average error is further expressed as 0.9125mm, 

indicating an accurate C-arm parametrization.  

An undistortion process for X-ray images coming from C-arms with image intensifier technology is 

implemented. An undistortion plate with 60 fiducials is manufactured and installed on the C-arm detector. 

Using a mapping function created by a fifth order bi-polynomial regression, the X-ray images can be freed 

of distortion by an image warping process [159]. A further approach is introduced, removing the fiducials 

from the X-ray image using an inpainting algorithm [163]. 

A fast DRR module, based on the Siddon-Jacobs algorithm [104], is implemented and later optimized using 

parallel computing. The parallel implementation uses the Nvidia CUDA libraries, taking advantage of the 

hundreds of kernels available in the computer graphics card. The average DRR rendering time is 10ms in 
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comparison with an average rendering time of 2.5 seconds using the conventional implementation. The 

test is performed creating 568x568 pixels images using a DICOM of 512x512x442 voxels. 

The implemented 2D/3D intensity-based registration uses an iterative process to find the transformation 

between a 3D volume and a 2D image process, 𝑻 
𝐷𝑅𝑅 

 𝐷𝐼𝐶𝑂𝑀
  . A CT-scan is projected as a 2D image with the 

DRR module. The DRR image is compared with an X-ray image using a merit function, image similarity 

measurement. An optimizer is used to find the CT-scan pose that matches the projection of the 3D image 

with the 2D image. This iterative process keeps creating DRR images on new poses suggested by the 

optimization algorithm. The loop DRR - merit function - optimization breaks when the merit function 

reaches its minimum value, meaning the registration is over. 

An evaluation of image similarity measurements is carried out. The accuracy showed by mutual 

information MI is the highest among the other tested image similarity measurements, determining that 

(MI) is the most suitable measure for the implemented registration process. Likewise, an evaluation of 

different optimization algorithms is performed, finding that best neighbors (BN) leads the registration 

process to the smallest registration errors. A total of 100 registrations and 200 planned screws are 

analyzed to find the implant accuracy. The combination of MI, BN, and the inclusion of a manually selected 

region of interest (ROI) in a single lumbar vertebra produces a 2D/3D registration with an implant accuracy 

of 1.49 ± 0.48mm within a confidence interval of 68.27%. This accuracy value is found using an approach 

based solely on the navigation system, i.e., the surgical robot system is not involved. An advantage of 

limiting the computation of the accuracy using only the navigation system is to avoid the risk that the 

robot can introduce some errors.  

It is required to give an initial pose to the registration procedure previously to its execution. There is a 

direct correlation between the accuracy of the registration result and the closeness of the initial pose to 

the actual true registration pose, ±5 degrees and ±10mm in each axis at most [190]. As the initial pose 

consists of six DoF, it is no intuitive for a user to guess and insert this value manually. A graphical approach 

is developed, showing the overlapping of the X-ray image and a DRR image created from the same 

rendered view of the DICOM volume. 

The initial pose selection is further improved, such as the pose value to the registration process is not 

selected manually but inferred from a CNN. This initial pose generator reduces the user intervention with 

the software during the surgical intervention and guarantees the initial pose closeness with the actual 

registration pose. 

An optimization in the fiducial detection for the undistortion of X-ray images from conventional C-arms is 

developed using a deep-learning approach. A fully automatic undistortion procedure is introduced, having 

a CNN as the fiducial detection unit. Each fiducial center is predicted with a maximum absolute error of 

0.42 pixels. 
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8.2. Future Work 

The proposed objectives for this thesis are achieved, but there is still room for improvement and 

development of additional functionalities. The following paragraphs describe future works that can be 

carried out. 

It is noticed on the X-ray images used for the registration process that the structure of the C-arm 

parametrization device leaves footprints, affecting the registration accuracy. Consequently, running an 

inpainting process to remove the structure could be considered, but a better approach is remanufacturing 

the parametrization device using a more translucid X-ray material instead of the 3D-Printing material. 

One of the approaches that makes the 2D/3D registration accuracy better is the ROI, the manual selection 

and definition of the X-ray image boundaries. An automatic vertebra segmentation for X-ray images can 

be developed to define several ROIs without user intervention. 

