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Abstract

Data-driven methodologies are attracting more and more attention. The “data-rich”
world ushered in the 21st century with ever larger and more unwieldy data sets directed
interest toward processing them. Gradually, data-driven computations are also gaining
ground in the natural sciences. In numerical mechanics, such methodologies are used in
particular for describing the material behavior. Normally, the behavior has to be char-
acterized via experiments and then fitted into models. The second step can be omitted
if one is able to use the data obtained by the experiments directly in the calculation.
This methodology was presented in 2016 by Trenton Kirchdoerfer and Michael Ortiz for
a finite element analysis and will be followed up in this work.
First, the so-called “data-driven finite element method” is investigated with respect to
its different input parameters. It turns out that the method is robust concerning the
numerical stiffness, but the amount and quality of data is essential for the quality of
the solution. Then this methodology is investigated in terms of material uncertainties.
For this purpose, data-driven computations are performed with data that are generated
from stochastic fields. In order to limit the additional numerical effort of the data-driven
computation, a method is presented, which by means of a multi-level computation is able
to reduce the numerical effort. Instead of a simulation with the complete data set, several
simulations with small, adaptive data sets are used. To avoid the complex experimental
generation of three-dimensional data, a methodology is presented on how data from
numerical calculations can be obtained. Here using the example of a representative
volume element. Finally, two further application examples are presented: First, the data-
driven methodology is applied to a diffusion problem instead of a mechanical problem.
Second, a polymorphic uncertainty model is generated by adding a fuzzy variable as a
further uncertainty to the model.

keywords: data-driven, finite element method, stochastic finite element method, un-
certainties, multi-level model, representative volume element, diffusion, polymorphic
uncertainty.
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Zusammenfassung

Datengetriebene Methodiken ziehen immer mehr Aufmerksamkeit auf sich. Die im
21. Jahrhundert eingeläutete „datenreiche“ Welt mit immer größeren und unüber-
sichtlicheren Datenmengen lenkt das Interesse auf die Verarbeitung der Datensätze.
Nach und nach erhalten datengetriebene Rechnungen auch in den Naturwissenschaften
Einzug. In der numerischen Mechanik werden solche Methodiken insbesondere für das
Beschreiben des Materialverhaltens genutzt. Normalerweise muss das Verhalten über
Experimente charakterisiert und anschließend an Modelle angepasst werden. Auf den
zweiten Schritt kann verzichtet werden, wenn man in der Lage ist, die aus den Experi-
menten erhaltenen Daten direkt in der Rechnung zu verwenden. Diese Methodik wurde
2016 von Trenton Kirchdoerfer und Michael Ortiz für die Finite-Elemente-Methode
vorgestellt und soll in dieser Arbeit weiterverfolgt werden.
Zunächst wird die sogenannte „datengetriebene Finite-Elemente-Methode“ hinsichtlich
ihrer unterschiedlichen Inputparameter untersucht. Es stellt sich heraus, dass das Ver-
fahren sehr robust gegenüber Schwankungen der numerischen Steifigkeit ist, die Daten-
menge aber essentiell für die Qualität der Lösung ist. Mit Blick auf die Datenmenge wird
dann untersucht, wie geeignet diese Methodik dazu ist, Materialunsicherheiten zu imple-
mentieren. Dazu werden die datengetriebenen Rechnungen mit Daten durchgeführt, die
aus stochastischen Feldern generiert werden. Um den numerischen Mehraufwand der
datengetriebenen Rechnung zu begrenzen wird ein Verfahren vorgestellt, dass mittels
einer mehrstufigen Rechnung in der Lage ist, den numerischen Aufwand zu verringern.
Anstatt einer Simulation mit der kompletten Datenmenge, wird auf mehrere Simula-
tionen mit kleinen, adaptiven Datenmengen gesetzt. Um die komplexe experimentelle
Generierung drei-dimensionaler Daten zu umgehen wird eine Methodik vorgestellt, wie
Daten aus numerischen Rechnungen, hier am Beispiel eines repräsentativen Volumenele-
ments, gewonnen werden können. Zuletzt werden zwei weitere Anwendungsbeispiele
vorgestellt: Zum Einen wird die datengetriebene Methodik auf das Diffusionsproblem
angewendet anstatt auf ein mechanisches Problem. Zum Anderen wird ein polymor-
phes Unschärfemodell generiert indem eine Fuzzy-Variable als weitere Unsicherheit in
das Modell hinzugenommen wird.

Schlagwörter: datengetrieben, Finite-Elemente-Methode, stochastische Finite-Elemente-
Methode, Unsicherheiten, Mehrstufenmodell, repräsentatives Volumenelement, Diffu-
sion, polymorphe Unschärfe
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Notations and
conventions

If ever the overview within the three different finite element methods and their variables
is lost, have a look here. An incomplete list of symbols is given here which may look
similar but have different meanings:

FEM finite element method
SFEM stochastic finite element method
DD-FEM data-driven finite element method
RVE representative volume element
UQ uncertainty quantification
Ω body of the considered object
Ωe one finite element of the body
Γ boundary of Ω
Γu Dirichlet boundary
Γσ Neumann boundary
λ 1. Lamé parameter
λ Lagrange multiplier for the DD-FEM
C stiffness tensor
Cµ mean stiffness tensor (SFEM)
C◦ num. stiffness tensor (DD-FEM)
D compliance tensor
D◦ num. compliance tensor (DD-FEM)
D1 diffusion tensor (Section 7.2)
D data set containing the constitutive data points
D(n) data set containing n constitutive data points per index
Π(u) total potential energy
Ψel(ε) elastic energy density (classic)
Ψel
χ(ε) elastic energy density (SFEM)

Ψel
◦ (ε) elastic energy density (DD)

Ψ∗(σ) conjugate energy density (classic)
Ψ∗◦(σ) conjugate energy density (DD-FEM)
Ψ◦(ε, σ) local minimization functional (DD-FEM)
W py global penalty functional
W ∗ mixed energy functional
e = 1, ..., ne numbering of the elements
m = 1, ..., nm numbering of the integration points

ix



N(a,b2) normal distribution with mean a and variance b2

Ni,j derivative of the i-th shape function with respect to j
E Young’s modulus
E(•) expected value of random variable •

x



1 Introduction

Many data science methods have come to the forefront in the last twenty years. The
ability to save, order and process enormous volumes of data made data-driven methods
easier to handle and very attractive. Turing Award winner Jim Gray predicted a ‘fourth
paradigm’ of science, after the empirical, theoretical and computational one, and stated:
“everything about science is changing because of the impact of information technology
and the data deluge” [49]. A real hype around the buzzword “data science” emerged
[1, 2, 87]. Even many non-scientific people are in contact with data science today since
the rise of Facebook, Amazon and Google as global players and their individual-related
data desire. From social sciences, healthcare, e-commerce to mobile communications,
it influences our daily life significantly [52]. However, in the natural sciences, data
science methods only increased slowly and the full potential has not been reached yet.
The underlying concept of data methods can generally be described in the three steps
collect, analyze and interpret as follows:

1. Collect as much data as possible about a certain process, item or phenomenon, for
instance:
i) manufacturing process of a component C
ii) water mark level W
iii) purchase of a person P

2. Use analysis tools (often statistical analysis tools), e.g. principal component analy-
sis, neural networks, market basket analysis, sensitivity analysis

3. Gain knowledge about relations and correlations, which may be unknown before
and predict further outcomes. Building on the prior examples:
i) component C fails the fatigue test if the temperature during the manufacturing

process is too low
ii) risk of a flood is high in the future if water mark W exceeds certain levels
iii) after person P bought a product send him advertising to affiliated products

The fields of application are not limited. However, critics also arose if data science is
something different than statistics [113, 114].
The term data science was used freely from the 1960s until the ’90s for computational
and statistic methods [1, 87]. In 1992, in a statistics symposium in Montpellier, it was
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1 Introduction

recognized that there is a special need for a new discipline regarding the use of data of
different dimensions, origins, and structures. Since then, even though missing a clear
formal definition until today, data science has been connected to the extraction of knowl-
edge from data. And even though Usama Fayyad et al. wrote in 1996: “Historically, the
notion of finding useful patterns in data has been given a variety of names, including
data mining, knowledge extraction, information discovery, information harvesting, data
archeology, and data pattern processing...”, data science established itself as the key
term for knowledge extraction from data [38].

Figure 1.1: Various terms which are used in conjunction with the buzzword data sci-
ence, from [4].

Data science in mechanical engineering

Data science applications are still used more in commercial fields than in the STEM
(Science, Technology, Engineering and Mathematics) fields until now [49]. In engineering
fields, data science applications begin to rise slowly. A significant difference is that in the
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engineering fields a general relationship is mostly known and a quantification is missing -
it is usually not about finding useful patterns or unknown relationships between several
features. Furthermore, the data problems are often small in contrast to the big data
problems of other fields. In engineering experiments, big data can also be produced in
high-energy physics, but Petabytes that can be produced per day are rather seldom [52].
In addition to that, the most essential difference is that commercial applications are
comparatively simple in contrast to scientific problems.
In computational mechanics, especially machine learning approaches are investigated
for describing the material behavior. Instead of a constitutive equation, a constitutive
relationship is gained by neural networks for example. In recent works [55, 56, 102]
data-driven methods are employed for fatigue for example. Other researchers use this
approach in the framework of inelasticity, plasticity, hyperelasticity and fluid flow [52,
53, 46, 76].

Data-driven computational mechanics

This thesis is based on the work of Trenton Kirchdoerfer and Michael Ortiz [67] who first
proposed a data-driven finite element method (DD-FEM) in 2016. This new concept is
characterized by the usage of experimental data directly in a finite element simulation.
Measured strain-stress data from experiments are gathered in a data set and used as
an input for the finite element analysis to describe the material behavior. The main
advantage is that the material behavior can be described model-free, i.e. no constitutive
equation needs to be chosen and the empirical modeling step is elided, which overcomes
errors and uncertainties in the material modeling step. The growing use of novel and

0,35 mm

45◦

45◦

Figure 1.2: Two examples of additive manufactured tension test specimen. While they
have the same matrix material with known parameters they still behave
different. Data-driven approaches may help in this example [95].

specifically designed materials, such as compounds or the use of additive manufacturing,
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1 Introduction

comes along with the challenge of their identification and modeling, see Figure 1.2. Both
components use the same matrix material, however, the different printing patterns lead
to the different behavior of both components.

Often the basic properties of such materials are not well known, making it difficult to
extract constitutive parameters reliably. Besides the general material behavior, the ma-
terial’s fluctuations are also of interest. Generally, the experiments which determine the
material behavior are repeated with multiple samples. Therefore, the natural material
fluctuations caused by imperfections, impurities, gas inclusions or the production pro-
cess are also included in the data sets that serve as material input of the data-driven
finite element method.

Material uncertainty

Within the priority project 1886 ’Polymorphic Uncertainty Modeling for the Numerical
Design of Structures’ of the German Research Association (DFG) it is the task to fo-
cus on methods that are able to describe uncertainties and to use them in polymorphic
approaches. In a deterministic finite element analysis, we restrict ourselves to averaged
values of stiffnesses or loads that attack an idealized geometry. The common practice in
engineering to overcome those uncertainties are safety factors. However, that means we
are unable to quantify or predict the influence of sources of randomness. The consider-
ation of material uncertainty or other uncertainties (geometric, boundary conditions) in
general and their evaluation falls under the category of uncertainty quantification.

The project’s first attempt was the use of a stochastic Markov process [70]. However,
this turned out to be unsatisfactory, so that the data-driven methodology mentioned
above was investigated with regard to its usability. Today, the main approach to treat
uncertainties is often a stochastic one. However, stochastic frameworks are not always
used. Especially if there is only small and limited knowledge available, it is hard to
justify assumptions on the stochastic distributions and fuzzy approaches are used as
well. Obviously, the material data set can only be used to investigate material uncer-
tainties. In this regard, it is researched if the data-driven approach can describe the
material variations using only the data set, similarly to the material law leading to a
model-free uncertainty approach. Alongside stochastic and fuzzy methods data-driven
methodologies could then take on a new class of uncertainty methods .

In this thesis, material uncertainties are considered as the data which is used as an
input to the finite element simulation automatically includes the material fluctuations.
That means material uncertainties are included without using a general model for them.
Therefore, we will compare the data-driven approach to the common approach to include
material uncertainties into finite element computations, namely the stochastic finite
element method.

4



1.1 State of the art and objectives of this thesis

1.1 State of the art and objectives of this thesis

Data science methods are introduced more and more in the STEM fields. In mechanical
engineering, they especially get employed for the constitutive behavior of materials.
Several data-driven methods were proposed there in the last years [18, 90, 98, 100]. In
particular neural networks are applied to model the material behavior and to elide a
constitutive equation [40, 48, 50, 83]. Those constitutive models are then used in finite
element analyses. Besides mechanical problems, which are considered in this thesis,
it can be used for heat transfer, mass transfer, electromagnetic and other boundary
value problems. Today, the finite element method is a widely accepted method for
solving partial differential equations in engineering fields. Those problems can mainly
be characterized by the three equations depicted in Fig. 1.3

Figure 1.3: The three equations which fundamentally determine a mechanical field
problem.

In the mechanical case, the balance equation puts outer and inner forces which work
onto the body, in balance. The kinematic equation describes the relationship between
displacements and strains, and the constitutive equation describes the material behavior,
i.e. the strain-stress relationship. To describe the material in a finite element analysis,
a constitutive relationship needs to be utilized. Typically, a functional relationship in
the sense of a strain energy density is given, which describes the relationship between
the stresses and the strains. In 2016 Trenton Kirchdoerfer and Michael Ortiz introduced
the data-driven finite element method. In this algorithm, they propose to use measured
strain-stress data directly in the finite element method to describe the material’s behav-
ior instead of using a constitutive equation. If the empirical fit that normally follows
the experiments can be omitted, the model uncertainties can be reduced entirely. Fur-
thermore, the data-driven method allows us to use the information gained during the
experiment as pure as possible. Using the measured data itself as an input into a nu-
merical simulation, we use every information gained during the experiment, and it is no
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1 Introduction

further material behavior predicted. There is no need to describe the shape of data by
a mathematical function, nor the fluctuations of the data need to be described. They
go into the simulation as they are. Those promising attributes of the data-driven finite
element method make it worth investigating this new method.
As a new approach, Kirchdoerfer and Ortiz introduced the data-driven algorithm for
truss structures and linear elasticity [67]. As the discrete data set and the balance laws
will have no intersection in general, we aim for minimizing the distance between the data
set and the balance laws. A distance minimizing problem emerges then. In between a
distance in the phase space needs to be defined that measures strain and stresses ade-
quately. Energy densities adopted from linear elasticity are employed to determine the
distance in the phase space which, however, do not restrict the method to linear material
behaviors. In their pivotal publication, they present good convergence properties of their
proposed algorithm towards the number of data points and the assignment of data points
as the solution. The robustness towards the spatial discretization is also outlined. In the
publication, great emphasis is placed on the mathematical basis of the methodology, but
also pose questions: How many data points are needed for an acceptable result? How
well does the method behave with the typical scattering of experimental data? What
prior treatments can be applied to the data?
They continued their work towards the data-driven finite element method with two
additional publications. In [68] the former distance-minimizing data-driven algorithm
was generalized to the so-called max-entropy data-driven algorithm. Cluster analysis
was used to make the algorithm robust towards outliers in the data set. The distance-
minimizing algorithm is recovered for the case of infinite temperature. Lastly, in their
publication [69] they extend their data-driven algorithm from static to the dynamic
framework, thus including time integration and the possibility of time-dependent data
sets.
Since then, a handful of publications have dealt with the newly proposed data-driven
algorithm by Kirchdoerfer and Ortiz. The works of Conti et al. [25, 26, 27] focus on
the mathematical framework of the data-driven problem. They identify the conditions
for the convergence and the well-posedness of the data-driven problem in the elastic and
finite elastic setting. Further publications try to extend the data-driven method to non-
linear and time-dependent problems. In [88], Nguyen and Keip extend the DD-FEM
to finite strain theory, while they present a variational framework of the data-driven
problem for a classical Poisson equation in [89], which is detached from the mechanical
problem. Eggersmann et al. extend the DD-FEM to history-dependent inelastic material
data in their first publication [34]. Their second publication [36] extends the measured
data set by pointwise tangent spaces to give the data set an underlying structure. Finally,
they focus on the efficient computation of the nearest data points in [35] by approximate
nearest-neighbor methods.
The group of Stainier and Leygue also worked extensively on the data-driven framework
and how to derive data sets. In the works [29, 79, 80, 97, 103] they focus on the
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1.2 Outline of this thesis

derivation of the data set from image analysis. Together with Platzer, they focus on
finite strain elasticity in [93] and [94]. Further publications with Dalémat focus on the
robustness and reliability of the data-driven method towards incomplete data [30, 31].
The publications of Ibanez and Chinesta focus on the construction of a constitutive
manifold [52, 54] and plasticity [22, 53]. Kanno focuses on the usage of statistical
methods on the material data set. In [60] he uses a k-means clustering method to
extend the data-driven algorithm more robust towards noise and outliers. In [59, 61, 62]
he uses a kernel regression ansatz for coarse data sets to gain unknown stress values for
given strain values. Further publications tackle the problem of fracture mechanics [20]
and the usage of lower dimensional data [106, 107, 108].

Even though the algorithm has received increasing attention over the last five years
there are still plenty of questions to answer. The questions tackled in this thesis are
posed from a more pragmatic point of view. The research presented is developed inside
the Priority Program 1886 focusing on polymorphic uncertainty modeling. Therefore,
a main emphasis of this thesis will be the ability to include the material uncertainty
inside the data set. A comparison with existing methods is made and compared to
the ability of the data-driven method to include uncertain material behavior. While the
works of Kirchdoerfer and Ortiz set the theoretical basis of the data-driven finite element
method, a deep and broad analysis of the working method is missing. How does the data
influence the solution? How does the numerical stiffness influence the solution? How
does the random initial assignment influence the solution? All these are questions that
will be answered in the course of this work. Also, in most of the previously mentioned
publications, three-dimensional problems are avoided due to the numerical cost of the
data-driven method. A look at this problem is laid out in a separate chapter. Lastly, we
tackle the question of how to gain a data set. It can be rather complicated and expensive
to gain experimental data due to the dimension of the data. Therefore, in most of the
publications a synthetically generated data set is used. One chapter is devoted to the
meaningful generation of a numerical data set.

1.2 Outline of this thesis

For this thesis, the data-driven framework was implemented into an existing in-house
finite element code in MATLAB [5]. All data-driven simulations and finite element com-
putations with a functional constitutive equation1, which are conducted for comparison
reasons, are run on this code. Computations of representative volume elements are con-
ducted in ABAQUS [6]. In the following, the structure is clarified briefly by chapters:
Chapter 2 “Governing equations” lies the fundamentals of the different finite element
methods. We repeat the basic and fundamental equations of the linear finite element

1The finite element computations with a functional relationship will be called classical FEM.
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1 Introduction

method. Built upon this basis, the extension to the stochastic finite element method is
given before the equation systems of the data-driven finite element method are derived.
We conclude the chapter with a comparison of the equation systems that need to be
solved in each case.
Chapter 3 “Numerical realization” concentrates on the numerical implementation of the
finite element methods. In a brief general section we focus on numerical aspects, such as
the shape function, numerical integration and numerical implementation. In a section
about the stochastic finite element method, we focus on the realization of the random
field and the Monte Carlo method, which is used to derive the statistics of the random
solution. The data-driven section focuses on the synthetic generation of data sets as the
set is the crucial description of the material behavior in the data-driven computation.
Before we end the chapter with the different numerical problems used in the thesis, the
fixed-point algorithm of the DD-FEM is introduced.
In Chapter 4 “Data-driven, classical and stochastic FEM” first results of this thesis are
displayed. We start with the basic properties of the data-driven method shown in a
simple rod example. Moving on to more dimensions, we start comparing the different
methods. Depending on the two input variables of the data-driven method - the data set
and the numerical stiffness tensor - we compare the results to the classical deterministic
finite element method. Afterwards, we investigate the ability of the data-driven method
to include material uncertainties within the data set and compare it to the stochastic
finite element method.
Chapter 5 “Multi-level data set approach” focuses on a numerical improvement of the
data-driven finite element method. The search for the closest data points, which is
executed in every data iteration step, is numerical very costly. We address this problem
here by using adaptive data sets. We start with a coarse set to identify those areas of
the strain-stress phase space in which precise data is needed. Then we increase precision
by successive addition of data points in these areas.
The data needed for the data-driven method does not need to be necessarily gained by
expensive experiments. In Chapter 6 “Data-driven computations with RVE generated
data sets” we investigate the possibility of deriving data from numerical experiments.
Therefore, we use a representative volume element of a foam material. The material
behavior of the full matrix material is known and with the knowledge we can conduct
simulations with the volume element. Six simple simulations with the representative
volume element are needed to generate a full data set for describing the linear behavior of
the foam. Afterwards, we conduct a full three-dimensional simulation with the generated
data and the numerical improvement of the prior chapter.
Chapter 7 “Examples of applications” focuses on further applications of the data-driven
finite element method. As a method that can insert an uncertain behavior of the mate-
rial we use it here for a polymorphic approach. Furthermore, we apply the data-driven
framework to a diffusion equation here. The data-driven method makes it possible to

8



1.2 Outline of this thesis

replace the constitutive law, not only in mechanical equations but also in other field
equations such as electric, heat or diffusion problems. Lastly, in Chapter 8 “Conclu-
sions”, we conclude the thesis and take a look at the future of the data-driven finite
element method.
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2 Governing
equations

As a new method, the data-driven approach is introduced to a relatively simple frame-
work of the finite element analysis. By using the same energy densities as the linear
finite element analysis, it is very similar to it, although it does not restrict to linear
material data. To compare the data-driven finite element method (DD-FEM) with the
classical finite element method (classical FEM) and the stochastic finite element method
(SFEM), we briefly recap basic definitions and assumptions of linear elasticity and then
move on to the different finite element methods. We will derive the basic equations
for the classic, stochastic and data-driven approaches in this chapter and compare the
equations, which need to be solved numerically. Further information and more detailed
derivations may be found in one of the many literatures towards the finite element analy-
sis, like the well-known books of Hughes [51] and Zienkiewicz [117, 118], or for example
in [111, 119]. A well-examined introduction to the stochastic finite element analysis is
given by Papadopoulos [92], or Der Kiureghian [32], while for an introduction into the
new DD-FEM we refer the works of Kirchdoerfer [66, 67].