Likewise, implementing a DICOM vertebra segmentation process could automate the creation of several 

sub-volumes. Each sub-volume could be matched and registered with the different ROIs in the X-ray 

images. Combining the vertebra segmentation in X-ray images and DICOM volumes would lead to 

developing a fully automated quasi-global 2D/3D registration. 

The current initial pose generator is trained using two different phantom models. Although the results are 

promising, this initial pose generator cannot be considered yet to be used in a real scenario since its 

behavior in actual patients has not been tested. Further training using more DICOM volumes is necessary 

to create a robust generator and guarantee the CNN generalization. 
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 Derivation of Formulas, Procedures, and Functions 

A.1 Transformation between Rotation Matrices and Quaternions 

Let 𝐪𝜖ℍ be a quaternion defined as 𝐪 = (𝑠, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧), and 𝑹 ∈ ℝ3×3 be a rotation matrix,  

where 𝑹 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] 

 

The elements of the rotation matrix with respect to a normalized quaternion, i.e., 𝑟11 to 𝑟33 in terms of 

𝑠, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 are expressed in (139).  

𝑟11 = 𝑠
2 + 𝑣𝑥

2 − 𝑣𝑦
2 − 𝑣𝑧

2 

𝑟12 = 2 ∙ ((𝑣𝑥 ∙ 𝑣𝑦) − (𝑠 ∙ 𝑣𝑧)) 

𝑟13 = 2 ∙ ((𝑣𝑥 ∙ 𝑣𝑧) + (𝑠 ∙ 𝑣𝑦)) 

𝑟21 = 2 ∙ ((𝑣𝑥 ∙ 𝑣𝑦) + (𝑠 ∙ 𝑣𝑧)) 

𝑟22 = 𝑠
2 − 𝑣𝑥

2 + 𝑣𝑦
2 − 𝑣𝑧

2 

𝑟23 = 2 ∙ ((𝑣𝑦 ∙ 𝑣𝑧) − (𝑠 ∙ 𝑣𝑥)) 

𝑟31 = 2 ∙ ((𝑣𝑥 ∙ 𝑣𝑧) − (𝑠 ∙ 𝑣𝑦)) 

𝑟32 = 2 ∙ ((𝑣𝑦 ∙ 𝑣𝑧) + (𝑠 ∙ 𝑣𝑥)) 

𝑟33 = 𝑠
2 − 𝑣𝑥

2 − 𝑣𝑦
2 + 𝑣𝑧

2 

(139) 

 

The elements of the rotation matrix with respect to the quaternions, i.e., 𝑟11 to 𝑟33 in terms of 𝑠, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 

are expressed in (140). 

𝑠 =
1

2
√𝑟11 + 𝑟22 + 𝑟33 + 1 

𝑣𝑥 = 𝑠𝑖𝑔𝑛(𝑟32 − 𝑟23) ∙
1

2
√𝑟11 − 𝑟22 − 𝑟33 + 1 

𝑣𝑦 = 𝑠𝑖𝑔𝑛(𝑟13 − 𝑟31) ∙
1

2
√−𝑟11 + 𝑟22 − 𝑟33 + 1 

𝑣𝑧 = 𝑠𝑖𝑔𝑛(𝑟21 − 𝑟12) ∙
1

2
√−𝑟11 − 𝑟22 + 𝑟33 + 1 

(140) 

The demonstration of (139) and (140) is out of the scope of this work, but it can be found in [194]. 

 

A.2 Eigenvalues and Eigenvectors 

Let 𝐀 be an 𝑛 × 𝑛 matrix of real components, 𝜆 be a scalar in ℂ, and 𝒗⃗⃗  a vector in ℂ𝑛 such that 

𝑨 ∙ 𝒗⃗⃗ = 𝜆 ∙ 𝒗⃗⃗   (141) 
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The vector 𝒗⃗⃗ ≠ 𝟎⃗⃗  is called an eigenvector of 𝑨 corresponding to the scalar 𝜆, also known as an eigenvalue. 

(141) can be rewritten as (142) following the consideration that there is a 𝒗⃗⃗ ≠ 𝟎⃗⃗  . 

(𝑨 − 𝜆 ∙ 𝑰) ∙ 𝒗⃗⃗ = 𝟎⃗⃗   (142) 

 

The non-trivial solution in (142), i.e., 𝒗⃗⃗ ≠ 𝟎⃗⃗ , requires that (𝑨 − 𝜆 ∙ 𝑰) is non-invertible. It means that 

𝑝(𝜆) = 𝑑𝑒𝑡(𝑨 − 𝜆 ∙ 𝑰) = 0  (143) 
 

𝑝(𝜆) is known as the characteristic polynomial of 𝑨 and has 𝑛 roots. The roots of 𝑝(𝜆) make the set of 

eigenvalues {𝜆1, … , 𝜆𝑛} of the matrix 𝑨. 

The eigenvector 𝒗⃗⃗ 𝒊 is found solving the resulting homogenous system from (142) using the corresponding 

eigenvalue 𝜆𝑖. In the end the set of eigenvectors of the matrix 𝑨 is formed by the 𝑛 linearly independent 

vectors, {𝒗⃗⃗ 1, … , 𝒗⃗⃗ 𝑛} [195]. 

 

A.3 Singular Value Decomposition (SVD) 

SVD is a useful matrix decomposition, which is commonly applied in the solution of over-determined 

system of equations. Let 𝐀 be an 𝑚 × 𝑛 matrix with 𝑚 ≥ 𝑛. The SVD of 𝑨 can be expressed as: 

𝑨 = 𝑼ℎ ∙ 𝜮 ∙ 𝑽𝑏
𝑇  (144) 

 

where 𝑼ℎ ∈ ℝ
𝑚×𝑚  and 𝑽𝑏

𝑇 ∈ ℝ𝑛×𝑛 are orthonormal matrices, and 𝜮 ∈ ℝ𝑚×𝑛 is a non-negative diagonal 

matrix. The demonstration of equation (144) can be seen in [196]. 

The diagonal values in 𝚺 are the singular values of 𝑨 arranged in descendent order. The singular values of 

𝑨 must not be confused with the eigenvalues of 𝑨. The singular values of 𝑨 are the square roots of 

eigenvalues from or 𝑨T ∙ 𝑨. Let 𝝈⃗⃗ = [𝜎1, … , 𝜎𝑛]
𝑇 be the vector composed by the eigenvalues of 𝑨𝑇 ∙ 𝑨, 

such as 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎n ≥ 0. 𝚺 can be written as: 

𝜮 =

[
 
 
 
 
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝒏
 ⋮  
 0  ]

 
 
 
 

   (145) 

 

The columns of 𝑼ℎ are composed by the eigenvector of the matrix 𝑨 ∙ 𝑨T, and the eigenvectors of 𝑨T ∙ 𝑨 

make the columns of 𝑽𝑏. let 𝐇 = {𝒉⃗⃗ 1, … , 𝒉⃗⃗ m | 𝒉⃗⃗ 𝑖 ∈ ℝ
𝑚 } be the set of eigenvectors of 𝑨 ∙ 𝑨T and 𝐁 =

{𝒃1, … , 𝒃n| 𝒃𝑗 ∈ ℝ
𝒏} be the set of eigenvectors of 𝑨T ∙ 𝑨, the matrices 𝐔h and 𝑽𝑏 are built as follows: 

𝑼ℎ  = [𝒉1 ⋯ 𝒉𝑚]   (146) 
 

𝑽𝑏  = [𝒃1 ⋯ 𝒃𝑛]   (147) 
 

The calculations of the eigenvalues and eigenvectors of a matrix can be seen in appendix A.2. 
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A.4 RQ Simplification 

Assuming orthogonal forward rotation matrices in space ℝ3. It is possible to define one matrix per axis. 

𝑹𝒐𝒕𝒙(𝜃) = [
1 0 0
0 cos(𝜃) − sin(𝜃)

0 sin(𝜃) cos(𝜃)
]  

 

𝑹𝒐𝒕𝒚(𝛽) =  [
cos(𝛽) 0 sin(𝛽)
0 1 0

− sin(𝛽) 0 cos(𝛽)
]   

 

𝑹𝒐𝒕𝒛(𝛾) =  [
cos(𝛾) − sin(𝛾) 0

sin(𝛾) cos(𝛾) 0
0 0 1

] 

(148) 

 

Before starting, we can define the matrix 𝑨 as: 

𝑨 = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] (149) 

 