2.1 The boundary value problem of linear elasticity

To describe the motion of a body Ω in a continuum mechanic problem, the main variable
of interest is the displacement field u(x, t) : Ω× [0, T ]→ R3. It characterizes the motion
of the body between the reference configuration and the actual configuration. Given a
kinematic and a constitutive equation we are able to derive the strains and stresses in
the body from the displacement. In linear elasticity, there are three main assumptions
made, these are:

• small deformations,
• a linear constitutive equation,
• equilibrium constraint at the undeformed body.

Presuming small deformations, that is ||u|| � 1 and ||∇u|| � 1, we can write the
strain field ε(u) as a linearized function of the displacement field. Neglecting higher
order terms, the strain tensor is the symmetrized gradient of the displacement field u

ε(u) = 1
2
(
∇u+ (∇u)T

)
=: ∇sym(u) (2.1)

11



2 Governing equations

where the strain tensor is a second order tensor with components

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 .
The strain is connected by the constitutive equation to the stress tensor σ. By a linear
constitutive equation, known as Hooke’s law, we have

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 = C : ε (2.2)

where C is the fourth-order material stiffness tensor, which is solely responsible for
describing the material behavior. Because of the symmetries of the stress and strain
tensor and assuming isotropic material behavior, the stiffness tensor can be described
by two independent values

Cijkl = Eν

(1 + ν)(1− 2ν)δijδkl + E

2(1 + ν)(δikδjl + δilδjk) . (2.3)

Commonly, those are the Young’s or elastic modulus E and the Poisson’s ratio ν while
δij here denotes the Kronecker delta, which is only one if i = j and zero otherwise.
Two other parameters used to describe the stiffness tensor in this work are the Lamé
parameters

λ = ν

1− 2ν ·
E

1 + ν
,

µ = 1
2 ·

E

1 + ν

which means we can simply convert both representations into each other. In general,
material properties vary from point to point in space and in time. They can be dependent
on several external effects such as temperature or pressure, but also on inner aspects
such as impurities or gas inclusions. Therefore, we should keep in mind that choosing
material parameters for a complete structural component in a numerical simulation is
always a simplification of reality. In this context, we will later compare the data-driven
and the stochastic method with each other, which can account for material uncertainties.
To account for this uncertainty the stochastic finite element method adds a stochastic
term to the stiffness tensor, and the data-driven finite element method includes material
fluctuations in the data.

To describe the entire mechanic problem we need, besides the kinematic and the con-
stitutive, a balance equation that puts outer and inner forces in balance. That is the
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2.2 Linear finite element analysis

balance of linear momentum: For every point x of a domain Ω ⊂ R3 it holds

div(σ) + b = ρü , (2.4)

where b(x) denotes the body force per unit volume, ρ(x) is the material density and ü(x)
is the acceleration which is set to zero here. The kinematic, constitutive and balance
equations fundamentally define the boundary volume problem of linear elasticity. For
the complete definition, however, we are missing the boundary conditions

u = ū on Γu (2.5)
t = σ · n on Γσ (2.6)

where Γu and Γσ are the disjoint sets of the Dirichlet and Neumann boundaries, e.g.
Γu∪Γσ = ∂Ω and Γu∩Γσ = ∅. Summarizing the prior equations, we have the differential
form (strong form) of the boundary value problem in linear elasticity:

Find u such that the balance of linear momentum (2.4) is fulfilled given

(2.1) the kinematic equation ε(u) = ∇sym(u),

(2.2) Hooke’s law σ = C : ε,

(2.5) the Dirichlet boundary u = ū and

(2.6) the Neumann boundary t = σ · n

2.2 Linear finite element analysis

To solve such boundary value problems, the finite element method established itself in
the last decades. Used for a variety of applications this method is generally accepted and
should be well-known by most mechanical engineers. More than 70 years ago Courant
[28] recognized that a decomposition of the domain can be beneficial for gaining a so-
lution. These 70 years later, there exist a lot of commercial software tools that include
computer-aided design possibilities that can solve problems from most mechanical engi-
neering fields. As there is a lot of literature, it is also referred to in [51, 117, 118, 41] for
more information.
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2 Governing equations

The weak form

To solve the given differential problem via the finite element method we derive the weak
form of the boundary value problem. There are several possibilities to do this and we
will not use the balance of linear momentum (2.4) directly. We choose an energetic
approach as it serves for a better comparison to the data-driven approach, which is also
derived by an energetic approach. In the appendix, it is shown that we end up with
the same variational problem if we start at the balance equation. In order to find the
deformation of the solid, the principle of minimum potential energy states that the body
takes the configuration, which minimizes its total potential energy. The potential energy
is defined by the interior and exterior energies

Π(u) = Πint(u)− Πex(u) (2.7)

where the internal energy is the integral over the elastic energy density

Ψel(ε) = 1
2ε : C : ε = 1

2ε : σ (2.8)

and therefore

Πint =
∫

Ω
Ψel(ε) dΩ .

The term Πex in (2.7) summarizes the externally applied forces with the traction and
the body forces

Πex =
∫

Ω
b · u dΩ +

∫
Γσ
t · u dΓ . (2.9)

Plugging in both energies the total potential energy is

Π = 1
2

∫
Ω
ε : C : ε−

∫
Ω
b · u dΩ−

∫
Γσ
t · u dΓ

and the variation of Π with respect to u then reads

δΠ =
∫

Ω
δε : σ dΩ−

∫
Ω
b · δu dΩ−

∫
Γσ
t · δu dΓ (2.10)

which needs to vanish for a minimum.
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2.2 Linear finite element analysis

The weak form of the problem then reads as:
Solve

δΠ =
∫

Ω δε : σ dΩ−
∫

Ω b · δu dΩ−
∫

Γσ t · δu dΓ = 0

with respect to

(2.1) the kinematic equation ε(u) = ∇sym(u),

(2.5) the Dirichlet boundary u = ū.

The two constraints which we are missing from the strong form are now built in the main
equation. That solving δΠ = 0 actually leads to a minimum is shown in the appendix.
Equation (2.10) is also called the variational formulation of the elastic problem, where
we start with the typical finite element approximations next.

Finite element discretization

The goal is to find the minimum of the total elastic energy. To find the minimum,
numerical help is needed. In the following, we introduce some finite element notations
that allow us to take the step from the theoretical equations to the discretized problem
as a system of linear equations that we can then solve.
The key aspect of the finite element method is the decomposition of the domain Ω in
smaller subdomains Ωe which are called finite elements. For the finite elements often
regular and simple geometries are used, such that the union approximates the real ge-
ometry. Also, the finite elements yield a disjoint decomposition of the domain, that is
Ωi ∩ Ωj = ∅ ∀ i, j ∈ {1, ..., ne}, i 6= j and

Ω ≈ Ω̃ =
⋃
E

Ωe =
ne⋃
e=1

Ωe. (2.11)

The set E is the set of all elements E = {1, . . . , ne}. Using Voigt’s notation simplifies
many of the following equations. For the stiffness, stress and strain tensor we use from
now on

C =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ


, ε =



εxx
εyy
εzz
εyz
εxz
εxy


, σ =



σxx
σyy
σzz
σyz
σxz
σxy


.
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2 Governing equations

Hooke’s law (2.2) is then the matrix vector multiplication

σ = Cε . (2.12)

The displacement field u as well as its variation are approximated by a weighted sum of
shape functions N1, ..., Nnk

u(x) ≈ ũ(x) =
nk∑
k=1

Nk(x)ûk = N · û (2.13)

δũ(x) =
nk∑
k=1

Nk(x)v̂k = N · v̂ (2.14)

where N is the vector of the shape functions and the coefficient vectors û and v̂ contain
the unknown weights. More about the choice of shape functions and their properties is
found in the FEM implementation Section 3.1. Defining the differential matrix B by its
element-wise part

Be =



N1,x 0 0 Nnk,x 0 0
0 N1,y 0 0 Nnk,y 0
0 0 N1,z . . . 0 0 Nnk,z

0 N1,z N1,y 0 Nnk,z Nnk,y

N1,z 0 N1,x Nnk,z 0 Nnk,x

N1,y N1,x 0 Nnk,y Nnk,x 0


(2.15)

where Ni,j is the derivative of the i-th shape function with respect to j and nk is the
number of shape functions per element, we can get the element-wise strains by the matrix
vector calculation

εe = Beûe . (2.16)

We obtain the stresses by multiplying the strains with the stiffness matrix in Voigt’s
notation

σe = Cεe = CBeûe . (2.17)

Now, if we use (6.19), (2.14), (2.16) and (2.17) and plug it into the variation of the total
potential energy (2.10) we get

δΠ = v̂T ·
∫

Ω
BTCB dΩ · û− v̂T ·

∫
Ω
b ·N dΩ− v̂T ·

∫
Γσ
t ·N dΓ = 0

⇔ v̂T ·
∫

Ω
BTCB dΩ︸ ︷︷ ︸

K

· û = v̂T ·
(∫

Ω
b ·N dΩ +

∫
Γσ
t ·N dΓ

)
︸ ︷︷ ︸

f
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2.2 Linear finite element analysis

such that we get the typical FEM system

K · û = f (2.18)

where K is the stiffness matrix

K =
∫

Ω
BTCB dΩ (2.19)

and the load vector f summarizes the body forces b and traction forces t

f =
∫

Ω
NTb dΩ +

∫
Γσ

NT t dΓ . (2.20)

The element-wise notation reads

Ke =
∫

Ωe
BeTCBe dΩ K =

⋃
E

Ke

f e =
∫

Ωe
NeTbe dΩ +

∫
Γeσ

NeT te dΓ f =
⋃
E

f e

where ⋃E denotes the assembly of element-wise computations∫
Ω
• dΩ =

⋃
E

∫
Ωe
• dΩ .

Remarks

1. In order to distinguish the different finite element methods, we will call simulations
obtained by means of the previously described method with a determined material
law classical FEM.

2. It is also possible to derive the solution by considering the dual energy density, see
[119] for example. The complementary energy density as a function of the stress
follows from a Legendre transform, Ψ∗(σ) = maxε

[
σ : ε−Ψel(ε)

]
, to

Ψ∗(σ) = 1
2σ : D : σ (2.21)

where D is the compliance tensor. It is then called the principle of minimum
complementary potential energy and the problem to solve reads as:
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2 Governing equations

Minimize the conjugated elastic potential

Π = 1
2
∫

Ω σ : D : σ −
∫

Γu t · ū dΩ

with the side constraints

(2.4) the balance of linear momentum div(σ)− b = 0 and

(2.6) the Neumann boundary t = σ · n

The elastic and its conjugated principle are called dual as the constraints of the
elastic energy are in the essential equation of the conjugated and the other way
round. The elastic energy density Ψel as well as the conjugate energy density Ψ∗
will be used in the data-driven method. The elastic one as a distance measure in
the strain space and the conjugate as a distance measure in the stress space.

2.3 Stochastic finite element analysis

Approaches to take uncertainties of model input parameters into account go back to the
early 1970s and grew significantly since the 1990s due to the permanent increase of com-
puting power. Well-established stochastic methodologies were introduced to engineering
systems to quantify the uncertainty [92]. Applied to mechanical problems, the intro-
duced methods are assigned to computational stochastic mechanics, which is a small
but prolific scientific field [92, 33, 85]. In the stochastic finite element method (SFEM)
stochastic variables replace their deterministic counterparts and it can therefore be seen
as an extension of the deterministic classical FEM. By replacing the deterministic vari-
ables the SFEM still uses all advantages of the finite element analysis as a versatile and
valuable tool but can now be used for the simulation with uncertainties. The origin
of the uncertainty is not important. It is possible to add a stochastic variable in the
material (Young’s Modulus, Poisson’s Ratio, yield stress, . . . ), the geometry (fluctu-
ation of nominal size) or the loading (fluctuations of the applied force). The field of
stochastic processes also yields the possibility to describe the behavior of those variables
in space and time, however, often only one or two uncertainties are considered and a
time-dependence is omitted too.

From the users point of view two things change in contrast to the classical finite ele-
ment analysis. First, the stochastic input has to be characterized. Knowledge about the
variability of a certain variable is usually gained by multiple measurements. In many
situations, however, it is difficult to conduct so many measurements that distributions
can be derived. Second, using stochastic variables renders the differential equation now
also stochastic such that the solution is also a stochastic variable now. Therefore, we
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2.3 Stochastic finite element analysis

are interested in the distribution or the statistics, e.g. mean and variance, of the dis-
placement instead of a deterministic value. The applications of the SFEM are manifold
[10, 47]; it has been used in a large number of problems like solid and fluid mechanics,
acoustics, heat transfer and biomechanics, [17, 37, 42, 99]. The paper of Arregui-Mena
[10] shows an overview of 17 practical case studies of uncertainties in polymer nanocom-
posites, porous materials, metal foams, total knee replacements and geomaterials where
the SFEM is used.

The stochastic differential equation

As we want to compare the SFEM to the DD-FEM the only uncertainty we consider here
will be material uncertainties. Voids, impurities, volume shrinkage or other imperfect
conditions may influence the material parameters. In the most general notation we have
a stochastic process that depends on space, time and randomness

χ : Ω× [0, T ]× P→ Rn

where P is a probability space. For every element p of the probability space we have a
function of space and time

p 7→ χp(x, t) .

As mentioned above we will have no change in time. One way to consider material
deviations is to superpose a zero-mean stochastic variable χp(x) to the strain-stress
relation, i.e.

Cχ(x) = Cµ(x)
(

1 + χp(x)
)
. (2.22)

Here Cµ is the local mean elasticity tensor and the stochastic term

1 + χp(x) (2.23)

describes a percentage change around the ’true’ value. The elastic energy (2.8) now
changes to

Ψel
χ(ε) = 1

2ε : Cµ
(
1 + χ

)
: ε . (2.24)

For the evaluation of the stochastic finite element equations the modified elastic energy
(2.24) needs to be used in the same manner now as in the classic FEM evaluation.
Therefore, only the stiffness matrix changes. Simple calculations result in the finite
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2 Governing equations

element stiffness matrix for the SFEM

K =
∫

Ω
BTCµ

(
1 + χ

)
B dΩ . (2.25)

Hence the stiffness matrix can be split into a deterministic part using the mean elastic
parameter and a stochastic part

K =
∫

Ω
BTCµB dΩ︸ ︷︷ ︸

Kµ

+
∫

Ω
BTχCµB dΩ︸ ︷︷ ︸

Kχ

(2.26)

and the following SFEM system of equations needs to be solved, cf. [92]

(Kµ + Kχ) û = f (2.27)

As small as the change in the equations may be, the stochastic finite element method
involves some difficulties that are hard to overcome. The stochastic structure changes
the way of solving (2.27) significantly. To determine the stochastic structure of the
response variable a single computation of the system is not sufficient anymore. To solve
the stochastic differential equation several methods have been developed. A detailed
classification can be found in [105]. In the simplest case this is done by a Monte Carlo
simulation, which is a large number of simulations with realizations of the stochastic
variables. Using a realization of the stochastic part the problem (2.27) renders again
deterministic and can be solved directly as before. However, to account for the stochastic
distribution, a large number of computations needs to be carried out then. This is
numerically very costly but also yields an approximation of the response distribution
instead of only statistics. Other methods like perturbation-based methods or projection
and decomposition methods have been developed to accelerate the computation, see
[92, 104, 105]. For the applied stochastic field and the solving method used in this thesis
see Section 3.2.

2.4 Data-driven finite element analysis

Last, we present the data-driven finite element method. It was first proposed in [67]
by Trenton Kirchdoerfer and Michael Ortiz in 2016 and is, therefore, a relatively new
method. They derived the method for truss structures and linear elasticity. Even though
we will show some examples in the truss case we focus on the derivation for the three-
dimensional case. The derivation and steps are the same for trusses only with the lower
dimensional variables and can also be found in [67] and [66].
The main idea is to use a data set D that is gained in experiments directly without an
empirical treatment. Typically the empirical treatment follows up the experiment by
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2.4 Data-driven finite element analysis

fitting appropriate material models to the data. Now, the information about the material
is used as it is gained in the experiment. Measured values are neither averaged nor is
information gained in areas of no measurements. The values go into the algorithm in their
original state. The fitting of the material model is skipped, which means that modeling
errors are prevented. However, the characteristic of the boundary value problem changes
significantly as there is no interception of the physical equilibrium and the material
equation anymore. To make this clear, consider the left image of Fig. 2.1. We find the
equilibrium of an arbitrary body as the intersection of the material law and the physical
constraints. However, on the right side, where we have the strain-stress relationship only
as a set of data points, an intersection does not need to exist nor is very likely to exist
at any time. Therefore, instead of the intersection, we search for the closest distance
between the data set D and the constraint set C. A minimum distance problem arises
then and needs to be solved.

Figure 2.1: Difference of having a functional constitutive model (left) in contrast to a
data set as constitutive model (right).

In the following, we introduce the DD-FEM theory, which mainly coincides with the
description in [67, 66] by Kirchdoerfer and Ortiz.

Minimizing distance data-driven finite element method

The task is to find an appropriate norm in which we can measure the distance between
the data set and the equilibrium constraint set. Different units do not allow us to take
the distance directly in Fig. 2.1. The energy densities (2.8) and (2.21) are suitable but,
as the idea of the data-driven method is to elide any material law in functional form, the
material tensors C and D are unknown. Therefore, we cannot make use of the classical
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2 Governing equations

energy densities but instead replace them by pure numerical tensors C◦ and D◦

Ψel
◦ (ε) = 1

2ε : C◦ : ε (2.28)

and

Ψ∗◦(σ) = 1
2σ : D◦ : σ (2.29)

to define appropriate energy densities. The constitutive matrices C◦ and D◦ are here of
purely numerical nature, i.e., they have to guarantee the basic property of symmetry but
are arbitrary values otherwise. The idea is now to find the closest-to-the-real (ε,σ)-pair
to identify the deformation. This data pair is expected to minimize the sum of the prior
two energy densities of the difference to the real state. Accordingly, we formulate a local
penalty function

Ψ◦(ε,σ) = min
(εi,σi)∈D

(
Ψel
◦ (ε− εi) + Ψ∗◦(σ − σi)

)
(2.30)

which defines the minimal distance of the data set D to a given strain-stress pair by the
norm induced through (2.28) and (2.29). This also shows the purpose of the matrices C◦
and D◦. They serve as a weight to guarantee that the strain and stress parts in (2.30)
are in the same order of magnitude and get the same unit. To enforce this minimization
at every point positivity of the energy densities allows us to use the integral over the
whole domain of the body such that the global penalty function can be defined by

W py =
∫

Ω
Ψ◦(ε,σ) dΩ. (2.31)

This function needs to be minimized with respect to the physical and boundary con-
straints and the data-driven problem can then be summarized as follows:

Minimize the global penalty function

W py =
∫

Ω Ψ◦(ε,σ) dΩ

with respect to

(2.1) the kinematic equation ε(u) = ∇sym(u),

(2.4) the balance of linear momentum div(σ) + b = 0,

(2.5) the Dirichlet boundary u = ū and

(2.6) the Neumann boundary t = σ · n.

Boundary conditions aside, we first deal with the kinematic and equilibrium ones. The
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2.4 Data-driven finite element analysis

kinematic side constraint can be enforced easily by plugging the kinematic equation (2.1)
into (2.31). The equilibrium constraint, however, needs to be enforced otherwise. We
introduce here a Lagrange multiplier λ to enable (2.4). It is also possible to choose a
different technique to enforce the second side constraint, for example by introducing a
penalty-like variable. Adding the Lagrange multiplier we end up with the mixed energy
functional

W ∗ =
∫
Ω

Ψ◦(ε,σ) dΩ−
∫

Ω
λ · (div(σ) + b) dΩ . (2.32)

Using the standard finite element steps of integration by parts, the approximation of
the displacement and the same approach for the Lagrangian and plugging in the finite
element representation for the strains, we get the stationary problem

δ

∫
Ω

Ψ◦ ((Bû,σ) dΩ + λ̂T
∫

Ω

BTσ dΩ− f

 = 0

where f inhabits the force terms of the body and the Neumann boundary. Using (2.30)
with D◦ = (C◦)−1 and ε∗,σ∗ as the optimal data points we can write

δ

1
2

∫
Ω

(
(Bû− ε∗)T C◦(Bû− ε∗) + (σ − σ∗)T (C◦)−1(σ − σ∗)

)
dΩ +

λ̂T

∫
Ω

BTσ dΩ− f

 = 0

Taking the variations with respect to the displacement, stress and Lagrangian we get:

δû⇒
∫
Ω

BTC◦ (Bû− ε∗) dΩ = 0 (2.33)

δσ ⇒
∫
Ω

(C◦)−1(σ − σ∗) dΩ +
∫
Ω

Bλ̂ dΩ = 0 (2.34)

δλ̂⇒
∫
Ω

BTσ dΩ− f = 0. (2.35)

Equation (2.33) we rewrite to∫
Ω

BTC◦B dΩ û =
∫
Ω

BC◦ε∗ dΩ (2.36)

which leads to a system of equations for the unknown displacement values û. The second
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equation (2.34) implies

σ = σ∗ − C◦Bλ̂ (2.37)

which can be plugged into the third equation then. The unknown stresses are replaced
by the unknown Lagrangian λ̂∫

Ω
BTC◦B dΩ λ̂ =

∫
Ω

BTσ∗ dΩ− f (2.38)

to get a second FEM equation for the Lagrangian. Summarizing the prior equations, we
can write the two DD-FEM linear equation systems as

Kuû = fu (2.39)
Kλλ̂ = fλ (2.40)

with

Ku =
∫

Ω
BTC◦B dΩ fu =

∫
Ω

BC◦ε∗ dΩ

Kλ =
∫

Ω
BTC◦B dΩ fλ =

∫
Ω

BTσ∗ dΩ− f

where we observe that Ku = Kλ and we can therefore name it K. Inside the force
vectors the values {ε∗,σ∗} denote the still unknown optimal data points out of set D.
In Section 3.3 an iterative algorithm is proposed to compute them. The global systems
are obviously gained by the assembly of the element-wise computations

K =
⋃
E

Ke fu =
⋃
E

f eu

K =
⋃
E

Ke fλ =
⋃
E

f eλ

Remarks

1. The use of the elastic energy densities (2.8) and (2.21) in (2.31) seems to restrict
the problem to linear elasticity. This is not the case. The functions (2.8) and
(2.21) provide a norm accounting for proper physical units and comparable stress
and strain measures. In their first publication [67] Kirchdoerfer and Ortiz already
used non-linear data. Also, by definition of (2.31) with the energy densities the
basic principles of material theory hold, i. e. determinism, locality, and objectiv-
ity. An alternative norm would be the first or second invariant of the tensors for
example. This choice, however, is more restrictive because it presumes isotropic
tensor functions and thus presumes isotropic material. In case of an elasto-plastic
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2.4 Data-driven finite element analysis

material response the choice (2.30) is also applicable.
2. To include different local behavior the data set, as well as the numerical tensor,

can be made dependent on the location leading to D(x) and C◦(x). Transferred
to the data-driven approach this means that the data set D and the numerical
material tensor C◦ can be made dependent on their element assignment De and
C◦e, e = 1, ..., ne. This does not affect the prior derivation. However, it allows
to implement uncertainties or different material behaviors at different locations.
Multiple materials or different data sets from the same material can be used to
describe different local behavior. Going even further, in dynamic computations
the data set can also be dependent on a time variable, leading to Dte.

3. We want to mention that the definition of C◦ and D◦ corresponds to some basic
assumptions on the model. Throughout this thesis we presume isotropic numerical
stiffness and compliance tensors. The isotropy is here used for simplicity and
better convergence of the data search but it is no requirement of the data-driven
algorithm. Specifically we set D◦ = (C◦)−1 for all simulations.

4. Since the finite element procedure evaluates the given equations at the material
points the data-driven algorithm needs to assign a data point to every material
point, see also Section 3.3.

5. The dimension of the data points (ε∗,σ∗) depends on the dimension of the problem.
If we consider three-dimensional problems where the strain and stress tensor are
described by six different values, the data points are twelve-dimensional. Two-
dimensional problems result in six-dimensional data points and one-dimensional
problems in two-dimensional data points (ε, σ) ∈ R2. Therefore, typical DD-FEM
properties will be illustrated by using a one-dimensional problem in the beginning
of Section 4.1. For those, the data set is easily plotted, which allows an easier
access to the algorithm and its properties.

Systems of equations

Concluding this chapter, we want to rewind the systems of equations, that we have
to solve, to have a glance at them simultaneously. All three methods have the same
structure of a system of equations Ax = y with a stiffness matrix A, a force vector y
and a solving variable x but with different inputs of A, x and y. The first difference,
which can be seen in Table 2.1, is that in the data-driven setting two systems of equations
have to be solved. However, the matrices coincide for both systems such that only one
inversion of the matrix has to be computed.
The structure of the stiffness matrix (left-hand side) does not change significantly. The
only difference between the methods is the material tensor. In the SFEM a stochastic
variable is added while in the DD-FEM a numerical tensor as a weight is used. The
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2 Governing equations

Method Left-hand side Solving variable Right-hand side

classical FEM
∫

Ω BTCB dΩ û
∫

Ω NTb dΩ +
∫

Γσ NT t dΓ

SFEM
∫

Ω BTCµ(1 + χ)B dΩ û
∫

Ω NTb dΩ +
∫

Γσ NT t dΓ

DD-FEM ∫
Ω BTC◦B dΩ

û
∫

Ω BTC◦ε∗ dΩ

λ̂
∫
Ω

BTσ∗ dΩ− f

Table 2.1: Comparison of the equations for the different finite element methods. The
right-hand side of the first two methods equals f of the DD-FEM.

right-hand side of the classic FEM and the SFEM coincide as we do not use stochastic
quantities in the applied forces. However, there is a bigger difference to the DD-FEM.
The first system of equations for the displacements is driven by the strain data points,
while the second system, for the Lagrangian, is driven by the out-of-balance forces with
the stress data points where f inhabits the traction and body forces.
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3 Numerical
realization

After we introduced the theory of the three different finite element methods, we want to
specify several numerical and technical details of the implementation and the execution
of the numerical simulations. The stochastic, as well as the data-driven algorithm are
implemented into an existing in-house finite element code in Matlab [5].
First, we state further theoretical details, such as the element type and the shape func-
tions which are used for all three finite element methods. Then, for the stochastic
approach, we state the random field that describes the material fluctuations as well as
the solution method. For the data-driven method we specify the iterative algorithm for
the optimal data points as well as the data set generation of the synthetic data which
are used. At last, examples which will be considered in this thesis are introduced.

3.1 Finite element implementation

Ultimately, we have to solve the system of linear equations (2.18) for the classical FEM,
(2.27) for the SFEM and (2.39) and (2.40) for the DD-FEM. Due to the decomposition
of the domain

Ω ≈ Ω̃ =
⋃
E

Ωe =
ne⋃
e=1

Ωe (3.1)

the element-wise values need to be computed and assembled to establish the global
system of equations. There are different possibilities to choose the elements which ap-
proximate the geometry. In this thesis, we apply linear hexahedral brick-type elements
with 8 nodes throughout all simulations. We use an isoparametric approach where the
geometry is approximated with the same shape functions as the displacements. On both
sides of the equations derived in the prior chapter, integrals have to be solved in each
element numerically. Using Gauss quadrature for the numerical integration we have

∫
Ωe
f(x) dx ≈

np∑
p=1

wpf(xp)

where wp are the Gauss-weights and xp are the integration points corresponding to Ωe,
which are also called material points. For the integration we use 8 material points
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3 Numerical realization

throughout all simulations. This value is particular, important for the data-driven ap-
proach. To every material point a data point needs to be assigned by a minimal distance
evaluation. Depending on the number of data points in the data set, the search for the
minimum distance can get a costly step of the data-driven computation. Therefore, in-
creasing the material points especially increases the cost of the DD-FEM.
To do systematic calculations the physical elements of the body are transformed to a
so called reference or master element. Common choices for the reference element are
[−1, 1]d or [0, 1]d where d is the dimension. In the three-dimensional space the physical
coordinates x = (x, y, z) describe the element before and the reference coordinates ξ =
(ξ1, ξ2, ξ3) after the transformation. The coordinate transformation is then defined by

Je = ∂x
∂ξ

(3.2)

which is also depicted in Fig. 3.1. The integration points and shape functions are always

Figure 3.1: Transformation of the physical element to the reference element.

the same and only need to be computed once for the reference element. In the elements
the displacement field is approximated by the shape functions Ni and the weights ûi

u ≈
nk∑
i=1

Niûi .

Common choices for the shape functions have the following two properties

Ni(ξ(j)) = δij (3.3)
nk∑
i=1

Ni(ξ) = 1 (3.4)

where ξ(j) are the coordinates of the j-th knot in the reference element. The collocation
property states that the weights ûi coincide with the displacement at the nodes. In this
thesis linear Lagrange polynomials are used as shape functions in all simulations. They
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3.1 Finite element implementation

are gained by a multiplicative approach for higher dimensions from their one-dimensional
equivalents. Generally, the one-dimensional Lagrange polynomials of degree p read as
follows

Ni,p(ξ) =
p+1∏

j=1,i 6=j

ξ(j) − ξ
ξ(j) − ξ(i)

The linear Lagrange polynomials for the 1-D two node element are

N1(ξ) = 1
2(1 + ξ) N2(ξ) = 1

2(1− ξ)

and the ones for three dimensions are then gained by the multiplicative approach

Ni(ξ1, ξ2, ξ3) = Nj(ξ1)Nk(ξ2)Nl(ξ3)

where i = 1, ..., 8 and j, k, l ∈ {1, 2}. This results in the eight functions

N1 = 1
8(1− ξ1)(1− ξ2)(1− ξ3), N5 = 1

8(1− ξ1)(1− ξ2)(1 + ξ3)

N2 = 1
8(1 + ξ1)(1− ξ2)(1− ξ3), N6 = 1

8(1 + ξ1)(1− ξ2)(1 + ξ3)

N3 = 1
8(1 + ξ1)(1 + ξ2)(1− ξ3), N7 = 1

8(1 + ξ1)(1 + ξ2)(1 + ξ3)

N4 = 1
8(1− ξ1)(1 + ξ2)(1− ξ3), N8 = 1

8(1− ξ1)(1 + ξ2)(1 + ξ3)

of which everyone is assigned to a node of the element by relation (3.3). For this choice
of shape functions the properties (3.3) and (3.4) both hold. The derivatives, which need
to be derived for the B matrix, are omitted here due to the lengthy representation and
easiness. For the numerical implementation they need to be evaluated at the integration
points and used as in (2.15). Using Gauss quadrature, integral transformation and the
shape functions we exemplarily write down the computation of the elemental stiffness
matrix

Ke =
∫

Ωe
BeTCBe dΩ =

np∑
p=1

wpBeT (ξp)CBe(ξp) det(Je(ξp)).

which looks similar in all three cases. The only difference is the material matrix, which
needs to be replaced by the methods equivalent. As an example we also have a look at
the right-hand side of the first DD-FEM equation

f eu =
∫

Ωe
BTC◦ε∗ dΩ =

np∑
p=1

wpBeT (ξp)C◦ε∗(ξp) det(Je(ξp))
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3 Numerical realization

and note that at every material point ξp a data point (ε∗(ξp),σ∗(ξp)) =: (ε∗p,σ∗p) is
needed. Therefore, to every material point a data point needs to be assigned, which
describes the material state there. This is particularly important: To assign the optimal
data point to the material point the data point, which is closest to the computed strains
and stresses needs to be chosen. To find the closest data point a minimal distance search
needs to be performed. This is, depending on dimension and number of data points,
a numerically very expensive task. We focus more on that in Sections 3.3, 4.2 and
Chapter 5. The corresponding stiffness matrices and force vectors of the other methods
are gained analogously.

3.2 Stochastic finite element method

For the stochastic finite element method the random field and the solution method of
the stochastic problem need to be defined. As we are looking for an overall comparison
of the methods we use relatively simple methods here. A Gaussian noise is used as a
random field and the Monte Carlo method as a solver. The Monte Carlo method can also
be used in a certain sense for the random initializations in the data-driven computations
later on.

Random fields

The random field is the important variable that transports the uncertainties in the
SFEM. As always, the variable should be chosen as close to reality as possible. However,
this is much more difficult for a stochastic process than for a single material constant.
Like in one dimension random fields need to be characterized by parameters. As a
consequence of the multi-dimensionality, the mean and variance are functions now which
need to be determined by measurements in experiments. This is, however, a tough task.
By construction of the stochastic term in (2.22) the mean function can be assumed to
be zero. The covariance function specifies the correlation between two points, where the
correlation should decrease as the distance increases in our case. Therefore, covariance
functions are often dominated by a length scale parameter, which defines the degree of
correlation with respect to the distance. To define this parameter we wish to know the
material behavior at as many points of a material specimen as possible. Furthermore, we
want to know them for as many different specimens as possible to deduce distributions.
The problem of gaining this information, especially those inside a specimen, are hard
or impossible to get. In [104] Stefanou states that, in general, assumptions have to
be made to overcome the lack of experimental data. In [21] a sensibility study is run
to characterize the influence of the parameters and to aid researchers in calibrating
the random fields. In [11] digital image-based characterization, homogenization and
representative volume element techniques are used as example.
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3.2 Stochastic finite element method

One of the most common fields are Gaussian fields. Gaussian fields are technically
very easy to handle and follow a normal distribution locally. The normal distribution
assumption is quite frequent and also used if there is a lack of information. It occupies a
special position in the stochastic distributions as the natural limit of sums of independent
random variables. Stationary1 Gaussian fields are fully characterized by its mean and
covariance function. As described above the mean is set to zero. The options for the
covariance functions are broad: rational, exponential or periodic are common, just to
name a few. A more simple Gaussian process is the Gaussian noise with covariance
function

C(x,x′) = s2δx,x′

which is nonzero only for x = x′. Note that we are using s2 for the variance and s for
the standard deviation of the stochastic variables, as σ is already used throughout the
thesis for the stresses. In Fig. 3.2 the left image is a Gaussian noise, while on the right
side an exponential covariance function

C(x,x′) = exp
(
−|x− x′|

l

)

with the length parameter l is demonstrated.

Figure 3.2: Two gaussian random fields which can indicate areas of higher (red) and
lower (blue) elasticity. The first one is a Gaussian noise, the second uses
an exponential covariance function.

The possibilities of stochastic processes are even wider. It is possible to describe more
complex materials, for example such with a spatial anisotropy. Two examples for those

1Definition in the appendix.
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3 Numerical realization

fields are depicted in Fig. 3.3. The first image is an auto-correlated field with weighting
in the perimeter, which is used to describe annual rings of wood [91]. In the second image
we see an operator-scaling stable field as introduced in [9]. There, it is possible to define
the preferential directions via the eigenvalues and eigenvectors of a scaling matrix. In the
example which is plotted the eigenvalues H−1

1 = 0.5, H−1
2 = 0.5 and eigenvectors defined

by the angles θ1 = exp(−0.3πi), θ2 = exp(−0.2πi) are used. However, anisotropy goes

Figure 3.3: Two anisotropic stochastic random fields, which can indicate areas of higher
(red) and lower (blue) elasticity. The first one is an auto-correlated field
with weighting in the perimeter. The second image is an operator-scaling
stable field where the eigenvectors define the orientation, see [9, 91]

beyond the scope of this thesis and we restrict ourselves to more easy processes such
as the Gaussian noise. The Gaussian noise can be nicely compared to a data-driven
solution with different data sets per element, which will be presented later. A broad
introduction into common stochastic processes used in the SFEM can be found in [92].

The Gaussian noise

To simulate the material fluctuation we simulate a one-dimensional random field which
specifies the percentage change in the Young’s modulus. We can use construction (2.22)
as we are able to extract the Young’s modulus out of the constitutive matrix

(1 + χ(x)) · Cµ = (1 + χ(x))E · Ĉµ (3.5)

where Ĉµ = 1/E · Cµ. Choosing a Gaussian noise means the values in space are uncor-
related and locally at every point we have a normal distribution. We use three different
variances s2 ∈ {0.12, 0.052, 0.012} while the mean function is zero everywhere. Simple
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3.2 Stochastic finite element method

linear transformations give us the distributions of the terms

χ(x) ∼ N0,s2

1 + χ(x) ∼ N1,s2

E(1 + χ(x)) ∼ NE,E2s2

for a fixed but arbitrary x. According to the 3-sigma rule of the normal distribution
99.7% of the fluctuations of the Young’s modulus are then between E + 3Es. With the
prior values of s this leads to ±30%,±15% and ±3% variation in the Young’s modulus.
As we have an uncorrelated field we can discretize the random field in the same way as
the finite element mesh such that at every finite element we have a discretization point
of the stochastic mesh. The value of the realization at the discretization point then
determines the Young’s modulus of one finite element.

Monte Carlo method

As the stiffness matrix of the SFEM system (2.27) contains a random variable the dis-
placement, as the solution of the stochastic partial differential equation, is also a random
variable. The Monte Carlo method is a very general and simple approach to gain proper-
ties of random variables of unknown distribution. The stochastic variables are replaced
by realizations of their corresponding stochastic distribution. The problem renders then
again deterministic and can be solved with a standard finite element computation. To
account for the distribution of the stochastic input variables the realizations have to
follow the input distribution and the simulation has to be done a large number of times,
say NMC. Mathematically, the law of large numbers lays the foundation that the sim-
ulations approximate the real solution. The realizations are gained by pseudorandom
number generators, which are able to generate the needed distribution. The advantage
of this sampling is that we are able to get an approximation of whole distribution of the
solution variable. On the other hand, the large number of computations leads to a big
numerical effort, which cannot be used for huge simulations. Moments of the response
variable can exemplarily be calculated by their statistical equivalents. The first two
moments, the expectation value and variance, for example can be computed by

E(y(x)) = 1
NMC

NMC∑
j=1

yj(x)

Var(y(x)) = 1
NMC − 1

NMC∑
j=1

(
y2
j (x)−NMC(E(y(x)))2

)

where yj is a scalar variable of interest in the j-th simulation, for example a displacement,
a strain or a stress value. Furthermore we are able to approximate a failure probability
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3 Numerical realization

by

P (y(x) > ycrit) = 1
NMC

NMC∑
j=1

1[ycrit,∞)(yj(x)) (3.6)

where 1A(y) is the indicator function

1A(y) =
1, y ∈ A

0, y /∈ A

and ycrit is a critical value where failure occurs such that the sum in (3.6) counts the
numbers of simulation where failure occurs. Summarizing, all essential parts of the
SFEM are now determined and simulations can be executed.

3.3 Data-driven finite element method

To conduct data-driven simulations we have to define the data set which is used as
it is an essential part of the simulation. Furthermore, we need to set up an iterative
algorithm to get the optimal data points.