Matrix 𝑨  will be decomposed, such as 𝑨 =  𝑹 ∙ 𝑸 , where 𝑹  is a right-triangular matrix, and 𝑸  is an 

orthogonal matrix. The matrix 𝑸 will be then a product 𝑹𝒐𝒕𝒙(𝜽) ∙  𝑹𝒐𝒕𝒚(𝜷) ∙ 𝑹𝒐𝒕𝒛(𝜸). Then the matrix 𝐀 

can be calculated as: 

𝑨 = 𝑹 ∙ 𝑹𝒐𝒕𝒛(𝛾)
𝑇 ∙ 𝑹𝒐𝒕𝒚(𝛽)

𝑇 ∙ 𝑹𝒐𝒕𝒙(𝜃)
𝑇 (150) 

 

Each of these rotations will make zero the lower half of the matrix to build the right-triangular matrix 

𝑨 ∙ 𝑹𝒐𝒕𝒙(𝜃) ∙ 𝑹𝒐𝒕𝒚(𝛽) ∙ 𝑹𝒐𝒕𝒛(𝛾) = 𝑹 (151) 

 

Then, the rotation with x is: 

𝑨 ∙ 𝑹𝒐𝒕𝒙(𝜃) =  [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] ∙ [
1 0 0
0 𝑐𝑜𝑠(𝜃) − 𝑠𝑖𝑛(𝜃)

0 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] = 𝑩 (152) 

 

where 

𝑩 = [

𝑎11 𝑏12 𝑏13
𝑎21 𝑏22 𝑏23
𝑎31 𝑏32 𝑏33

] (153) 

 

It can be seen that the entire column 1 of 𝑩 remains unchanged, but the element 𝑏32 will be: 

𝑏32 = 𝑎32𝑐𝑜𝑠(𝜃) + 𝑎33𝑠𝑖𝑛(𝜃) (154) 
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To make the matrix 𝑹 a right triangular, 𝑏32 must be zero: 

𝑎32𝑐𝑜𝑠(𝜃) + 𝑎33𝑠𝑖𝑛(𝜃) = 0 (155) 
 

 

Solving this equation can be found that: 

𝜃1 = tan
−1(−

𝑎32
𝑎31

) 

𝜃2 = 𝑡𝑎𝑛
−1(−

𝑎32
𝑎31

) + 𝜋 

(156) 

 

This duality can be resolved by making the diagonal of the right-triangular matrix positive. Following a 

similar procedure, the rotation in y is applied 

𝑨 ∙ 𝑹𝒐𝒕𝒙(𝜃) ∙ 𝑹𝒐𝒕𝒚(𝛽) =  𝑩 ∙ 𝑹𝒐𝒕𝒚(𝛽) =  [

𝑎11 𝑏12 𝑏13
𝑎21 𝑏22 𝑏23
𝑎31 0 𝑏33

] ∙ [
𝑐𝑜𝑠(𝛽) 0 𝑠𝑖𝑛(𝛽)
0 1 0

−𝑠𝑖𝑛(𝛽) 0 𝑐𝑜𝑠(𝛽)
] = 𝑪 (157) 

 

Where  

𝑪 = [

𝑐11 𝑏12 𝑐13
𝑐21 𝑏22 𝑐23
𝑐31 0 𝑐33

] (158) 

 

Following a similar procedure, the element 𝑐31 will be made zero, with the selection of the right 𝛽, which 

follows the next relations: 

𝛽1 = tan
−1 (

𝑏31
𝑏33

) 

𝛽2 = 𝑡𝑎𝑛
−1 (

𝑏31
𝑏33

) + 𝜋 

(159) 

 

Again, the selection of the angle is given by having a positive diagonal. Finally, the rotation in z is applied: 

𝑨 ∙ 𝑹𝒐𝒕𝒙(𝜃) ∙ 𝑹𝒐𝒕𝒚(𝛽) ∙ 𝑹𝒐𝒕𝒛(𝛾) =  𝑩 ∙ 𝑹𝒐𝒕𝒚(𝛽) ∙ 𝑹𝒐𝒕𝒛(𝛾) = 𝑪 ∙ 𝑹𝒐𝒕𝒛(𝛾) = 𝑹 (160) 

 