Data set simulation

The data set describes the material behavior in the data-driven framework and is the
difference to the other methods. Therefore, it plays a crucial part in the upcoming
simulation results. As we simulate several examples with different materials and aim
for a more numerical comparison of the methods all data sets are synthetically gained
by a known material law, except the ones gained from the RVE in Chapter 6. As the
quality of the data-driven solution is also very dependent on the input data we need
to clearly state what data sets are used and how this affects the results of the data-
driven simulations. From an experimental point of view many methods are already
available. Uniaxial or biaxial tension tests are generally feasible. The experimentally
obtained data are typically collected in stress-strain or load-elongation diagrams, which
can be converted to stress-strain data. Triaxial experiments are rather seldom. However,
imaging-based technologies such as computer tomography scans, magnetic resonance
imaging and digital image correlation are state-of-the-art methods to deduce the material
behavior and can be used to generate such data sets [80, 101, 110]. Deducing the
three-dimensional material behavior from the one dimensional is rarely possible but in
[106, 107, 108] it is done for plastic and elastoplastic behavior.
While we state here how the data sets are simulated we refer to Section 4.2 for the
interpretation and analysis of how the data set and our choice of sampling affects the
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3.3 Data-driven finite element method

data-driven solutions. Two different types of data sets are used in simulations. The first
one is without any random influences or in other words without stochastic noise. The
other one is with random influences. When we talk about no random influences or no
noise we mean that Hooke’s law holds for every data point of the data set

σ∗ = Eε∗ ∀ (ε∗, σ∗) ∈ D (3.7)

or respectively in three dimensions

σ∗ = Cε∗ ∀ (ε∗,σ∗) ∈ D. (3.8)

These data sets are used to investigate the behavior and underline properties of the data-
driven method itself. Differences to the other finite element methods are not influenced
or biased by random behavior of the data then. Data sets with stochastic noise are
used when we want to simulate close to the reality data sets and when we want to
compare the results of the given methods for uncertain material behavior. In general,
measurements are affected by different errors, which may result from imperfections of
the measured object, the measuring procedure, the instruments, environmental impacts,
human failure and many more [43]. Therefore, instead of fulfilling the equations (3.7)
and (3.8), measured data sets will be more likely looking as in Fig. 3.4.

Figure 3.4: Exemplary uniaxial material data with 15 (left) and 75 (right) data pairs
in tension. The measurement is afflicted by measuring errors and noise.

These errors may be divided into random and systematic ones. Random errors, which
are also named statistical errors, result in scattering data and are caused by fluctuations
of the measured quantity; they differ in their sign and absolute value. Random errors
can be reduced by repeating the experiment. Systematic errors, in contrast, are deter-
ministic and do not change if the experiment is repeated; they have the same absolute
value and sign. An offset, which may be caused by insufficient calibrations, is a typical
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3 Numerical realization

Figure 3.5: Examples for systematic errors: An offset results in an additive error (left)
and the accuracy of a measuring instrument as a function of the magnitude
of the measured quantity (right), which results in a multiplicative error.

systematic error. In the left image of Fig. 3.5 this error contribution is illustrated and
also the accuracy of a typical load cell [44] on the right side which, like all measuring
instruments, has only a certain loading range of optimal accuracy. Around the lower
and the upper limit of this range the accuracy worsens, which results in a multiplicative
error contribution. For the data set afflicted with stochastic noise and error we extend
the linear equation by a multiplicative error Sm(ε), an additive error Sa and a stochastic
variable N

σ = Sm(ε)Eε+N + Sa . (3.9)

In this relation, Sm(ε) and Sa are functions describing the multiplicative and the additive
part of the systematic error. Term N is the random error which is typically modeled
by a normal distribution N ∼ N0,s2 with mean 0 and variance s2. Even though the
random part is added it can inhabit a multiplicative part, if the mean and variance of
the normal distribution depend on the strain as we have

Nε,ε2s2 = εN1,s2 .

In the corresponding multi-dimensional case the systematic errors, as well as the stochas-
tic noise, have to be matrices

σ = Sm(ε)Cε+N + Sa .

As we sample synthetic data we will assume no systematic errors. The simulation of
both types of data sets are very similar then. The stochastic noise only needs to be
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3.3 Data-driven finite element method

added in one step of the simulation.

One-dimensional data

Even though we want to conduct as many of the simulations in the three-dimensional
setting as possible reducing to a one-dimensional problem often helps. At first we sample
sets of data which can be generated by a uniaxial tension test and then generalize to
more dimensions. We also want to briefly state that we talk about one-dimensional data
because it describes a material which only takes up strains and stresses in one direction,
even though a material data point (ε, σ) ∈ R2 and the data set D ∈ Rn×2 will be of
higher dimensions. If we assume ideal material behavior, the measured stress σ is a
linear function of the applied strain σ = Eε. Subsequently, it needs to be chosen which
side is sampled. In this thesis, the stress space is always sampled by an equidistant grid.
In one dimension the stress space is an interval [−g, g ]; the number of data points then
defines the distance between the data points and the data density. We will do simula-
tions with different numbers of data points, which results in different data densities. It
is obvious that with a greater number of data points a better result can be expected.

Figure 3.6: Sample interval of stress points. The distance between every data point is
equal.

For the data set without a stochastic part the corresponding strain value is computed
with a hidden Young’s modulus, which we know for the data generation but is unknown
in the finite element simulation. The set with stochastic noise is gained if we add a
realization of the stochastic variable to the Young’s modulus. We then gain a data set

D = {(εi, σi)}ni=1 ∈ Rn×2

of data points, which yields as an input for the finite element computation. For one
specific data point we also write zi := (εi, σi) = (ε, σ)i.

Three-dimensional data sets

Further on, we consider three-dimensional computations of a material specimen. By
now, these data can hardly be obtained from experiments but recent developments,
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e.g. in-situ tomography scanning and also computational simulations of specimen with
reconstructed microstructure, which allow to obtain the complete relation between the
strain ε and stress tensor σ. In the linear elastic case we ideally have

σ = Cε (3.10)

We proceed as in the one dimensional case and sample an equidistant grid in the stress
space. To reduce computational efforts in the data sampling as well as in the simula-
tion we assume plane stress states in all three dimensional computations, if not stated
otherwise. That means the stresses into the third direction vanish

σ33 = σ13 = σ23 = 0

and so it remains to cover the space of σ11, σ22 and σ12. Using the same limits for all three
components we end up sampling the cube [−g, g ] × [−g, g ] × [−g, g ] = [−g, g ]3. This
time, the total number of data points is the number of points per axis to the power of
three, which means that the curse of dimension increases the number of data points used
really fast. For example, using 100 data points per axis leads to one million data points
in the plane stress conditions. On the other hand, in full three dimensional simulations
100 data points per axis lead to one trillion(= 1006 = 1012) data points, which adds a
lot of numerical effort to the computation. The number of data points we use per axis
will be between 10 and up to a maximum of 250. On every stress data point we can now
apply a hidden compliance matrix D = C−1 of the material we want to simulate. As a
result we gain the noiseless data

D =
{(
εi,σi

)}n
i=1
∈ Rn×12

where we also write (εi,σi) = (ε,σ)i =: zi. To get the random inflicted data set we
apply a random term, which only affects the Young’s modulus but not the Poisson’s ratio.
Therefore, the random part reduces to a variable again. We can use the representation
(3.5) again and apply a random part to the Young’s modulus

C = (1 +N )E · Ĉ .

With the stochastic afflicted compliance tensor the afflicted data set is generated. Note
that for multi-dimensional data, a-priori assumed isotropy of the material can be used
to increase data by axis rotations. This can be done by applying a rotation tensor
R ∈ SO(3) to each data point (ε,σ) of the set. Stepwise rotations (RTεR,RTσR)
result in a multitude of new data points and reduces the effort of phase space sampling,
cf. [67]. Here, however, we assume material uncertainties that can behave different in
different directions. Therefore, we stick to the synthetic experimental data provided by
the sampling. Kirchdoerfer and Ortiz [67] showed that assuming isotropy onto all data
points can reduce the numerical effort as it is possible to minimize over the eigenvalues
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of the material data first.

Data-driven algorithm

We derived the DD-FEM equations for the minimal distance in the previous chapter but
we still have to account for the search of the optimal data points. In both systems of
equations (2.39) and (2.40) the optimal data points are used but they are unknown prior.
To find the optimal data points an iterative algorithm is used, which was also proposed
by Kirchdoerfer and Ortiz [67]. The data-driven problem is a distance minimization
problem between two sets in the strain-stress phase space, see Fig. 2.1 again. One is the
material data set D that describes the material behavior and the other is a constraint
set C which inhabits all strain-stress states, which fulfill the physical constraints onto
the system. In both we are allowed to move freely to find the minimal distance.

Alternating projection method

For two convex sets C,D the minimal distance problem

min
y∈C

min
z∈D
||y − z|| (3.11)

is a well-known problem, which is commonly solved by alternating projection methods
[13, 14, 24]. An arbitrary starting point is chosen, say y(0) ∈ C, and the projection onto
the second set z(0) = PD(y(0)) is computed. Then the projection back onto the first
set is computed y(1) = PC(z(0)) = PC(PD(y(0))). Repeating this procedure we get two
converging series, which lead to the minimizers y∗ ∈ C and z∗ ∈ D, which define the
minimal distance ||y∗ − z∗|| between both sets.
This procedure is now applied to the data-driven framework. For the sake of clarity
we only denote here the global and already discretized version of the problem, which
is solved in the end. In the appendix the corresponding local and continuous versions
are also shown. Applying the procedure we can formulate the discretized data-driven
problem as

min
y∈C

min
z∈D
||y− z||C◦ (3.12)

where

y =
{

(ε,σ)m
}nm
m=1
∈ C and z =

{
(ε,σ)m

}nm
m=1
∈ D

are collections of data points at the material points out of the corresponding spaces.
The global constraint set here is the Cartesian product of the local constraint sets C =
C1 × · · · × Cnm . The global data set is the Cartesian product of the local data sets that
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are assigned to the material points D = D1 × · · · × Dnm . The metric || • ||C◦ is the
corresponding metric to the strain energy density and the numerical stiffness tensor C◦

||z|| = || {(ε,σ)m} ||C◦ =
(
nm∑
m=1

wm
(
εm : C◦ : εm + σm : (C◦)−1 : σm

))1/2

.

The optimal data points of the data-driven problem can be found as the argument of
the prior problem

arg
D

{
min
y∈C

min
z∈D
||y− z||C◦

}
.

By z∗(i) we now denote the collection of data points, which is assigned to the material
points of the finite element mesh in the i-th iteration. Starting with a collection of data
points from the data set z∗(0) we can solve the sub-problem

y(0) = arg min
y∈C
||y− z∗(0)||C◦ .

This step corresponds to the solving of the prior derived finite element equations and
the conversion of the displacement and the Lagrangian into the strain-stress phase space
by the kinematic equation

ε = Bû

and equation (2.37)

σ = σ∗ − C◦Bλ̂ . (3.13)

Kirchdoerfer and Ortiz proposed a random initialization of data points z∗(0) here, while
in Leygue a self-consistent approach is used to get optimal starting points and a faster
convergence rate. Then, with y(0), the closest point in the data set can be derived by

z∗(1) = arg min
z∈D
||y(0) − z||C◦ .

This problem is a simple nearest-neighbor problem where we search for the closest data
points from D to given points y(0). Once those data pairs are found for each material
point one iterative step of the algorithm is completed. The loop continues with the
solution of the linear equation system (2.39) and (2.40) again. Generalizing those two
steps we can write for the k-th step of the algorithm

y(k) = arg min
y∈C
||y− z∗(k)||C◦ (3.14)

z∗(k+1) = arg min
z∈D
||y(k) − z||C◦ . (3.15)
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In (3.15) we search for the data points, which are closest to satisfying the constraints,
and in (3.14) the points of the constraint set closest to the data are searched. Both cor-
respond to the respective projections of one set to the other. The algorithm stops when
in two consecutive iterations all data points coincide. Alternatively, we can stop the
algorithm when the decrement of the penalty function (2.31) is smaller than a certain
threshold, for example 5%, 1% or 0.1%. This is a computing time-saver as one iteration
can be numerically very expensive if big data sets are used. Only a small part of the
precision is then given up for a decrease in computing time. As a solution of the data-
driven method we will always use the latter representation. A flowchart of the DD-FEM
procedure is given here, which summarizes the steps above, see also [66, 67].
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3 Numerical realization

i=0

1 . ) Initialization of data points
for m=1 , 2 , . . . ,nm do
Choose

(
ε∗(0)
m , σ∗(0)

m

)
from De

end ;

i=1
2 . ) Solving of the DD-FEM equations (2.39) and (2.40)

Solve
K û = fu
K λ̂ = fλ

for û and λ̂

3 . ) Computation of trial strains and stresses

for m=1 , 2 , . . . ,nm do
εm = Be

mû
e , σm = σ∗m + C◦Be

mλ̂e
end

4 . ) New assignment of data points

for m=1 , 2 , . . . ,nm do
Search in De for the closest data point to (εm,σm) and assign it to (ε∗(i)m , σ∗(i)m )
end

5 . ) Test for convergence

i f |Wpy(i)−Wpy(i−1)
Wpy(i) | > c then i=i+1 and start reiteration at 2.)

else
end

42



3.4 Numerical examples

The alert reader may have already noticed that we adopted the alternating projection
method to the data-driven problem without saying something about the convexity of
the sets C and D. In fact, D as a discrete set is non-convex and it is possible that the
proposed algorithm leads only to a local minimum. Finding a minimal distance between
non-convex sets is a more challenging problem. A graphical illustration of both sets
and why we still use the proposed algorithm is given in Fig. 3.7. Depending on the
starting point the data-driven algorithm will lead to different solutions and distances.
However, as seen in the image, those distances and solutions do not differ much from
the global solution. Numerical experiments showed that the local minima are still close
to the results of classical finite element computations [34, 67, 88, 89, 90]. Even more, if
the data set is converging to a graph, the data-driven solutions converge to the classical
solution [67]. With this in mind have a look especially at the examples in the beginning
of the next chapter.

Figure 3.7: Illustration of the data and the constraint set. It is possible that the
algorithm assigns a local minimum. However, they still approximate the
mechanical state adequately for a dense data density.

3.4 Numerical examples

In the following, we want to briefly introduce three problems which are used to investigate
the data-driven method in the next chapter. As seen before we will refer to the example
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3 Numerical realization

of a pulled rod. This one-dimensional example can be easily visualized and several
properties of the data-driven framework will be explained on it. We just briefly recap
the given formulas. A cantilever beam problem is introduced afterwards. This example
is used for the studies towards the number of data points and the numerical stiffness
tensor as well as for the comparison to the SFEM. A plate with a hole is used as a second
example to verify that the results are independent from the choice of our problem. For
both problems an analytic solution is at hand.

Tension rod

This basic example is meant to illustrate the data-driven method in a simple and visual
way. In a one-dimensional problem the strain and stress are scalar values. Therefore,
we can simply plot the material data in a stress-strain diagram and also explore the
data-driven method visually. For given values of the length l, the cross-section A and
the force F we can calculate the analytic solution

σ = F

A
, ε = σ

E
.

Remember that there is no given Young’s modulus in the data-driven problem. The
material stiffness is inhabited in the data, which is used in the data-driven problem.

Figure 3.8: Geometry and boundary conditions of the tension rod. Remember that in
the data-driven setting no Young’s modulus is assigned.

Cantilever plate

The example on which we mainly investigate the properties of the data-driven method is
a cantilever plate bending problem. A cantilever plate with a size of 2 m×0.5 m×0.1 m is
loaded from atop, p0 = 4 ·106N/m. For the FEA the domain is discretized in 25×10×4
linear brick elements with 8 integration points. More details are displayed in Fig. 3.9.
For comparison we refer to a classical FEA and to the analytical plane stress solution.
Using Airy’s stress function ansatz [45], we obtain from its partial derivatives the fol-
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3.4 Numerical examples

Figure 3.9: Geometry and boundary conditions of the cantilever plate.

lowing stress components:

σx = p

h3 (6x2y − 4y3 + 3
5h

2y),

σy = p

h3 (2y3 − 1
2h

3 − 3
2h

2y), (3.16)

σxy = − p

h3 (6xy2 − 3
2h

2x).

An analytic deflection function cannot be derived in this way, so we restrict ourselves
mainly to a comparison of the computed stresses.

Plate with a hole

A second investigative example is calculated to check if further effects, that do not
occur with the cantilever plate, can be found. A plate with a circular hole in the
center is studied. For symmetry reasons we reduce the problem to one quarter, i.e. a
plate of 2 m × 2 m × 0.1 m with a hole of radius r = 0.5m. Geometry and boundary
conditions are displayed in Fig. 3.10. For the finite element simulation the quarter plate
is meshed with 4611 linear hexahedra. In x-direction the plate is subjected to a tension
of p0 = 107 N/m2. An analytic plane stress solution for the infinitely large plate exists,
see e.g. [45]. It serves us as a reference because for 4a ≤ b the maximum stress σx,max
has an error of less than 6% [109].
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3 Numerical realization

a

b

y

x

b

p0

Figure 3.10: Plate with a hole: Geometry and boundary conditions on the left side,
finite element mesh on the right side.
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4 Data-driven,
classical and

stochastic FEM

In this chapter, the main part of the thesis starts where we begin to compare the data-
driven approach to the other finite element methods. Before we compare the different
approaches, we investigate the DD-FEM in a simple problem to present the properties
of the data-driven algorithm in Section 4.1. First, a rod is considered where we first
exemplarily solve the DD-FEM problem graphically. This is a straightforward task as
strain and stress are one-dimensional and can be plotted easily. We then investigate
four special cases which can occur in the DD-FEM setting: the incompleteness of the
data set, outliers in the data, randomness in DD-FEM solutions and the use of multiple
data sets. Afterward, we move on towards to the comparison between the DD-FEM and
the classical FEM in Sections 4.2 and 4.3 depending on the two input variables of the
DD-FEM, the data set and the numerical stiffness tensor C. Both are investigated for
the cantilever plate problem presented in 3.4. Then we progress to a comparison with
the SFEM in Section 4.4. This chapter partially relies on the publications [71] and [72].

4.1 Basic properties of the data-driven finite ele-
ment method

After we established the data-driven algorithm in the previous chapters we start with a
simple calculation now. A rod is considered, which is described by one finite element.
As the rod takes loads in only one direction, the strain and stress are scalar values.
Then, the material describing data set is easy to plot and we can also derive the solution
graphically.

A simple example of the data-driven algorithm

We consider a rod of A =1mm2 cross-section, which is pulled by a force of F = 6N. The
constraint set is then defined by the constant line σ = F/A = 6MPa. By adding a data
set that displays the material behavior we can get the DD-FEM solution graphically in
this easy case, see Fig. 4.1 . Starting the data-driven iteration at a random initialization
(ε∗(0), σ∗(0)) we search for the closest point in the constraint set, this is (ε(0), σ(0)). Note
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4 Data-driven, classical and stochastic FEM

that, to deduce the shortest distance graphically here both axes have to be equally
scaled, so the abscissa is multiplied by the Young’s modulus and the numerical stiffness
is set to the real Young’s modulus E◦ = E. This step later corresponds to the solving
of the finite element system. From (ε(0), σ(0)) we search now for the closest data point
from the data set, which leads to (ε∗(1), σ∗(1)). Redoing this four more iterations we get
the solution of the data-driven method as (ε∗(4), σ∗(4)) coincides with (ε∗(5), σ∗(5)). The
algorithm stops here as this data point is assigned two following iterations, which means
that the data-driven method converged to its solution.

Figure 4.1: Iterations of the DD-FEM for a single element rod. From (ε∗(0), σ∗(0))
the DD-FEM iterates to (ε∗(1), σ∗(1)) via the constraint point (ε(0), σ(0)).
Further on we iterate from (ε∗(1), σ∗(1)) to (ε∗(2), σ∗(2)) to (ε∗(3), σ∗(3)) to
(ε∗(4), σ∗(4)) which is the solution of the DD-FEM. Labeling of the data
points omitted later on due to readability.

This way of functioning of the data-driven methodology leads to some features that
should not be forgotten in the later course of the simulations. In the following we will
show these with simple examples.

Incompleteness of the data set

One should keep in mind that this method is not extrapolating. Using the same data set
as before but a force of F = 15N leads to a significant distance between the data and
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4.1 Basic properties of the data-driven finite element method

the constraint set, see Fig. 4.2. The data-driven method still yields the highest stress
value in the data but underestimates the real solution. One should be aware that the
data needs to cover the regions of the phase space of stresses and strains, which can
occur in a particular problem. Obviously, stresses and strains are unknown a-priori such
that estimates need to be gained by expert knowledge for example. However, most of
the experimental setups can load materials until their failure such that enough data can
be recorded. Furthermore, the method can indicate such behavior when the maximal
strain or stress data points are often assigned in problems that inhabit more than one
element.

Figure 4.2: The data set covers not enough of the phase space. The data driven solution
(circle) is not reasonable.

Outlier in the data

As already described, measured data sets can always be afflicted with errors. In the
next data set, see Fig. 4.3, there is an obvious outlier in the data set. As we see in the
iteration of the data-driven algorithm, the outlier dominates the solution of the data-
driven method significantly. Kirchdoerfer and Ortiz proposed in [68] a maximal entropy
version, called max-ent data-driven algorithm, which is robust towards outliers. They
use cluster analysis to assign a weight to every data point that renders its relevance
inside of the data set. A sum of the weighted data points is then used instead of a
single data point. The distance minimizing algorithm is regained for the limit of the
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4 Data-driven, classical and stochastic FEM

temperature towards infinity. We need to note that all simulations in this thesis use
the distance minimizing algorithm. The idea in this thesis, to use the data points
themselves to describe the material uncertainty, leads to the desire to use the data as
untreated and raw as possible. Therefore, the distance minimizing algorithm is used
as the max-ent algorithm uses weighted sums of the data points and smears the data
points. The assumption, which needs to be made then, is that significant outliers,
which are consequences of human failure or measuring failure are removed by expert
knowledge in the pre-processing step. All data sets used in this thesis are gained by
adding a stochastic noise with a small variance to a hidden Hooke’s law and therefore
fulfill this assumption.

Figure 4.3: The data set inhabits an outlier that disturbs the results of the data-driven
algorithm significantly. The outlier is too close to the constraint set for the
others to play a role.

Random initialization points

One important point to understand is that even though we say that the data set includes
material uncertainty, the DD-FEM is a deterministic method. A-priori, there is no
random part in the method provided that the starting points are not chosen randomly.
Randomly choosing starting points already adds a stochastic part to the method but not
in the classical sense that it is in the material variable. However, using random starting
points already leads to non-unique solutions as described in Section 3.3. The reason for
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4.1 Basic properties of the data-driven finite element method

this is shown in Fig. 4.4. Two different starting points of the algorithm are chosen here,
the points (1, 1) and (9, 9). Thinking of the double minimum iteration, the steps of the
data-driven iteration can be found easily. In the end, we have two different solutions as
they are fixed points of the given problem. The projection onto the constraint set of the
point (5,5) leads to the point (5,6). However, the closest data point is then again (5,5).
The same happens for the other starting point at the point (7,7) the data algorithm
stops and yields it as a solution. Obviously, this data set is constructed that close to
the intersection of a virtual function of the data set and the constraint set no data point
is given but we have to keep in mind that this happens all the time just on different
scales. Exemplarily, having every strain increase of 0.1 a data point except ε = 6 leads
to the two solutions 5.9 and 6.1. Increasing the precision again by a magnitude we gain
5.99 and 6.01 decreasing the error significantly. This emphasizes the need for a good
phase space sampling and also shows how the convergence shown in [67] works if the
data approximates a graph. Furthermore, we see that a starting point closer to the
constraint set needs fewer iterations than other starting points, see also [78].

Figure 4.4: Data-driven iteration for two different starting points ending up in different
solution points.

Multiple data sets

In the last example of this section we look towards using multiple data sets in one
simulation. Typically, experiments are repeated several times to verify prior results.
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4 Data-driven, classical and stochastic FEM

With different realizations of experiments one can gather several data sets, this means
we have data sets D1,D2,D3, ... of repetitions of a tension test for example. This leads
to the situation in Fig. 4.5: at given strain points we have measured different values of
stress. In Fig. 4.5 there are exemplary three different data sets of the same material.
However, a small difference is measured in the elastic modulus. In the data-driven
simulation of Fig. 4.5 the data sets were all combined, so D = ∪iDi, and put into the
data-driven algorithm. The data-driven algorithm now only assigns data points that are
closer to the constraint set and the method stays at the ’outer’ measured data points.
Several simulations with distinct data sets could be preferential and this is where we
will connect the data-driven algorithm to the stochastic finite element method.

Figure 4.5: Data-driven iteration for multiple unified data sets.

Concluding the prior examples, the data set should meet the following requirements:

• the data set should cover the whole phase space of strains and stresses that will
occur in the simulation,

• the data density should be as high as possible, or other put the distance between
the data points should be as low as possible,

• unresonable outliers need to be removed prior to the simulation

While the first and third requirements will always be fulfilled in our generated data sets,
the data density will be the focus of investigation in the next section. The way the
data sets are sampled in this thesis is very conservative. As already explained a cubic
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4.2 Results with respect to the data size

grid in the stress space is used. Most of the time, a certain number of data points is
predefined. The size of the cube then defines the data density of the data set. The
chosen size of the cube needs to be above the maximal occurring stress. To stay as close
to reality as possible, we acted like the maximal stress is unknown and used conservative
sizes of the stress grid. Furthermore, in most problems a certain stress coordinate will
peak out while another may be very small. In a cube the data density is the same
for all components and the cube size is orientated towards the maximal stress values.
Therefore, the data density can be insufficient for the smaller stress component.

4.2 Results with respect to the data size

In their seminal work, Kirchdoerfer and Ortiz [67] laid their focus more towards conver-
gence studies than on the result of a data-driven computation itself. The results shown
here are also part of the paper [72], which showed detailed results of a data-driven com-
putation first. A comparison of the classical finite element solution and the analytic
solution is given. These results are combined with a study towards the number of data
points where the obvious is shown: More data means more information and better re-
sults. The data set describes the material behavior and therefore plays a crucial role
in the result of the simulation. The two properties that characterize the data set are
the data density, say how many data points are in a certain area, and the fluctuations
of the data. The fluctuations mainly describe the randomness of the material and are
investigated in Section 4.4.
We start presenting the solutions with the previously introduced cantilever plate. In
Fig. 4.6 the stress distribution of σx is computed with the DD-FEM for different sizes of
the data set above the classical FEM solution. The sizes of the data set are 113, 313, 813

as we are in the plane stress state. The cubic subspace [−2·108, 2·108]3 of the stress space
is sampled in each case such that the data density of data points per space increases.
The data set represents the material data base of a ZAMAK-5 alloy, which corresponds
to a Young’s modulus E = 85 GPa and Poisson’s ratio ν = 0.3 [63]. It is clear that for
coarse data sets the solution cannot be as smooth as in the classical FEA because the
choice of (ε∗, σ∗) pairs is very limited. Here, we see how the stress distribution evolves
from the coarse data set to the more dense data sets. For the coarse D(113) data set the
stress distribution is rather patchy. In contrast, the results for the D(1513) data points
show a smooth transition of the stresses and agree well with the reference solution as
the jumps between the data points are small. In between the results improve for every
increase in the number of available data. This observation corresponds to the results
of Kirchdoerfer and Ortiz [67]. They showed convergence of the data-driven model to
the elastic solution for a sequence of data sets Dk that approximate increasingly closer
to a material law. Until here, the comparison was only visually. Now we introduce
a quantitative error to measure the error of the DD-FEM in contrast to the classical
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4 Data-driven, classical and stochastic FEM

Figure 4.6: Data-driven computations of the normal stress σx in the cantilever plate:
solutions obtained with 113 (top left), 313 (top right), 813 (middle left),
1513 (middle right) data points and reference FEM solution (bottom). Dis-
placement magnified for visibility reasons.

solution. To do so, the elastic energy density (2.8) is employed to define a root mean
square (RMS) distance for the strains

εRMS =
(∫

Ω Ψe(ε− εref) dΩ∫
Ω Ψe(εref) dΩ

)1/2

(4.1)

and to evaluate the stresses its dual (2.21) is used

σRMS =
(∫

Ω Ψ∗(σ − σref) dΩ∫
Ω Ψ∗(σref) dΩ

)1/2

(4.2)

where the reference solution is provided by the classical FEM. In Table 4.1 the distance
values are listed for the data-driven solution with different sizes of data sets. The strain
and stress distance coincide here as we use a data set with no uncertainties and the
correct choice of C◦. The values confirm what the graphical comparison showed: the
distance decreases when the number of data points increases or, in other words, when
the distance between the data points reduces. The DD-FEM solver is then able to
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4.2 Results with respect to the data size

find data points closer to the ’exact’ solution. Additionally, the global penalty function
(2.31) is evaluated. The rather big values of the global penalty function should not
confuse as the function is not normalized and depends on the magnitude of strains and
stresses. The value labeled here as data distance is the minimal Euclidean distance
between the stress values of two arbitrary data points of the data set. This value defines
the maximal accuracy and decreases for an increasing number of data points obviously.
The maximum displacements umax are close to each other. An interesting fact is that
the data-driven method with minimal data approximates the displacement here still
well. The reference finite element solution is about 2% softer, its maximal displacement
is 9.46mm. Even though the maximal displacement is close to the classical reference
solution and the visual comparison also showed a good coincidence the distance value
of 11% may surprise a little bit. The reason here for this relatively high error are two
reasons. First, about 33% of the absolute distance results from ε and σ components
related to the third direction. Exemplary calculations showed that using the full set of
tensor components solves this problem but an actual computation with 1516 instead of
1513 data points is rather costly. We address the problem of large data sets later in
Chapter 5.

data set εRMS σRMS W py [J ] data distance [MPa] umax [mm]
D(11) 0.5551 0.5551 2.18 · 108 40 9.18
D(31) 0.3241 0.3241 2.64 · 107 13.3333 9.14
D(81) 0.1508 0.1508 5.70 · 106 5 9.24
D(151) 0.1147 0.1147 3.29 · 106 2.6667 9.27

Table 4.1: Distances of the data-driven simulations for the cantilever plate problem.

Second, the lateral stress σy and the shear stress σxy are by orders of magnitude smaller
than σx. It reveals a problem of the DD-FEM. The σy and σxy values are so small that
the data-driven approach with the given data is unable to reproduce them adequately.
We compute zero stresses because the {0, 0} pair is closer to the optimal solution than
any other ε-σ pair. In order to map all components adequately, a very dense data set
would be required. This, however, would raise the computational effort again. We want
to remark here that the data is purposely generated like that by ourselves. We are
obviously able to adjust the data set for the smaller values of the shear and lateral
stresses. The sampling of a cube-like subspace is not mandatory at all. Using adjusted
intervals and densities for the different components is possible here but it may pervert
the truth. In experiments we expect the measurement accuracy to be the same for
all directions. The data set is chosen here to compute the biggest stress component
adequate. We, therefore, see no reason here for an extra adjustment of the data in
the other directions even though it yields better results regarding the root mean square
distances.
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4 Data-driven, classical and stochastic FEM

In Figures 4.7 and 4.8 the normal stress components of the classical finite element compu-
tation and the data-driven approach are compared to the analytic solution. In Figure 4.7
it can be seen that there is no big difference between the finite element methods to the
analytic solution. This is also confirmed by the paths shown in Fig. 4.8 where something
else needs to be highlighted. The data-driven solution only takes up values of the data
set such that the path can not be smooth. Some kinks can be seen in the plot of the
data-driven solution.

Figure 4.7: Comparison of analytical and computed stress distribution. Left: normal
stress σx from standard FEA and analytical solution (3.16), Right: DD-
FEM for 1513 and 313 data pairs.

Another small aspect is the mapping of the singularity at the clamp. From linear elas-
ticity we know that the stresses computed in a standard FEA are arbitrarily high here.
This effect can not happen in the data-driven setting. The maximal value that can be
computed here is the maximal value in the data. However, for the given mesh here the
values of the finite element method are close the analytic solution of σx ≈ ±1.91 ·108 Pa.

For further insight we also conducted a second example here. The plate with a hole
introduced in Section 3.4 is also computed with different sizes of the data set. The
results of the computation can be seen in Table 4.2. We see the obvious increase in
precision for larger data sets again. The displacement of the classical finite element
solution is 2.69 mm and is also approximated very well by all but the coarsest data set
here. Furthermore, the root mean square distances to the classical solution is clearly
smaller than in the cantilever plate problem. While this can be attributed to a small
part to a lesser error in the third direction this comes mainly from that the data just
fits the stress and strain distribution better here.
In Fig. 4.9 we also see that the finite element computations do not reproduce the analytic
solution perfectly. However, the maximal values of displacement and stress are close to
each other. In the data-driven solution we see the kinks again due to the discrete nature
of the data set.
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4.3 Results with respect to the numerical stiffness tensor C◦

Figure 4.8: Stresses along the horizontal boundary of the cantilever plate, y = ±0.25m,
z = 0, for the analytical solution, the classical FEM and the DD-FEM; von
Mises stress along the top boundary (left) and σx along the bottom (right).

data set εRMS σRMS W py [J ] data distance [MPa] umax [mm]
D(11) 0.3167 0.3167 2.11 · 108 80 2.19
D(31) 0.1404 0.1404 3.86 · 107 26.6667 2.59
D(81) 0.0560 0.0560 7.60 · 106 10 2.67
D(151) 0.0215 0.0215 2.67 · 106 5.3333 2.69

Table 4.2: Results of the data-driven simulations for the plate with a hole problem.

4.3 Results with respect to the numerical stiffness
tensor C◦

Besides the data, the numerical stiffness tensor C◦ is the second input, which is only
needed by the DD-FEM. While the data is measured and does not need to be chosen,
values for numerical stiffness tensor need to be estimated. To work as an adequate weight
in (2.30), it should be as close as possible to the real material behavior. It is possible to
get estimators from the data set, which, however, will still be off some percent. In the
following, we present a parameter study, which assumes a small error in the choice of
C◦. Namely, we assume that the choice of ν is correct and we have a percentage error
in the elastic modulus such that

C◦ = α · E · Ĉ (4.3)

where Ĉ = 1/E · C. For a value of α = 1 the numerical stiffness coincides with the
real hidden stiffness. While values below one correspond to a lower stiffness and values
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4 Data-driven, classical and stochastic FEM

Figure 4.9: Comparison of the stress σx along the hole for the classical and data-driven
FEA with an analytic solution (left). A visual comparison is shown on the
right with two different data-driven computations (fine with D(151), coarse
with D(51).

above one to a higher stiffness. The parameter study is carried out on the cantilever
plate problem from the prior section with 1003 data points. The whole results of the
parameter study are shown in Table 4.3. For every value of α the value of the global
penalty function W py, the number of data iterations, the root mean square error of the
strains and the maximum displacement are shown. In Fig. 4.10 the results are also
displayed visually.

Going into detail, the DD-FEM shows an interesting and robust behavior against errors
in the numerical stiffness tensor. In the first two images of Fig. 4.10, we see that the
values of the global penalty function and the root mean square error is the lowest for the
correct numerical stiffness. For the root mean square error, this is an expected result
because this is a comparison of the data-driven solution and the reference solution,
which is unknown in a real scenario. The global penalty function is a function of the
difference of the computed trial stresses and strains and the data points multiplied with
the numerical stiffness. Regardless of whether the stiffness is estimated too low or too
high, it also is the lowest for the correct number of the numerical stiffness. This behavior
also enables a simple approach for better estimates. Comparing two simulations with
different numerical stiffness values, a next approximation step can be done towards the
direction of the decreasing global penalty value. The same behavior is also seen for
the number of data iterations. For bad choices of the numerical stiffness, the number of
data iterations increases and good values have the lowest number of data iterations. The
discrete values, however, do not enable small adjustments in the choice of the numerical
stiffness. The displacement shows the robustness of the DD-FEM against bad choices of
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4.4 Comparison of the data-driven and stochastic finite element method

α W py no. of iterations RMSε max. displacement
0.5 2.447 · 107 15 0.1683 9.421 · 10−3

0.75 5.415 · 106 12 0.1683 9.397 · 10−3

0.9 4.699 · 106 10 0.1434 9.370 · 10−3

0.95 4.579 · 106 9 0.1381 9.334 · 10−3

1 4.470 · 106 9 0.1337 9.309 · 10−3

1.05 4.526 · 106 9 0.1345 9.265 · 10−3

1.25 4.722 · 106 10 0.1365 9.214 · 10−3

1.5 5.213 · 106 10 0.1415 9.041 · 10−3

1.75 6.205 · 106 12 0.1612 8.888 · 10−3

2 7.676 · 106 14 0.1937 8.569 · 10−3

Table 4.3: Results of the parameter study for different inputs of the numerical stiffness
tensor C◦ = αEĈ.

the numerical stiffness. Although the displacement shows the expected behavior that for
an increasing stiffness we get a decreasing displacement but it is very small compared
for the change in α. As the numerical stiffness does not change the data itself and the
material behavior the results differ only a bit. With a value of α = 2 the displacement
in the classic finite element analysis would be half of the prior results.

4.4 Comparison of the data-driven and stochastic
finite element method

Next, we want to compare the ability of the data-driven method to include uncertain
material behavior. Therefore, we compare it to the stochastic finite element method.
The advantage that is hoped for is that, just as with the material description, a model-
free description can be achieved. One problem of stochastic and uncertainty approaches
is the description of the uncertain variable. Experiments are often done more than once
to confirm results and determine a variation. However, often it is hard to conclude a
distribution with their parameter from a small number of experiments. The data-driven
approach got the advantage that no material defining variables are needed, the data is
just put in. The idea is visualized in Fig. 4.11. The data describes the mean functional
relationship as well as the variance around it.

When multiple data sets are at hand, at one measuring point several data points are
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Figure 4.10: Global penalty function, root mean square error, displacement and the
number of iterations plotted against the input value α.

Figure 4.11: The idea of the uncertainty consideration for the data-driven framework:
The data describes a given functional relationship and its variation well,
from [3].
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4.4 Comparison of the data-driven and stochastic finite element method

gained, which describe the material behavior with its small differences. With multiple
data sets there are several possibilities to handle them:

• combine the data sets to one big set, which includes all data points
• data-driven computations with one data set for all elements
• data-driven computations with a random data set for every element

The first option is only listed here for the sake of completeness. It generates a data
set that gathers all information in one data set but it prevents the uncertainty consid-
erations. It also leads to the behavior of the last example shown in Section 4.1 at the
beginning of the chapter. In the case of the second and third option we can compute
solutions for every combination of data sets. The second case describes the situation in
which the stiffness of the whole model depends on one variable. The third case repre-
sents the possibilities of a stochastic random field with local different material behavior.
Histograms can be analyzed in both cases afterwards and we will investigate both of
them therefore.
We now assume we have n noisy data sets D1(d1), . . . ,Dn(dn) where d1, d2, . . . , dn are the
number of data points included. Those do not have to be the same necessarily but due
to the easier generation we set d1 = d2 = . . . = 713. We do not use the highest amount of
data points here as many simulations have to be conducted here. Numerical cost is saved
therefore. The data sets are generated as explained in Section 3.3 with given variances
s2 ∈ {0.12, 0.052, 0.012}. For comparison reasons the Gaussian noise is simulated with
the same variances. Inside a data set the noise is produced by Gaussian variable with
mean 0 and variance 0.012. The quantity of interest is the maximal displacement of the
cantilever plate and then for the plate with a hole. The results are only displayed for the
highest variance as the results do not differ at all except the values of displacement and
variation. We also want to outline that we do investigate the variation of the solution
due to the different data sets. The variation is not affected by the random initialization
of the data points. This effect is reduced by the data density as explained in the third
example in Section 4.1.

One set for all elements

Simulations were conducted with n = 50, 250, 500, 1000 data sets used. In Fig. 4.12 we
see the results for the different sizes of elements. With more data sets at hand we get
more information about the distribution of the displacement. Just as a reminder: the
maximal displacement of the deterministic solution is 9.42 · 10−3 mm which is close to
the center of every distribution here. However, it seems unrealistic to have 500 data
sets. Nevertheless, statistics of the distribution, like the mean, the variance or minimal
and maximal values, are already more or less recognizable in the upper two images with
lesser data sets. In the last image the distribution of the DD-FEM with 1000 data
sets is compared to a stochastic computation. The corresponding SFEM computation
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Figure 4.12: Histograms of the maximal displacement for 50, 250 and 500 data sets
where one data set is used for all elements. In the last image the distri-
bution is compared to simulations with a stochastic Young’s modulus for
1000 data sets.

is one with a stochastic Young’s modulus, which is then used as the data set for the
whole geometry. Both distributions are centered around their mean as the data-driven
solutions had a little shift to the right due to the smaller value of data points. The
distributions coincide well, which is no surprise. The data sets as well as the stochastic
Young’s modulus are generated by the same normal distribution.