𝑹 = [

𝑐11 𝑏12 𝑐13
𝑐21 𝑏22 𝑐23
0 0 𝑐33

] ∙ [
𝑐𝑜𝑠(𝛾) − 𝑠𝑖𝑛(𝛾) 0

𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛾) 0
0 0 1

] (161) 

 

Where  

𝑹 =  [

𝑟11 𝑟12 𝑐13
𝑟21 𝑟22 𝑐23
0 0 𝑐33

] (162) 
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With a similar procedure, the element 𝑟21 will be made zero, with the selection of the right 𝛾, which 

follows the next relations: 

𝛾1 = tan
−1(−

𝑐21
𝑐22
) 

𝛾2 = 𝑡𝑎𝑛
−1(−

𝑐21
𝑐22
) + 𝜋 

(163) 

 

After this final multiplication 

𝑹 = [

𝑟11 𝑟12 𝑟13
0 𝑟22 𝑟23
0 0 𝑟33

] (164) 

Which is a right-triangular matrix. 

 

The 𝐐 matrix can be found as a product of orthogonal rotation matrices [31]: 

𝑸 = 𝑹𝒐𝒕𝒛(𝛾)
𝑻 ∙ 𝑹𝒐𝒕𝒚(𝛽)

𝑻 ∙ 𝑹𝒐𝒕𝒙(𝜃)
𝑻 (165) 

 

𝑸 = [
𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛾) 0

−𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛾) 0
0 0 1

] ∙ [
𝑐𝑜𝑠(𝛽) 0 −𝑠𝑖𝑛(𝛽)
0 1 0

𝑠𝑖𝑛(𝛽) 0 𝑐𝑜𝑠(𝛽)
] ∙ [

1 0 0
0 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

0 −𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] (166) 

 

A.5 Least Squares Solution 

Let the system of equation 𝑨 ∙ 𝒙⃗⃗ = 𝒃⃗⃗  be formed by 𝑚  equations and 𝑛  unknowns, i.e., 𝑨 ∈ ℝ𝑚×𝑛 ,          

 𝒙⃗⃗ ∈ ℝ𝑛, and  𝒃⃗⃗ ∈ ℝ𝑚. Let be assumed that 𝑚 > 𝑛, meaning the system does not have an exact solution. 

If the columns of 𝑨  are linearly independent, i.e., rank of 𝑨  is 𝑛 , an approximation for 𝒙⃗⃗  consists of 

determining the least square solution, such as the error expressed by ‖𝑨 ∙ 𝒙⃗⃗ − 𝒃⃗⃗ ‖ is minimized.  

The error can be expressed using SVD, see appendix A.3, as ‖𝑨 ∙ 𝒙⃗⃗ − 𝒃⃗⃗ ‖ = ‖𝑼ℎ ∙ 𝜮 ∙ 𝑽𝑏
𝑇 ∙ 𝒙⃗⃗ − 𝒃⃗⃗ ‖. Since 

the norm is preserved in orthogonal transforms, then ‖𝑼ℎ ∙ 𝜮 ∙ 𝑽𝑏
𝑇 ∙ 𝒙⃗⃗ − 𝒃⃗⃗ ‖ = ‖𝜮 ∙ 𝑽𝑏

𝑇 ∙ 𝒙⃗⃗ − 𝑼ℎ
𝑇 ∙ 𝒃⃗⃗ ‖ . 

Now let the auxiliary vectors 𝒚⃗⃗  and 𝒃⃗⃗ ′ be defined as 𝒚⃗⃗ = 𝑽𝑏
𝑇 ∙ 𝒙⃗⃗   and  𝒃⃗⃗ ′ = 𝑼ℎ

𝑇 ∙ 𝒃⃗⃗ , then the minimization 

problem is expressed in (167) as ‖𝜮 ∙ 𝒚⃗⃗ − 𝒃⃗⃗ ′‖. 

[
 
 
 
 
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛
 ⋮  
 0  ]

 
 
 
 

[

𝑦1
𝑦2
⋮
𝑦𝑛

] =

[
 
 
 
 
𝑏1
′

⋮
𝑏𝑛
′

⋮
𝑏𝑚
′ ]
 
 
 
 

 (167) 

 

The closest that  𝜮 ∙ 𝒚⃗⃗   approaches 𝒃⃗⃗ ′ is described by the vector in equation (168) [31]: 

𝒃⃗⃗ ′ = [𝑏1
′ ⋯ 𝑏𝑛

′ 0 ⋯ 0]𝑇 (168) 
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From (167) and (168), it can be found that every component of 𝒚⃗⃗  can be set as 𝑦𝑖 =
𝑏𝑖
′

𝜎𝑖
⁄  for 𝑖 ∈ {1,… , 𝑛}. 

Once 𝒚⃗⃗  is calculated, the least square solution 𝒙⃗⃗  can be retrieved as follows: 

𝒙⃗⃗ = 𝑽𝑏 ∙ 𝒚⃗⃗  
(169) 

 

A.6 Least Squares Solution of Homogeneous System of Linear Equations 

Let the system of equation 𝑨 ∙ 𝒙⃗⃗ = 𝟎⃗⃗  be formed by m equation and n unknowns, meaning the system is 

overdetermined. The trivial solution 𝒙⃗⃗ = 𝟎⃗⃗  is discarded; in other words, a non-zero solution is desired, 

which is commonly non-unique. Due to the equality to zero of the system of equations, if 𝒙⃗⃗  is a solution 

of the system, it would be 𝒙⃗⃗  multiplied by a constant 𝑘. The minimization problem can be then restricted 

in the following way: 

Find the 𝒙⃗⃗  that minimizes ‖𝑨 ∙ 𝒙⃗⃗ ‖ with ‖𝒙⃗⃗ ‖ = 1. Using SVD, as explain in appendix A.3, the minimization 

problem is transformed to minimize ‖𝑼ℎ ∙ 𝜮 ∙ 𝑽𝑎
𝑇 ∙ 𝒙⃗⃗ ‖. The demonstration of the result can be seen in 

[31]. The minimization solution to the homogenous system of linear equation, 𝒙⃗⃗ , is given by the last 

column of 𝑽𝑎, which is the eigenvector of 𝑨T ∙ 𝑨 corresponding to the smallest eigenvalue. 

 

A.7 R-squared and Standard Error of the Linear Regression 

The standard error of the regression ( S ) and R-squared (R2 ) are two important goodness of fit 

measurement to evaluate the fit of a (linear) regression. The standard error of the regression gives the 

average error (distance) between the actual values and the estimated regression function. The units of 

the standard error remain the same as the actual values. R-squared gives a fitting value from 0 to 1 (0-

100%) based on the actual values scattering around the estimated regression function. A High R-squared 

value, e.g., 0.99, indicates a small difference between the actual values and the estimated regression 

function; in other words, a good fit. 

To give the equations of the standard error of the regression and the R-squared, the following definitions 

are required. Let 𝑁 be the number of available samples in the set 𝐗 and 𝐘, such as 𝐗 = {x1, x2, … , x𝑁} 

and 𝐘 = {y1, y2, … , y𝑁} . Every element of the sets 𝐗  and 𝐘  belong to the set of real numbers, i.e., 

x𝑖 , y𝑖 ∈ ℝ. Let 𝑓(𝑥) be the linear regression function calculated from the sets 𝐗 and 𝐘, such as 𝑓: 𝐗 → 𝐘. 

The standard error can be calculated using the equation (170) , and R-squared with equation (171). The 

demonstrations of these equations are out of this work scope, but they can be found in [198]. 

𝑆 = √
1

𝑁 − 1
∙∑(𝑦𝑖 − 𝑓(𝑦𝑖))

2
𝑁

𝑖=1

 (170) 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓(𝑦𝑖))

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑌̅)
2𝑁

𝑖=1

 (171) 

where Y̅ is the average of the set 𝐘. 

 

A.8 Stereo Lithography (STL) to DICOM format conversion 

A 2D or 3D modality in DICOM format follows the standard output imaging format of a medical device, 

e.g., C-arm and CT-scan. For research purposes, in this case 2D/3D registration, is useful to design devices 

using computer-aided design (CAD) software and then accurately produce them using computer 

numerical control (CNC) machines or 3D-printers. To incorporate such devices in a medical framework, it 

is necessary to capture the 3D volume of the produced element using a CT-scan or an MRI. The 

accessibility to such medical modalities is restricted, but having the CAD model in standard 

stereolithography (STL) format gives enough information to convert it into a DICOM format. 