Random set for every element

By assigning a random data set to every element the number of different assignments
(=number of different simulations) for n data sets and L elements is Ln. This number
can get large very fast obviously and that many computations are not even needed to
deduce distributions. This also means that n does not have to be such big as before
to get the distribution. We only use 20 different data sets here. The results for the
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stochastic and the data-driven method are displayed in Fig. 4.13 for 500 computations
of each method. First of all we see that the data-driven method again has a little offset
in the displacement. Furthermore, we see that the displacement values overall are closer
to their mean value. By assigning every element a random value its far more probable
that the overall stiffness of the beam is closer to the mean. Centralized, we see that both
distributions coincide very well, again showing that the DD-FEM distribution recalls the
distribution of the SFEM.

Figure 4.13: Distribution of the maximal displacement if every element gets assigned
a different Young’s modulus or data set.

Plate with a hole

We also conducted the same procedure to the plate with a hole problem. The distri-
butions of the SFEM and DD-FEM again showed the same behavior as before and did
not give us any new insight here and are skipped therefore. We only have a look here
onto the stress distribution of the whole part here to see the differences. In Fig. 4.14
the results for the three different finite element methods and the analytic solution are
plotted. The data-driven and the stochastic solution directly attract attention with their
patchy display of the stress. This comes due to the local different Young’s moduli. In
one element the stress can be higher due to the decreased stiffness and in the next it
may be a little bit lower due to increased stiffness, thus destroying the contours, that
can be seen in the finite element and analytic solution. But overall a good agreement
of the stress is seen with the addressed patchy parts and small differences at the inner
circle where we should remind ourselves that simulations with uncertainties built in are
not expected to be equal to an analytic solution.
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Figure 4.14: Stress σx in the plate for the classical FEM, the analytic solution, the
DD-FEM and a realization of the SFEM.

4.5 Conclusion of the chapter

In this chapter, we investigated the data-driven finite element method and compared
the strategy of considering uncertainties in the material parameters by stochastic fields
to the direct use of experimental data in the data-driven analyses. Simple properties
of the functionality of the DD-FEM are shown first: Some of them may influence the
data-driven method in a negative way. Most of them can be worked around by a good
and dense data set. Therefore, they are rather unimportant in the actual literature
due to the artificial generation of the data. However, they should not be forgotten for
real practical data-driven analysis. The parametric study towards the number of data
points and the numerical stiffness showed a good behavior of the DD-FEM. The number
of meaningful data points is the main factor influencing the quality of the solution.
Solutions showed that 100 data points per strain and stress coefficient lead to satisfying
results. The study towards the numerical stiffness showed that the data-driven method
is very robust against a wrong estimation of it. Results only showed minor differences
and also showed a way to increase precision by analyzing the slope of two or more results.

Last, we investigated the possibility of the DD-FEM to include material uncertainties.
The standard way to account for imprecise material data is the SFEM, i.e. the solution
of stochastic problems with finite elements whose parameters reflect the randomness.
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The mathematical properties of the SFEM regarding accuracy and convergence are well
studied and the method is easy to implement in an available finite element software.
From the practical point of view, however, the bigger problem is the modeling. Hardly
any physical problem follows an obvious stochastic process. Clearly, if the stochastic pro-
cess is described wrongly, the propagation of the uncertainty through the system cannot
be reflected in a correct way. In addition, there are hardly any relevant experimental
data for validation available. Most uncertain quantities in mechanical systems are non-
Gaussian in nature but the Gaussian model is often used due to its simplicity and the
lack of alternative information. This may lead to SFEM computations pretending a pre-
dictive capability that is not necessarily covered by the physics. The DD-FEM is a new
method that completely bypasses the material modeling. This changes the structure of
the finite element equations and results in two coupled sets of linear equations. The
implementation requires a new structure but the linearity renders it simple and enables
a fast solution. The bottleneck is here the search for the optimal data, which is covered
in the next chapter. In particular in three dimensions this makes a data-driven method
much more expensive than any standard FEA. In opposite to the SFEM the DD-FEM
is not a stochastic method itself. The data-driven solution is deterministic, i.e., it com-
putes for every data set one (not necessarily unique) solution. Histograms were gained
by a random assignment of the data sets to the finite elements. From our perspective
the data-driven FEA is a new and promising approach to the problem of insufficient
material data, which may also be applied to other problems with unclear constitution.
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The data-driven finite element simulation is more numerical costly than the classic finite
element method. An additional system of equations needs to be solved and many nearest
neighbor problems need to be computed. Especially the latter increases the computing
time significantly if the number of material points and data points rises. This additional
cost needs to be held as low as possible, in particular with a view to realistic three-
dimensional problems. In this chapter, we will tackle this problem. The following
chapter is based on the publication [75]

5.1 Data search

The core of the data-driven FEA is the search for data pairs {ε∗(j),σ∗(j)}i in every step
of iteration j and at every material point i = 1, . . . nm. At a point i finding the data
closest to the computed (ε,σ)-values is a nearest neighbor search problem. Formalizing
our problem we have: for given a data set D ⊂ Rk and a query point q ∈ Rk find the
element x ∈ D such that for all y ∈ D we have: d(x,q) ≤ d(y,q). Commonly this
is solved by space partitioning algorithms such as grid-file, k-d tree, quadtree or other
established solution methods [112]. In the simplest case a binary search algorithm is
used, i. e. a tree data structure in which each node has at most two children: the left
node is “lesser” than its parent and the right node is “greater” than its parent in a
certain dimension. Defining lesser and greater requires to solve a distance d between the
data pairs.

A useful data structure for multi-dimensional searches are so-called k-d trees where k is
the dimension of the data pairs sorted. Again, each node in a k-d tree has two children,
one less and one greater than the parent, but here one dimension at a time is isolated
and we iterate through all dimensions. As displayed in Fig. 5.1 the k-d tree splits the
data along dimensions into two halves by hyperplanes, i. e. one half of the data has a
smaller value in that dimension; the other half has a greater value in that dimension. The
new two halves of the data are then split among the next and all remaining dimensions
repeatedly. This requires to use the standard greater-than and less-than relations instead
of the computation of a distance and is faster. The average running time for such nearest
neighbor queries is O(log n) [16]. However, for larger dimensions k space partitioning
methods reach the worst case scenarios of O(n). We use here the k-d tree implementation
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Figure 5.1: Illustration of a k-d tree for a data set with n=10 points; seven hyperplanes
`1 to `7 separate the points into leaves.

of Matlab, ’knnsearch’, it searches for the closest K-nearest neighbors by using a k-d
tree. Clearly, our query point q is given by the computed {ε,σ}i-values whereas x and y
are the strain-stress pairs of our data set D. In a three-dimensional FEA the dimension
of one pair (ε,σ) is k = 12.

Numerical costs

From previous data-driven FEAs we know that in the small strain regime about 100 data
pairs per dimension provide a sufficient data density of set D [67, 68, 72]. For (ε,σ) pairs
of a three-dimensional FEA this leads to a data set of 1006 pairs which clearly results in
a significant effort for the nearest neighbor queries. Exemplarily we state in Table 5.1
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the time needed by ’knnsearch’ to solve the nearest neighbor problem in one iteration
for such three-dimensional data sets of different size. The memory size required to store
the array is also given. We observe the linear scaling O(n) and remark that these values
are taken from a single search for all material points of the model of Section 5.3; the
setup of the tree needs extra time. For example, for the data set with 108 pairs the tree
setup requires 1008 seconds. These computational costs make it clear that several FEAs
with smaller sets will be more favorable than a single simulation with the total data set
D.

number of data pairs n memory size time in sec.
103 96 kB ∼0.012
104 960 kB ∼0.032
105 9.6 MB ∼0.33
106 96 MB ∼3
107 960 MB ∼35
108 9.6 GB ∼483

Table 5.1: Number of 6-dimensional data pairs per data set, memory size and compu-
tational time required by Matlab for the nearest neighbor search based on
a model with N = 19600 material points.

5.2 Multi-level approach

In order to reduce the computational costs we now expand the data search problem into
multiple levels of approximation. On the lowest level a very coarse data set identifies the
regions of phase space Z which are needed for problem solution. On further levels those
regions are filled with additional data to compute more precise solutions. We remark
that other aspects of data reduction like exploiting a presumed material isotropy will
not be considered here because such assumptions contradict the idea of a data-driven
FEA.

Procedure

The aim of the proposed multi-level approach is to eliminate non-informative or unused
data pairs of data set D and to compute the data-driven FEA on smaller data sets
Dl ⊂ D, l = 0, 1, . . . . The first step (level 0) is to pick a subset D0 ⊂ D that consists of
a very small number of data pairs but covers the phase space Z as good as set D. With
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the reduced data set D0 the data-driven FEA is computed and the optimal data pairs
(ε∗,σ∗)i are assigned to all material points i = 1 . . . nm. Consequently, the solution data
set on level 0 is given by

S0 = {(ε∗,σ∗)i ∈ D0 , i = 1, . . . , nm}. (5.1)

Obviously S0 is a subset of D0 as only data pairs of the input data can be assigned. The
approximate solution is coarse and the data pairs of S0 just indicate the magnitude and
direction of the ’real‘ solution, i. e. the most precisely approximated set S.

In the vicinity of the solution data of set S0 we now collect data pairs of D for a new set
D1. This is again done by the norm of the phase space. We define a distance function
for two data pairs (ε1,σ1) and (ε2,σ2)

d ((ε1,σ1), (ε2,σ2)) =
(

Ψe(ε1 − ε2) + Ψ∗(σ1 − σ2)
)1/2

. (5.2)

This energy distance d is now used to define a ball of radius r of data pairs around each
value (ε∗,σ∗) ∈ S0. All data pairs within this ball are collected to form the level-1 data
set

D1 = {(ε,σ) ∈ D | d(ε− ε∗,σ − σ∗) ≤ r, for one (ε∗,σ∗) ∈ S0} . (5.3)

The radius r of the ball around (ε∗,σ∗) ∈ S0 is problem specific and depends on the
material as well as the data set. In the sense of an efficient strategy it has to hold

dmin < r � dmax (5.4)

where dmin is the minimal distance and dmax the maximal distance of two arbitrary pairs
of the data set. In the three-dimensional example of Section 5.3 we use r = 1.5dmin.
Alternatively, one may also add just a fixed number of nearest neighbors of each (ε∗,σ∗).

Now, computing the data-driven algorithm again we gain the solution set S1 which lead
to a better approximation of the real solution

S1 = {(ε∗,σ∗)i ∈ D1 , i = 1, . . . , nm}. (5.5)

For level 2 we may now enrich the set S1 by (ε,σ) pairs in the vicinity of the assigned
data pairs. Repeating this procedure until the wanted accuracy is achieved leads to a
solution set Sk that approaches the data pairs in the total solution set S

Sk = {(ε∗,σ∗)i ∈ Dk , i = 1, . . . , nm} (5.6)
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and the next level data set is

Dk+1 = {(ε,σ) ∈ D | d(ε− ε∗,σ − σ∗) ≤ r, for one (ε∗,σ∗) ∈ Sk} . (5.7)

The number of data pairs used in the initial computation, the number of data pairs
which is added to the solution sets and the number of levels depend on the specific
problem. With a reasonable choice the number of data pairs in Dk+1 is significantly
smaller than in the full set D.

Truss structure example

We will exemplarily illustrate the multi-level approach by means of a simple truss
structure. The plane truss is displayed in Fig. 5.2a; it consists of 6 rods of stiffness
EA = 6.3 · 107 N and is pulled downwards by a force F = 1000N at the lower right
node. For the total data set we use 200 generated strain-stress data pairs describing the
material behavior between a stress of −10 MPa and 10 MPa. Needless to say that such
a small example can easily be computed with the total data set. The corresponding
answer of the system is displayed in Fig. 5.2b magnified by a factor of 100 for visibility.
For level 0 we choose a data set D0 ⊂ D which is significantly smaller. The data selection
can be done randomly, manually or by some sorting algorithm but D0 has to fully cover
the strain-stress space of the problem. Here we chose by random the twenty green data
pairs of Fig. 5.2c

D0 = {(−3.81 · 10−5,−8.5), . . . , (3.76 · 10−5, 8.1)} . (5.8)

The corresponding data-driven finite element computation is needed to find the regions
where data are actually used and assigned. It leads to the black data pairs in Fig. 5.2d
which form the set S0. We remark that also locally different data sets may be used in
general.
In the vicinity of the (ε∗,σ∗) pairs of S0 we now collect data pairs for the new set D1
using definition (5.3). Here D1 comprises all data pairs inside a ball of radius r = 1Nm
around the solution pairs.
The next data-driven computation leads to possible new data pairs which form the
solution data set S1 in the neighborhood of the prior ones. One neighborhood with the
new data point is shown in Fig. 5.2f. Typically they are more precise than the solution
of set S0. This procedure can be repeated as often as wanted. Usually the data sets
enlarge during computation such that |D1| ≤ |D2| ≤ . . . |Dk| ≤ |D| but are still smaller
than the original data set D. The remaining task is to decide whether the solution has
converged i.e. the final solution set S has been found. Because an analytical solution
is usually unknown a relative error may serve as a termination criterion. Typically
the global value of error functional (2.30) is used, eq. (2.31). Another way to decide
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the multi-level approximation to terminate is the case that in subsequent iterations the
same data pairs are assigned such that Sk = Sk−1.

5.3 Computation of a sandwich panel connection

Clearly, the benefit of the proposed method increases the bigger the data sets and the
finite element model are. The latter is determined by geometry, approximation order
and mesh size whereas the number of data pairs especially increases with the dimen-
sion. Therefore we want to apply the proposed multi-level approach to a fully three-
dimensional engineering problem.

Geometry and loading

Our problem of interest is the stress state in a T-joint connection of two composite
honeycomb sandwich panels, see Fig. 5.3. In a sandwich panel the combination of
a lightweight core with adjacent face sheets of different material provides a coupled
mechanical response which is difficult to predict, cf. [64, 65]. In our case the sandwich
is made of a hexagonal honeycomb core with a thickness of 19.05mm and covering face
sheets of pre impregnated fibers (prepregs) of 0.28mm thickness. Basis material of the
core is resin impregnated Nomex aramid paper, the prepregs consist of two different
layers of glass fibers in phenolic resin. For the connection of web and base plate of the
T-joint specimen a polyurethane adhesive is used; more details can be found in [65].
Clearly, a classical finite element computation of such a structure requires either a
very finely resolved finite element mesh or homogenized data for the specific sand-
wich composition. We remark that the homogenized material cannot be described by
a simple Hookean law since it is orthotropic with direction dependent differences in its
compression-tension behaviour and hardly any shear resistance.
In the following we analyze two loading scenarios, namely a bending and a tensional
force on the web. Tension, i.e. pulling the web from the base, gives a rather simple
loading regime of the T-joint but corresponds to our experiments in [65]. Bending of the
web is added here to compare the stress state with a reference finite element analysis.

Bending of the T-joint

We start with the latter, namely a distributed force of 8.8 · 10−3 N/mm2 in horizontal
direction as indicated in Fig. 5.4. The T-joint is clamped at the bottom side. We
refer to a data set D of effective strain-stress pairs for the sandwich panel based on
experimental data and generated with a homogenized elastic modulus of 265MPa. The
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Workflow of the multi-level method (the strains are scaled with C◦ = 2.1 ·
105 MPa for readability): (a) Undeformed truss structure, (b) Deformed
truss structure, (c) Full data set D (blue) and data set D0 of level 0 (green),
(d) Solution data points S0 assigned in level 0 (black), (e) Neighbourhood
of the solution data pairs S0 forming the next level data set D1, (f) Zoom
into the neighbourhood of one assigned data pairs of S0, data of D1 and
solution S1 (red).
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Figure 5.3: The sandwich panel T-joint during the tension test of [65].

Figure 5.4: Geometry of the T-joint and finite element mesh: The width of the speci-
men is 70mm. The mesh consists of 2450 hexahedron elements, each with
8 gaussian points. The applied force per upper surface is 8.8 ·10−3 N/mm2.

glued connection is assumed to be stiff. Preliminary simulations showed that in the small
strain regime a number of 100 data pairs per strain and stress component are sufficient.

Consequently, we assume a data set D of 1006 = 1012 data pairs to fully cover the
strain-stress space of the problem, i.e. this data-pair density is able to give sufficiently
accurate results. For the simulation the data set was sampled from a given grid of the
stress space. Corresponding strain values were computed with a hidden material law.
For our multi-level computation we start with an initial subset D0 of 256 data pairs.
These pairs are chosen randomly out of the full set D and comprise 0.0244% of the
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(a) Reference FEA: τyz
(b) Reference FEA: σz

(c) Level 0: τyz (d) Level 0: σz

(e) Level 1: τyz (f) Level 1: σz

Figure 5.5: Bending of the T-joint: shear stress τyz and normal stress σz of a reference
FEA with E = 265MPa and ν = 0.2 (first row) and corresponding solutions
of level 0 and level 1. The color scheme shows the stress in MPa and applies
to all images.
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(a) Level 2: τyz (b) Level 2: σz

(c) Level 3: τyz (d) Level 3: σz

(e) Level 4: τyz (f) Level 4: σz

Figure 5.6: Bending of the T-joint: shear stress τyz and normal stress σz of level 2 to
4 of the multi-level method; color scheme from Fig. 5.5.
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Level l data pairs in Dl data pairs in Sl RMS
0 244.140.625 10805 0,3366
1 7.876.845 14.415 0,0747
2 10.508.535 15.535 0,0571
3 11.325.015 16.034 0,0541
4 11.688.786 16.376 0,0523

Table 5.2: Results of the multi-level method for the T-joint on different levels.

original data. Fig. 5.5 illustrates the results. In the upper line two stress components
of the reference FEA are displayed, namely the shear stress τyz and the tension of the
web σz. In the second line the corresponding results computed with the data set D0
are shown (level 0). Clearly, this simulation gives only a rough representation of the
stress distribution because the distances of the few data are quite large and so the stress
distributions in Fig. 5.5c and 5.5d are rather patchy. To quantify the differences between
the two solution we evaluate the root mean square error for the strains

εRMS =
(∫

Ω Ψe(ε− εref) dΩ∫
Ω Ψe(εref) dΩ

)1/2

. (5.9)

In Table 5.2 the error (4.1), the number of data pairs in the solution and the input
data set are displayed for the different levels. For the simulation of level 0 we see a
relative high error of over 30%. At the 19600 material points of the finite element
model, a computation with the data of D0 results in a solution data set S0 with only
10805 data pairs. For the next levels the data sets are expanded by the data pairs
closer than r = 1.5dmin, eq. (5.4). This expansion is easy when the data are given in a
grid-like arrangement. Otherwise a proximity search with the whole data set needs to
be conducted once. In this way, the computation on level 1 with D1 uses 7 876 845 data
pairs, i.e. 7.88 · 10−4% of the original data. The corresponding computations are fast
and the needed amount of memory is still small.

The stress distributions for all four computed levels are shown in Fig. 5.5 and 5.6. The
contours of the stress get smoother with every level and the last level visually coincides
with the reference finite element solution. The number of data pairs in the solution
data sets increases with every iteration |D1| ≤ · · · ≤ |D4|. This allows a more suitable
assignment of the data pairs and so the error reduces down to ∼ 5% which is a satisfying
result for a fully three-dimensional computation. We remark that in the plane stress
computations of [67, 72] the errors are in the same order of magnitude.
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Figure 5.7: Distribution of the maximal shear stress in an Abaqus computation of Fig.
3 [65] (left) and data-driven computation with 10 816 223 data pairs on
level 5 of the multi-level method (right).

Tension on the web

In the second load case the web is pulled and the base is partially fixed at the left and
right quarter, see Fig. 5.3. The results of a data-driven computation with 5 levels of
data sets are displayed in Fig. 5.7 and compared to a FEA of [65] resolving all sandwich
details. The deformation of the specimen is magnified here by a factor of 2.5. Despite
of a simplified modeling regarding the glued connection, we see a good agreement of the
distributed shear stress.
In Fig. 5.8 the load is displayed versus the displacement at the top of the T-joint for
both, the experiment and the data-driven FEA. We remark that in the experiment the
specimen was loaded till rupture, i.e. decohesion of the glued web-base connection. Such
failure is not computed here but as long as the T-joint is intact the numerical results
of the load-displacement curve coincide well with the experimental results. The results
diverge for the beginning of damage in the later loading stage because this was not
covered by our total data set D. Summarizing we remark that our final set D4 has
10 816 223 data pairs compared to the 1012 data pairs of set D and gives sufficiently
accurate results.