To start, the basics about the DICOM structure are clarified. Later the basics of the STL structure are 

explained. Finally, the conversion from the STL structure to the DICOM structure is elaborated. 

 

DICOM Format Structure 

In sections 4.6.1 and 4.7.1, it is explained that the DICOM contains the information in a 3D array using 

image slices forming X-Y planes and stacking in the Z direction. The physical distance between pixels in 

the X-Y image is given by the DICOM tag pixel spacing (mm/px). The DICOM tag "spacing between slices" 

(mm/frame) gives the distance between planes in the Z-direction. The lower the pixels spacing and the 

spacing between slices, the more quality the DICOM volume has, e.g., 0.2 mm/px (mm/frame). Having the 

volume dimension in pixels units, it is possible to find its physical dimension. For conversion purposes, the 

quality of the DICOM and the final dimensions are user-inputs. The physical dimensions are constrained 

as they come from the STL file. The previous ideas are illustrated in Figure A-8-1. 

 

Figure A-8-1. DICOM structure 
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STL Format Structure 

This CAD format represents only the 3D object surface using a list of facet data. Each facet is defined by 

three vertices and a normal unit vector. It is guaranteed by the format that each triangle shares two 

vertices with each of its adjacent triangles [199]. Figure A-8-2 shows the definition of a facet and 

interconnections among facets. 

 

Figure A-8-2. STL structure 

 

The vertex coordinates keep the selected dimension during the exporting time, usually millimeters, but 

other units can be found. 

 

Conversion from STL structure to 3D Array 

It is necessary to determine the 3D array size and initialize each voxel with a grayscale value of zero, 

meaning emptiness. As the STL file is created from CAD software; therefore, there is an involved 

coordinate frame in the CAD software that is kept during the exporting. The vertex list is analyzed. The 

minimum element of each coordinate is found and subtracted in each vertex, making each component of 

the vertex list equal or greater than zero. The size of the volume is found axis-wise as the maximum value 

in each coordinate seen in the entire list. 

Once the 3D array is dimensioned, it must be filled using the facets data included in the STL file. Each facet 

can be seen as a triangle in 3D space. The sub-volume delimited by the facet in the 3D array is found. The 

lower and upper limits of the sub-volume are determined with the combination of maximum and 

minimum values per coordinate in the three vertices. Let 𝒄𝑛1, 𝒄𝑛2 and 𝒄𝑛3 ∈ ℝ
3 be the three vertices 

representing the facet 𝑛 , 𝛥𝑛 ∈ ℝ
3 , of the list. This sub-volume delimitation is done to minimize 

computation time in the coming steps; otherwise, the entire 3D array would be iterated to fill each facet. 

The sub-volume delimitation can be seen clearly in Figure A-8-3. 

 

Figure A-8-3. Sub-volume delimitation 
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𝒄𝑛1, 𝒄𝑛2 and 𝒄𝑛3 represent a flat surface of the 3D object, so the entire facet must be filled. In other 

words, the voxels inside the triangle must have a gray-scale value different than zero. This gray-scale value 

is left as a user-input parameter. The filling process is carried out in three steps: 

1 Let 𝑆𝑛 ∈ ℝ
3 be the plane described by 𝒄𝑛1, 𝒄𝑛2 and 𝒄𝑛3. In this step, the plane equation given 𝒄𝑛1, 

𝒄𝑛2 and 𝒄𝑛3 is calculated. That means finding the coefficients 𝑎𝑛𝑛, 𝑏𝑛𝑛, 𝑐𝑛𝑛,  𝑑𝑛𝑛 ∈ ℝ giving by the 

following the plane equation [195]: 

𝑎𝑛𝑛 ∙ 𝑥 + 𝑏𝑛𝑛 ∙ 𝑦 + 𝑐𝑛𝑛 ∙ 𝑧 =  𝑑𝑛𝑛 (172) 
 

2 Iterate over every sub-volume voxel, and find the set of point that fulfills equation (172). 

Let 𝑽𝑛 ∈ ℤ
𝑝×𝑞×𝑟 be the sub-volume, which has to be filled. Every voxel of 𝑽𝑛 is indexed by a point 

𝒄𝑝𝑞𝑟 = [𝑥𝑝, 𝑦𝑞 , 𝑧𝑟] ∈ ℤ
3. Substituting 𝒄𝑝𝑞𝑟 in equation (172)  

𝑎𝑛𝑛 ∙ 𝑥𝑝 + 𝑏𝑛𝑛 ∙ 𝑦𝑞 + 𝑐𝑛𝑛 ∙ 𝑧𝑟 − 𝑑𝑛𝑛  =  𝜖 (173) 
 

In theory 𝒄𝑝𝑞𝑟 ∈ 𝑆𝑛 if 𝜖 = 0, but due to the mix of discrete and real points, a small 𝛿 ∈ ℝ is allowed, 

such as 𝒄𝑝𝑞𝑟 belongs to the plane if the absolute value of 𝜖 is smaller than 𝛿.  

𝒄𝑝𝑞𝑟 ∈ 𝑆𝑛 if |𝜖| < 𝛿 (174) 
 

Using a trial-and-error approach, it is found that a 0.7 ≤ 𝛿 ≤ 1.1, leads to accurate representation of 

the CAD design as a 3D volume. 

 

3 The set of points determined in the last step belong to the 𝑆𝑛, but it does not mean that they belong 

to 𝛥𝑛. It is necessary to further evaluate which of these points lie inside 𝛥𝑛. See Figure A-8-4. 

 

Figure A-8-4. Plane and facet inside sub-volume. Sub-volume in black, plane in blue and facet in red 

 

Let 𝐴𝑛1𝑛2𝑛3 ∈ ℝ  be the area of 𝛥𝑛 , and let 𝒄𝑛𝑚 ∈ ℤ3  be a point in the plane 𝑆𝑛 . Let 

𝐴𝑛1𝑛2𝑛𝑚, 𝐴𝑛1𝑛𝑚𝑛3, 𝐴𝑛𝑚𝑛2𝑛3 ∈ ℝ be the areas of the triangles formed by the vertices 𝒄𝑛1, 𝒄𝑛2 and 

𝒄𝑛𝑚, 𝒄𝑛1, 𝒄𝑛𝑚 and 𝒄𝑛3, and 𝒄𝑛𝑚, 𝒄𝑛2 and 𝒄𝑛3, respectively. 𝒄𝑛𝑚 belongs to the facet if the addition 

of 𝐴𝑛1𝑛2𝑛𝑚, 𝐴𝑛1𝑛𝑚𝑛3 and 𝐴𝑛𝑚𝑛2𝑛3 is equal to 𝐴𝑛1𝑛2𝑛3. The working principle of determining points 

inside a triangle based on areas can be seen in Figure A-8-5. 

𝒄𝑛𝑚 ∈ 𝛥𝑛 if 𝐴𝑛1𝑛2𝑛𝑚  + 𝐴𝑛1𝑛𝑚𝑛3 + 𝐴𝑛𝑚𝑛2𝑛3  =  𝐴𝑛1𝑛2𝑛3 (175) 
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Figure A-8-5. Working principle of a point belonging to a facet based on triangles areas 

 

Once again, the mix of integer and real points in the problem, makes the satisfaction of equation (175) 

unlikely. Let 𝜉 ∈ ℝ be a remaining error such as 

𝐴𝑛1𝑛2𝑛𝑚  + 𝐴𝑛1𝑛𝑚𝑛3 + 𝐴𝑛𝑚𝑛2𝑛3  − 𝐴𝑛1𝑛2𝑛3 =  𝜉 (176) 
 

𝒄nm belongs to 𝛥𝑛 if 𝜉 is smaller than a define threshold. It is empirically found that a threshold value, 

𝜁 ∈ ℝ, in the range from 9 to 17 facilitates the creation of facets. In summary from (175) and (176)  

𝒄𝑛𝑚 ∈ 𝛥𝑛 if 𝜉 <  𝜁 (177) 
 

Conversion from 3D Array to DICOM 

Each plane X-Y in the 3D array is then converted into an individual image. It means that the DICOM 

output is composed of many 2D Images (frames) as slices in the Z-component of the 3D array. Each 

image creation follows the DICOM format and is supported by the dicominfo and dicomwrite 

commands included in the MATLAB image processing toolbox. Due to the complexity of the DICOM 

format, the new DICOM is not made from scratch but by modifying an existing DICOM volume layout. 
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