5.4 Conclusion of the chapter

In this chapter, a multi-level method to reduce the computational costs for data-driven
finite element analyzes with big data sets is proposed. With the introduced strategy, the
number of data pairs considered in a computation can significantly be reduced, which
will make it easier to conduct complex three-dimensional data-driven simulations.
Starting with a very coarse initial data set D0 as a subset of the total data set D the
corresponding data-driven FEA gives a rough first approximation of the solution. Then,
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Figure 5.8: Load-displacement curve of the data-driven FEA and the experimentally
obtained values of [65].

the next level data sets are successively refined and adapted to the solution. With re-
peated simulations, we obtain an accurate solution using just a subset of the original
data. From an illustrating engineering example we see how computational time and
demanded storage are reduced by the multi-level method. Instead of a full three dimen-
sional simulation with 1012 data pairs the simulation is decomposed into five smaller
simulations with only around 107 data pairs. Although the stress state of the T-joint is
rather simple, it illustrates the potential of the method. The decreasing approximation
error nicely shows the increase in the quality of the solutions at increasing levels.
We see the future of the data-driven FEA in the simulation of complex materials which
do not follow a simple constitutive relation. Here it will be hard to reduce the di-
mension of the data phase space without loss of information. Furthermore, history or
time-dependent material behaviors will require the data base to cover a wide range of
situations. In such a context, it will be necessary to reduce the computational costs of
data assignment by the proposed adaptive multi-level method.
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Data-driven

computations with
RVE generated

data sets

The material data sets were generated synthetically in most previous publications on DD-
FEM [34, 67, 88]. In this chapter, we suggest utilizing stochastic representative volume
elements (RVEs) to generate a material database required for data-driven computations
either a priori or on the fly. In order to provide the data set D, the stochastic RVE
representing a specific foam must be subjected to all sorts of deformation states. From
the solution of these microscopic BVPs, the corresponding stress states are obtained.
In such a way, we generate the state space tuples zi that describes the macroscopic
behavior of the heterogeneous material. This chapter partially relies on the publication
[74].

Computational material testing

For solid mechanic problems, the material data set which replaces the constitutive model
needs to represent strains and stresses in the dimension of the problem. They have to
encompass an almost infinite number of data tuples, covering every possible mechanical
state under consideration. Such data sets can be gained experimentally, using in-situ
computed tomography for example, but these sorts of measurements are expensive and
for many problems not available. An alternative way of data acquisition can be the use of
computational ‘material testing’ in the sense of sample calculations for the heterogeneous
material. In the classical approach, representative volume elements, which allow for
a detailed description of the microscopic characteristics, are used to derive effective
material properties [8]. For the finite element analysis (FEA) of engineering components
this technique leads directly to computational homogenization and FE2 computations
[86, 39], where the two- or multi-scale problem is decoupled into nested subproblems,
i.e. a microscopic BVP and a macroscopic BVP. For the macroscopic BVP to be solved,
the required effective quantities are obtained from the solutions of the many microscopic
BVPs at the material points of the discretized continuum, [7, 23].
Here, we focus specifically on an open-cell elastomeric foam. Solid foams, typically
used for thermal insulation, vibration damping and sandwich-structured composites,
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are lightweight engineering materials with a heterogeneous cellular microstructure. Their
design and computation require either strong simplifications or sophisticated material
models. To avoid these, a direct use of measurement data in the computation would
be desirable. For foam-like materials, homogenization strategies are chosen in [58, 84]
for example. The mechanical properties of such foams are determined by the cellular
microstructure and by the material’s properties. In our study, the foam is made of
polyurethane (PUR), a common elastomer produced by a reaction of an isocyanate with
a polyol in the presence of a catalyst and some additives. Adding a certain amount of
water to the reaction produces CO2, which results in the formation of gaseous bubbles,
[57, 15]. After solidification, a foam with defined porosity but an irregular cellular
microstructure is ‘baked’. This variability can be captured by stochastically generated
RVEs, based on the same statistical parameters but with different expressions of the
characteristics from one realization to another.

6.1 Non-linear DD-FEM

We consider a solid of domain Ω0 in its reference configuration and deforming to the cur-
rent configuration under the action of external body forces ρ0B and boundary tractions
T ; the fields in capitals refer to the reference configuration. The solid’s deformation
ϕ(X) : Ω0 7→ R3 is completely described by the deformation gradient

F = ∇ϕ(X) . (6.1)

The work conjugate stress is the first Piola-Kirchhoff tensor P ; the second Piola-
Kirchhoff tensor follows via S = F−1P . The stresses fulfill the linear and the angular
momentum balances

DivP + ρ0B = 0 in Ω0 (6.2)
P TF − FP T = 0 (6.3)

and consequently is S = ST . The solid is subjected to geometrical and static boundary
conditions at its boundaries Γ0 and Γ1 with outward unit normal N ,

ϕ = ϕ̄ on Γ0 , (6.4)
P N = T on Γ1 . (6.5)

where Γ0 ∪ Γ1 = ∂Ω0 and Γ0 ∩ Γ1 = ∅. These physical equations determine the set C of
mechanical admissible strain-stress states. The goal of the data-driven problem is to find
the minimal distance between this constraint set and the material data set, as stated
by eq. (??). The material data set D consists always of tuples of a strain measure and
a stress measure. In this paper we will use three different pairings: the linear-elastic
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strain and stress (ε,σ), the deformation gradient together with the first Piola-Kirchhoff
stress (F ,P ), and the right Cauchy-Green tensor with the second Piola-Kirchhoff stress
(C,S).

6.1.1 Data-driven problem in F, P

To formulate the boundary value problem (6.2 - 6.5) in the data-driven form, a proper
finite deformation metric is needed. Here we follow [?] where, for a convex function Ψe

and its convex conjugate Ψ′, a distance of the form

d(z, z′) =
∫

Ω
Ψe(F − F ′) + Ψ′(P − P ′) dΩ (6.6)

is proposed. For the specific choice of

Ψe(F ) = µ

2 (F : F ) and Ψ′(P ) = 1
2µP : P , (6.7)

the data-driven problem (??) requires to minimize the distance (6.6) and to fulfil the
constraints of static equilibrium (6.2) and angular momentum balance (6.3). This gives
the problem

W = min
(F ′,P ′)∈D

∫
Ω

(Ψe(F − F ′) + Ψ′(P − P ′)) (6.8)

+ λ (∇ · P + ρ0B) + λ2 :
(
FP T − P TF

)
dΩ → optimum

where λ, λ2 are Lagrange multiplier fields. The corresponding data set D = {(F ′,P ′)1, . . . , (F ′,P ′)n}
contains tuples of the deformation gradient and the first Piola-Kirchhoff stress tensor.
We presume them to be physical meaningful and, specifically, to fulfil eq. (6.3). The
parameter µ calibrates units and magnitudes and is purely numerical in nature; we
therefore write µ0 in the following.

Functional (6.8) states a non-linear data-driven boundary value problem that could
be solved numerically. The additional Lagrange multiplier field λ enforcing (6.2) is
a displacement-like vector field; field λ2 enforcing (6.3) is tensor-valued. Because the
unknown fields are coupled and the formulation cannot be solved explicitly, problem
(6.8) cannot be treated with a standard finite element approach. One way to simplify it
is to not enforce the angular momentum, presuming a negligible distance between the
data of solution C and the material data D in that respect. However, in that way the
problem is linearized and, after discretization, we obtain the same set of finite element
equations like in linear elasticity. For a derivation we refer to our previous work [72];
the result is stated in Appendix 1.
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6.1.2 Data-driven problem in C, S

For a non-linear finite strain formulation we proceed formulating the problem with de-
formation measures fulfilling the angular momentum balance a priori. We use the left
Cauchy-Green tensor C = F TF and the corresponding second Piola-Kirchhoff stress
tensor S = F−1P and, similar to (6.7), the functions

Ψe(C) = µ

2 (C : C) and Ψ′(S) = 1
2µS : S , (6.9)

to define the distance. This gives the functional to be optimized

W = min
(C′,S′)∈D

∫
Ω

(Ψe(C −C ′) + Ψ′(S − S′)) + λ (∇ · FS + ρ0B) dΩ (6.10)

where the data set now contains (C,S) tuples, D = {(C ′,S′)1, . . . , (C ′,S′)n}. The
distance minimization has to be performed under the equilibrium constraint (6.2), i.e.
∇ · (FS) + ρ0B = 0. Expressing C with the displacement field u

C = ∇u+∇uT +∇uT∇u+ I (6.11)

we obtain the functional to be optimized in terms of u, S,λ. For optimal data tuples
(C∗,S∗) it reads

W (u,S,λ) =
∫

Ω

(
µ0

2
(
∇u+∇uT +∇uT∇u+ I −C∗

)2
: I (6.12)

+ 1
2µ0

(S − S∗)2 : I + λ · (∇ · (I +∇u)S + ρ0B)
)

dΩ .

A variation with respect to the displacement field, δuW = 0, gives after some re-
arrangement,

2µ0

∫
Ω

(
∇δu+∇δuT∇u

)
: (∇u+∇uT +∇uT∇u+ I −C∗) dΩ (6.13)

=
∫

Ω
∇λ : ∇δuS dΩ ,

and δλW = 0 results in∫
Ω
∇δλ (I +∇u)T : S dΩ =

∫
Ω
δλ · T dΩ +

∫
Ω
δλ · ρ0B dΩ =: f ext . (6.14)

Finally, from δSW = 0, we derive the expression for the stresses,

S = S∗ + µ0∇λ(I +∇u)T (6.15)
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which now depend on the displacements and the multiplier field and are clearly non-
linear. Inserting eq. (6.15) into eq. (6.14), it results∫

Ω
∇δλ(I +∇u)T :

(
S∗ + µ0∇λ(I +∇u)T

)
dΩ = f ext . (6.16)

The eqs. (6.13) and (6.16) form the wanted coupled and non-linear system of equations
for the fields u and λ. We summarize them as residual equations,

∫
Ω
∇δuT :

(
2µ0F (u)T

(
F (u)TF (u)−C∗

)
(6.17)

−∇λTS∗ − µ0∇λT∇λF (u)T
)

dΩ = 0∫
Ω

∇δλ :
(
µ0F (u)∇λF (u)T + F (u)S∗

)
dΩ− f ext = 0 . (6.18)

where we have written F (u) = I +∇u for the sake of clarity.

6.1.3 Finite element formulation in C, S

For the numerical simulation we decompose the domain Ω0 of dimension d into finite
elements Ωe,

Ω0 ≈ Ω̃0 =
⋃
E

Ωe

where E = {1, . . . , nel} is the set of all elements and ∪ abbreviates the assembly. We
employ the usual ansatz for the unknown fields and their variations

u(x) ≈ ũ(x) = Nû δũ(x) = N δû

λ(x) ≈ λ̃(x) = Nλ̂ δũ(x) = N δλ̂
(6.19)

where the matrix N contains the shape functions Nk for every degree of freedom k =
1, . . . , ndof. The vectors û and λ̂ denote the nodal displacements and Langrange param-
eters. The gradients are summarized in matrix B ≡ ∇N; the subscript e refers to one
element. The finite element discretization of the system (6.17-6.18) is performed with
the ansatz (6.19) and the deformation gradient is calculated in each integration point as

Fe = I + Beûe
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where Fe has the suitable vector form. The discretized system of residual equations is
then:

Ru =
∫

Ωe
BeT

(
2µ0FeT

(
FeTFe −C∗

)
−BeT λ̂S∗ − µ0BeT λ̂Beλ̂FeT

)
dΩ = 0

Rλ =
∫

Ωe
µ0BeTFeBeλ̂FeT + BeTFeS∗ dΩ− f e = 0

(6.20)

The solution of the system (6.20) requires an iterative scheme, typically a Newton-
Rhapson iteration. The resulting finite element expressions are given in Appendix 2.

We remark that a derivation of the DD algorithm for strain E = 1
2(C − I) and stress

S, which results in a similar system of equations, is presented in [?].

6.2 Recording of the material data sets

The material data sets required for the DD-FEM are gained from systematic computa-
tions of representative microscopic foam volumes. Hereby we expect the homogenized
data to be physically meaningful, e.g., symmetric and regular. The specific choice of
strain-stress tuples zi is of minor importance; they can be converted into each other
using the common relations of continuums mechanics. Therefore the data sets

DF = {(F ,P )i, i = 1, . . . , n} and DC = {(C,S)i, i = 1, . . . , n}

or its small strain equivalent Dε = {(ε,σ)i, i = 1, . . . , n} are treated equally and denoted
as D subsequently.

To generate a data set that describes the homogenized material behavior of the foam, a
deformation F̄ of the RVE is prescribed and the stress field is computed with a linear
or non-linear FEM. The homogenized stresses P̄ are derived by

P̄ = 1
|V |

∫
V
P (X) dV ,

i.e. for all integration points the stress components multiplied with the corresponding
volume are summarized and divided by the RVE’s volume V . The combination of the
homogenized quantities F̄ and P̄ provides one data tuple. The data sets, which are used
as an input for the DD-FEM, are the collections of all (F̄ , P̄ ) tuples or, with C̄ = F̄ T F̄
all (C̄, S̄) tuples. Since only one data point is determined per RVE simulation and these
can be relatively expensive, the question arises as to how many points are required for a
DD-FEM calculation. Our experience suggests a minimum number of n = 50−100 data
tuples per stress component, which results in the computation of n6 tuples for three
dimensions. That many simulations can not be deduced for detailed representative
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Figure 6.1: Procedure to generate a representative stochastic foam volume: sphere
radius and location are determined by stochastic variables. A Laguerre
tesselation assigns a domain to every sphere. Then the cells are scaled to
a given volume ratio and the skeleton is extracted afterwards.

microscopic structures. Therefore, after explaining the foam RVE in more detail, we
will discuss in the following how it is possible to speed up the whole process of DD-FEM
calculations with RVE data. At first, we discuss how we gain data efficiently for different
cases of material characteristics, and at second, we present a numerical scheme for the
DD-FEM computation that needs fewer data.

6.2.1 Generation of stochastic RVEs for open-cell foam

Elastic open-cell foams are rubbery materials with a low relative density R = %foam/%elastomer ≤
1/3. Their mechanical behavior is determined by the matrix material and the cellular
microstructure, consisting of a network of ligaments connected at junctions (vertices).
An accurate description relies on the real foam’s geometry, whose topological charac-
teristics are gained from computed tomography scans for example, cf. [19]. Assuming
these characteristics, e.g. the pore volume fraction, the size distribution, the coefficient
of variation, and the anisotropy factor, to be known, the following procedure is chosen
to generate the corresponding RVEs.
At first, random sphere distributions with a collective rearrangement of the spheres
are used to build a dense isotropic packing, see the left image of Fig. 6.1. A force-
biased packing algorithm [12] yields a very efficient procedure to attain the desired
arrangement. At next, a Laguerre tessellation, which is a Voronoi tessellation weighted
with the sphere radius [81], is used to partition the volume into subregions, see the
second image of Fig. 6.1. Then, the effective density of the foam is gained by a scaling
of the cells, see the third image of Fig. 6.1. Finally, the edges need to be extracted.
Originally they had been shared by three cells and through the scaling they have now
a hexagonal cross section (a triangular shape with cut corners). These polygonal struts
are the foam’s ligaments and still need to get realistic cross sections. The adjacent
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struts are joined in the junctions and because this results in kinks and internal corners
a smoothing algorithm is applied. We make use of a spline-based algorithm proposed in
[82]. The result can be seen in the right image of Fig. 6.1.

Figure 6.2: RVE of a foam with 100 log-normally distributed pores, a coefficient of
variation of 0.5, and a relative density of 0.15 (left); its finite element
model consists of 708 372 tetrahedral elements (right).

For a finite element analysis the resulting RVE still needs to be meshed. We employ here
linear tetrahedral solid elements; an example RVE of size 1000× 1000× 1000 µm can be
seen in Fig. 6.2. The displayed RVE is meshed with 708 372 elements and a single linear
computation with periodic boundary condition takes around 10 minutes. This effort is
important because many – linear and non-linear – computations need to be conducted
to obtain the required data sets.

6.2.2 Numerical cost reduction by using characteristic mate-
rial properties

Case A: non-linear and anisotropic material
For the general situation of a direction dependent and non-linear material response, e.g.
a viscoelastic foam with elongated pores in one direction, simplifications are difficult.
Here only a brute force approach of one RVE computation for every (F̄ , P̄ ) or (C̄, S̄)
tuple gives the desired data set D. Such a strategy is hardly feasible with the RVEs
described above, only a simpler beam discretization may help. Additionally, it needs to
be considered whether these volume elements are still representative.
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6.2 Recording of the material data sets

Figure 6.3: Elongation in principle stretches and rotation to the reference coordinate
system for d=2

Case B: non-linear and isotropic material
For an isotropic material, i.e. when the microscopic response is non-linear but does not
depend on the loading direction, we gain the possibility to rotate the RVE’s coordinate
system, see Fig. 6.3. Our strategy is here to sample discrete values of the principal
stretches λα, α = 1 . . . d, and then transform the resulting principal stresses,

S̄ = QS̄λαQT

where Q ∈ SO(3) is the corresponding three-dimensional rotation tensor composed of
the rotations around the coordinate axes, [67]. With a stepwise rotation around these
axes all deformation states can be mapped and summarized in D. For n6 data then n3

computations are needed.

Case C: linear and anisotropic material
The computation eases significantly when the applied deformation is small and the
microscopic response is linear. Without isotropy of the material still RVE computations
with loads in every distinct direction need to be performed but the results now can be
superposed

(C̄, S̄)k = a(C̄, S̄)i + b(C̄, S̄)j
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with a, b ∈ R. Conveniently, unit loads as displayed in Fig. 6.4 are computed and
evaluated. This strategy leads to a enormous decrease of computational effort and will
later be employed for the small deformation data, see A.

Figure 6.4: Unit load deformations of an RVE for direction dependent linear material.

Case D: linear and isotropic material
In the simplest case of isotropic, linear (elastic) material the loading scenarios simplify
even more. The material’s isotropy makes it possible to describe the material by only
two states, namely one of the three elongations and one of the three shear states from
Fig. 6.4. All other data tuples can be gained by linear combinations and rotations of
the coordinate system.
Here we remark that for these simplifications we assume the RVEs to give the same
averaged response, i.e., we neglect the noise induced by the stochastic generation. The
uncertainty in the data will be subject of a subsequent work.

6.2.3 Numerical cost reduction by using a multi-level method

The computational effort of a data-driven multiscale analysis is enormous. As outlined
above, for a non-linear microscopic material response many RVEs need to be computed
to gain the required data. Additionally, data-driven computations are numerically costly
due to the search for the optimal data points and, furthermore, for a macroscopic non-
linear kinematic the solution requires an iterative solution procedure. Other works
reduce the numerical costs by efficient nearest-neighbor searches [35] or efficient initial-
ization of data points [78]. We apply a multi-level method, which was introduced in
[75], to reduce these computational costs. In this procedure we compute the solution on
smaller subsets of the original set Dl ⊂ D. After a computation at level l with data set
Dl, relevant data from the total set D are added to the next set Dl+1. Here we go a step
further than in [75], and use the multi-level method to identify regions where more RVE
calculations are needed and then calculate additional deformation states on the fly.
Fig. 6.5 shows exemplary three data sets on a (simplified) state space. The goal is to
cover the space of possible states (black square) as well as possible by data tuples (dots).
Instead of a high density of data, at first only a coarse set D0 is created through RVE
calculations (black dots, level 0). This set D0 is used for a first DD-FEM of the structure.
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Figure 6.5: Illustration of the multi-level method for a simple state space: The black
data points symbolize the input set of the initial level D0; the crosses are
the data points actually assigned to the material points. The green and
red points mark the data of the first and second refinement level, D1 and
D2, respectively.

In this computation, the approximate data of relevance are identified by the data tuples
which are assigned to the material points (black ×). Then the data set is adaptively
refined and the data-driven FEM is repeated with a set D1. In Fig. 6.5 this is exemplarily
illustrated by the two green ×, marking the selected data of set D1. Around those two
assigned data tuples the data grid is refined. This leads to the data set D2 (red dots).
This procedure can be repeated as often as needed to achieve a sufficient accuracy. The
adaptive computational strategy for the multi-scale simulation is illustrated in Fig. 6.6.

6.3 Numerical Examples

To demonstrate the different DD-FEM approaches, we start our computations with a
parametric study of a simple rod. Then we show the applicability of the method for the
computation of engineering components by means of a polyurethane rubber sealing.

6.3.1 Example 1: Rod under tension

At first we investigate the influence of different data sets together with a linear or a
non-linear kinematic. For these parametric studies we consider a one-dimensional rod
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Figure 6.6: Illustration of the multi-level approach. A coarse data set is generated by
RVE simulations first. A macroscopic data-driven simulation afterwards
identifies region where more precise data is needed. Additional RVE sim-
ulations are conducted to generate new data in the desired regions. The
latter two steps can be repeated as often as desired.

Figure 6.7: Geometry and boundary conditions of the example of Section 6.3.1: the
rod is fixed on one side and a force pulling on the other side induces an
homogenous tension.

of length l = 100mm and cross-section A = 1mm2 under uniaxial tension, Fig. 6.7.
Assuming incompressibility of the material, the state of deformation is given by

F =


λ1 0 0
0 λ

−1/2
1 0

0 0 λ
−1/2
1

 ,
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which means we can uniquely describe it with the lateral stretch λ1. In this example,
we do not obtain the material data sets from any particular foam RVE because this
would not be incompressible. Instead we generate the data artificially. These data sets
are then used in DD-FEM computations with linear and with non-linear kinematic. We
remark that we refer here to the (F ,P ) algorithm of Section 6.1.1 as linearized, it can as
well be formulated with (ε,σ), see ??. The non-linear kinematic follows the algorithm
of Section 6.1.2 and A.

Artificial material data generation We consider the lateral stretch λ1 of the rod to
be prescribed and assign the corresponding first Piola-Kirchhoff stress P1. Three sets of
data are generated, assuming one proportional stretch-stress relation and two different
strain energy densities, whereby in the latter cases we presume the continuum mechanics
relation S = F−1P to apply.
(i) Proportional (linear) data: Assuming proportionality between λ1 and P1 as well

as λ2
1 and S1 we gain the following data sets:

(F, P )i = (λ1, c1(λ1 − 1))i
(C, S)i =

(
λ2

1, c1(λ2
1 − 1)

)
i

for i = 1, . . . , n

with material constant c1 = 1MPa.
(ii) Neo-Hooke-like data: Let the data derive from an incompressible material’s strain

energy density of the form

W = c1(tr(F TF )− 3) + p(detF − 1)

where p is a Lagrange multiplier enforcing incompressibility, we deduce the two
data sets from the corresponding analytical solution, cf. [96].

(F, P )i =
(
λ1, 2c1(λ1 − λ−2

1 )
)
i

(C, S)i =
(
λ2

1, 2c1(1− λ−3
1 )

)
i

for i = 1, . . . , n

The single material constant is here c1 = 1/6MPa.
(iii) Yeoh-like data: Using a strongly non-linear strain energy density of the form

W = c1(tr(F TF )− 3) + c3(tr(F TF )− 3)3 + p(detF − 1)

we derive in the same way the data tuples, cf. [115]

(F, P )i =
(
λ1, 2(λ1 − λ−2

1 )
(
c1 + 3c3(λ2

1 + 2λ−1
1 − 3)2

))
i

(C, S)i =
(
λ2

1, 2(1− λ−3
1 )

(
c1 + 3c3(λ2

1 + 2λ−1
1 − 3)2

))
i

for i = 1, . . . , n

93



6 Data-driven computations with RVE generated data sets

Figure 6.8: Material data of the three sets in the example of Section 6.3.1.

with constants c1 = 1/6MPa and c3 = 1/1000MPa.

The data of the three sets are plotted in Fig. 6.8. Because we chose very dense data sets
with n = 10 000, single data points are not recognizable in the plot but the non-linearity
can clearly be seen.

Comparative study We are interested in the force-displacement relation for a ho-
mogenously elongated bar and evaluate the maximum displacement at the bars end
u= (λ1 − 1)l. The corresponding force-displacement curves are plotted for the propor-
tional material data of set (i) in Fig. 6.9. Clearly, computing the DD-FEM with the
linear kinematic gives a linear u− f -relation, whereas with the non-linear kinematic of
Section 6.1.2 the maximum displacement is reduced. The same situation is displayed in
Fig. 6.10 for the DD-FEM computation with set (ii) and in Fig. 6.11 for data set (iii).

For the sublinear material data set (ii), two effects work against each other: The non-
linear data are softer for larger displacements but the non-linear kinematics stiffens
the model. In other words, while the kinematic gives a higher stretch at the same
displacement, the proportionality of model (ii) gives a lower stress at the same stretch.
The difference between the two approaches is about 14%, 21% and 41% at λ1 = 1.5,
λ1 = 2 and λ1 = 3, respectively.

For the strongly non-linear material data set (iii), the stiffening non-linearity dominates
the situation, Fig. 6.11. The u − f -curves are similar to each other. The linear or
non-linear kinematic hardly makes a difference here, also because the displacements
are significantly smaller than before. The relative difference between both DD-FEM
computations is 8% and 19% at λ1 = 1.5 and λ1 = 2, respectively.

Summarizing we state that in the DD-FEM the structure of the material data set dom-
inates the solution. For moderate straining and considering some expected noise in the
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Figure 6.9: Load-displacement curves for proportional material sets (i) computed with
the linear and the non-linear kinematic.

Figure 6.10: Load-displacement curves for the non-linear material set (ii) computed
with the linear and the non-linear kinematic; two different regimes with
500% straining (left) and 100% straining (right) are shown.

available data, a non-linear material behavior can be mapped with a linear kinematic
sufficiently accurate. This result is important because a non-linear kinematic with a
Newton-Raphson iteration and a data search in every step, as described in Section 6.1.2
and A, is by several factors more expensive than a linear DD-FEM computation.
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Figure 6.11: Load-displacement curves for the strongly non-linear material set (iii)
computed with the linear and the non-linear kinematic; two different
regimes with 100% straining (left) and 60% straining (right) are shown.

6.3.2 Example 2: A rubber sealing in a plane strain state

Now we consider a typical engineering application, namely a car door sealing made of a
foamy rubber material. The computed geometry is displayed in Fig. 6.12.

Figure 6.12: Geometry of the rubber sealing

We start with a somewhat artificial situation of a plane approximation and two-dimensional
foam data. The rubber is a Neo-Hookean material extended to the compressible range,
W = c1(trC − 3) + 1/D1(detF − 1)2, with parameters of polyurethane, c1 = 3.85MPa
and D1 = 0.12 MPa−1. The computation is performed with the commercial program
Abaqus.

Macroscopic finite element model The mesh of the sealing, its loading and bound-
ary conditions are shown on left-hand side of Fig. 6.13. The component is fixed in the
z-direction. For the distributed surface load p four different values are used, namely
p = 3 kPa, p = 10 kPa, p = 20 kPa and p = 30 kPa. For comparison, linear (material
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and kinematic) and non-linear (material and kinematic) finite element analyses based on
the classical material models were also performed. For the linear analysis homogenized
parameters E = 13MPa and ν = 0.4 are used. The non-linear analysis is performed
with a Neo-Hooke model and c1 = 7.69MPa and D1 = 0.08666 MPa−1 are used.

Generation of the material data set The 2D-RVE used for data generation is a
simple 7 × 7mm2 square with 4 regularly arranged pores of radius 2mm and meshed
with 2601 finite elements that is fast and easy to compute. It is isotropical but because
of the non-linear material it corresponds to Case B. Here the principal stretches λ1 and
λ2 are varied in 51 steps between 0.8 . . . 1.2 which lead to 2601 non-linear finite element
computations. The resulting data set has 2601 · 73 = 189 873 data tuples which provide
in our data-driven simulation the initial set D0 for the multi-level approach.

Figure 6.13: Mesh and boundary conditions of the rubber sealing on the left side.
On the right side the load-displacement curve is displayed for the three
simulations.

Data-driven finite element analysis The data-driven computations were run on
three levels of refined data sets. In Table 6.1 the size of the input data set and the
number of data tuples which are actually assigned to a material point (solution set S)
are displayed for the simulation with the highest load of p = 30 kPa.
On the right-hand side of Fig. 6.13 the load-displacement curves are shown for the data-
driven solution and the two classic computations. Recorded is the displacement of the
center top nodes, where we have the largest displacement. The data-driven solution,
computed with the non-linear material data but the linearized kinematic formulation of
Section 6.1.1, gives a somewhat stiffer response than the fully non-linear Neo-Hookean
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Level l data tuples in Dl data tuples in Sl
0 189.873 2.972
1 80.244 3.197
2 86.319 5.201

Table 6.1: Sizes of the input data and the number of data tuples describing the material
of the multi level computation.

model. The difference in the maximal displacement is about 15% for moderate straining.
As outlined in the previous example, a fully non-linear kinematic of the DD-FEM comes
at the price of a much higher computational effort and so we consider the linearized
data-driven response here to describe the deformation of the structure sufficiently.

In Fig. 6.14 the horizontal Cauchy stress component σx is displayed for p = 20 kPa and
a good agreement of the classic FEM solution and the data-driven solution (level 2) can
be seen.

Figure 6.14: Horizontal component of Cauchy stress σx for a classic linear FEM solu-
tion (top) and the DD-FEM (bottom) for a surface load of p = 20 kPa.
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6.3.3 Example 3: Three-dimensional computation of the rub-
ber sealing

We proceed with the rubber sealing component of Section 6.3.2 but compute now a fully
three-dimensional deformation state with a different loading scenario. The material is
described with microscopic RVEs of polyurethane foam.

Macroscopic finite element model The in-plane geometry and boundary conditions
are the same as before, see Fig. 6.12, but the component has now a thickness of 5mm.
Additional to the surface load p1 from atop we add two out-of-plane surface loads ±p2
pointing into the transversal z-direction and thus twisting the component, see Fig. 6.15.
We set p1 = −7.5 kPa and p2 = ±25 kPa.

Figure 6.15: Mesh and boundary conditions of the rubber sealing in Section 6.3.3.
An out-of plane surface load in z-direction is applied (red); the elements
effected by the load p1 are in darker green.

Generation of the material data set To mimic the polyurethane foam we use the
RVE presented in Section 6.2.1 and compute it with the material data of Section 6.3.3.
Under the loads of Fig. 6.15 we expect only moderate deformations and because of that
we consider a linear behavior ((ε,σ) data). Due to the stochastic random sphere packing
of the RVE, small deviations in the directions may still occur. Therefore, we chose the
strategy outlined in Case C and conduct FEAs for the six unit loads of Fig. 6.4. The
six evaluated data tuples are listed in the appendix. We observe only small deviations
of around 5% in the different directions; this uncertainty is forwarded into the data set.
Fig. 6.16 shows the RVE once sheared and once elongated in x direction by ε = 2% and
the relative low stresses. The material data set comprises stresses between −0.2MPa
and 0.2MPa. The number of data tuples varies due to the multi-level approach and is
listed for the different levels of refinement in Table 6.2.
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Figure 6.16: Two of the six loading scenarios of case C: On the left side a shear defor-
mation is displayed and on the right side the RVE that is introduced in
section 6.2.1 is elongated along the x-axis.

Level l data tuples in Dl data tuples in Sl RMS
0 1.771.561 2.179 67.11%
1 1.588.491 8.889 29.17%
2 6.480.081 12.541 13.51%
3 9.142.389 14.152 9.78%
4 10.316.808 14.177 8.32%

Table 6.2: Size of the material data set D and number of data tuples describing the
solution S in the multi level computation.

Data-driven finite element analysis For the data-driven computation we used the
multi-level method with 4 levels of refinement. The data refinement is stopped then
because the increase of additional data points is small and the root-mean-square error
(RMS) is at an acceptable level, see Table 6.2. The RMS error of the stresses

σRMS =

√√√√∫Ω Ψ∗(σ∗ − σref) dΩ∫
Ω Ψ∗(σref) dΩ

is calculated with respect to a standard linear finite element analysis with elastic pa-
rameters E = 3MPa and ν = 0.4, that are derived from the homogenized material.
As expected the error is high of the first level computation, see Table6.2. Later, it re-
duces to a single-digit error which is in line with prior three-dimensional simulations.
In Fig. 6.17 the horizontal stress σx is plotted for the reference finite element analysis
and the DD-FEM computation. The displayed stress distribution shows that the results
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Figure 6.17: View of the normal stress σx from above in the rubber sealing of the
DD-FEM (bottom) and the reference finite element analysis (top).

almost coincide.
The corresponding shear stress τxz is displayed in Fig. 6.18 in the deformed sealing.
The displacement is magnified here by a factor of five so that the deformation of the
component can nicely be seen. The numerical generation of the data can be useful for
smaller stress components. In [72] it is noted that for an equidistant data grid smaller
stress components could not be displayed adequately. The material density was derived
by the maximal stress component and the number of data points. Since the data is
generated numerically here, one would not be bound to a minimum recording resolution
of an experimental setup and could still refine individual components here, which was not
overused however. Finally, the data-driven method manages to perform the macroscopic
FEM simulation satisfactorily.

6.4 Conclusion of the chapter

In this chapter, we propose a strategy to provide the necessary material database for
linear and non-linear data-driven finite element computations. Typically, such data
are presumed to be available from experimental investigations but here we suggest a
computational material testing instead. With representative material volumes the micro-
scale problem is investigated and the derived homogenized data give the input for the
solution of the macro-scale problem.
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Figure 6.18: Shear stress τxz in the rubber sealing for the reference (top) and the DD-
FEM (level 4). The numerical generation allows to generate suitable data
in all directions.

Specifically we consider the DD-FEM of components made of open-cell foam. The
representative volume elements map the foam’s characteristics such as pore volume,
pore distribution, pore and ligament geometry which are usually gained from CT scans.
Their computation, in conjunction with simplifications made possible by the spatial
material behavior, enable us to generate the material data input set.
The capabilities of the methodology are shown with three different examples. The first
example is a study of how the data-driven method behaves with non-linear data and a
linear setting and the other way round. In the two rubber sealing examples we focus onto
the material generation and simulation of the component. From our point of view, the
DD-FEM and the data-based generation of the RVE can really excel the computation of
such problems. With the methods presented here, it is possible to numerically calculate
the properties of the foam, and the response of a component made of it, only with
the help of CT scans. No further practical or experimental action is necessary. In
particular, the DD method can help in the future design of new types of foam. If a new
foam is to be designed, its effect on the final product can be determined in advance by
varying individual target parameters in the creation of the RVE. By selecting the target
parameters in the RVE, e.g. pore volume or pore size, it is possible to determine which
microscopic properties the foam has and how a component made of it would react to a
given load. This whole process would be purely numerical and can save costs as well as
time.
Furthermore, the data-driven method can be used to insert material properties that
were not inserted from a theoretical point of view, for example non-linear data in a
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linear simulation or anisotropy in an isotropic calculation.
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applications

In this chapter, we want to investigate several small applications of the data-driven
method. As already shown in Chapter 4 the data-driven FEA allows for uncertainty-
specific calculations. Therefore, it can be also part of a polymorphic uncertainty com-
putation, incorporating two or more different uncertainty models.
Furthermore, the data-driven method is applied to diffusion problems. This chapter
bases on the publications [73] and [75].

7.1 Polymorphic uncertainty

Inside the priority project 1886 of the Deutsche Forschungsgemeinschaft a special focus
is placed onto polymorphic uncertainty methods, i.e. the coupling of two or more models
for uncertain behavior. Most of the time stochastic and fuzzy methods are used here.
In our sub-project we coupled the data-driven method, as a data-stochastic uncertainty
method, with a fuzzy method to gain a polymorphic uncertainty approach. Fuzzy set
theory is a generalization of the classical set theory. Instead of belonging or not belonging
to a set, an element gets assigned a degree of membership to the set. This degree of
membership is a value between 0 and 1, where 0 means that the element does not belong
to the set and 1 means the element belongs fully to the set. An introduction to fuzzy
theory is found in [77] and [116]. Here we briefly introduce fuzzy variables and fuzzy
numbers such that we can use them in a computation.

Fuzzy variables

In the following we focus onto one-dimensional fuzzy sets, i.e. the set of real numbers R
can be seen as the universal set. The fuzzy set theory is a generalization of the classical
crisp set formulation. In the classical formulation of set theory we distinguish only two
cases of elements belonging to a set X ⊂ R. They can either belong to a set

a ∈ X

or not belong to a set

a 6∈ X

105



7 Examples of applications

there is no in between. If we want to describe the membership of the elements by a
function we can use a typical indicator function

µX : R→ {0, 1}

µX (a) = 1 if and only if a ∈ X

µX (a) = 0 if and only if a /∈ X

where µX (a) = 1 denotes that the element belongs to the set and µX (a) = 0 denotes
the opposite. For fuzzy sets the membership value is now allowed to be a value between
zero and one (including both)

µX : R→ [0, 1]

This means instead of a crisp boundary we have a vague boundary. This vagueness
can be used now for the description of uncertainties. Fuzzy variables are specially used
for epistemic uncertainties. If a parameter can be measured, say more than a thousand
times, and a distribution can be deduced, a probabilistic model yields no problems. How-
ever, some parameters cannot be measured at all or not that often to deduce probability
distributions. Sometimes only a verbal statement as “ten or so” by expert knowledge is
at hand. Here, it is hard to use a stochastic distribution. A discrete fuzzy set describing
the above statement is shown on the left side in Fig. 7.1. The membership value on
the ordinate is also called possibility. For example the value 9 got the possibility of 0.4
of being contained in the set “ten or so”. On the right side an example is given of the
statement “Sarah is very young”. The possibility of a 20 year old person getting the
attribute “very young” is 0.5. As fuzzy and stochastic variables express uncertainties,

Figure 7.1: Representations of the membership functions for a discrete and a continu-
ous fuzzy set.
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have values in the range of zero and one and got other similarities both approaches
are compared often. As seen before fuzzy variables can be especially useful when the
amount of information is rather small. A probabilistic approach fits better when many
information is at hand and a distribution can be fitted.
For uncertain input parameter which are usually a value on the real axis the special
definition of a fuzzy number is used. Fuzzy numbers are fuzzy sets which have the
following properties:

• defined on the real number axis
• convex
• normalized
• the membership function is piecewise continuous.

We will make use of a triangular fuzzy number as shown in Fig. 7.2. An important
feature of fuzzy sets are the α-cuts of the fuzzy set

Aα = {a ∈ X |µX (a) ≥ α}

of which one is also displayed in Fig. 7.2. All α-cuts also define the fuzzy set completely.

Figure 7.2: A triangular fuzzy number with an α-cut for a given α.

Fuzzy Monte-Carlo method

As already mentioned the Monte-Carlo method is a very general and practicable method
to implement uncertainties. The Monte-Carlo method which we already used in Chap-
ter 4 is now extended by a fuzzy variable. In Fig. 7.3 it is shown how to deal with
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both uncertainty descriptions. The stochastic distribution is sampled as before such
that we are able to compute with a deterministic value. The fuzzy variable is discretized
into α-cuts which can be used for an interval propagation then. As we sample over the
stochastic and the fuzzy domain there are two loops now. Many computations have to
be conducted therefore. The result is a family of distribution function for the different
level of assumption.

Figure 7.3: Different uncertain inputs to the Monte-Carlo method and how it is dealt
with both.

Numerical example

To conduct such a computation we go back to the cantilever plate example in plane
stress conditions. For the geometric properties and discretization review Section 3.4.
The material is described by 25 data sets which are sampled with a mean of 3 · 106 Pa
for the data-driven method. The force is a fuzzy triangle number which is characterized
by the three points of (58, 63, 68) Pa.
By the double discretization we gain a family of probability distributions for presumption
levels of the fuzzy value as an output. The lower limit of the distribution functions seen
in Fig. 7.4 is called belief function, the upper limit is called plausibility function. Both
are displayed as solid lines on the left side of Fig. 7.4. The dashed lines are the ones
with presumption level 1 and therefore correspond to a normal Monte-Carlo simulation.
Overall, the results coincide pretty much. However, the cyan line of the approach where
the whole beam stiffness is varied by only one stochastic variable varies more to the end.
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Figure 7.4: Display of the resulting family of distribution functions for the different
levels of presumption (left) and the propagated fuzzy structure of the dis-
placement.

The reason behind this is that one variable leads to way more variation. if the realization
of the random variable is very small the whole beam loses stiffness. In contrast, if in
the stochastic finite element method or in the data-driven approach a random variable
only describes one element such that the stiffness is more depending on the average of
the whole beam.

Even though the implementation of the data-driven method into a polymorphic approach
is in the foreground here we have a look onto the uncertainty propagation of the fuzzy
variable. On the right-hand side the profile of the fuzziness is shown for a distribution
function value of 0.4. Due to the linear finite element behavior the structure of the
epistemic uncertainty stays the same here. Also the probabilistic structure does not
yield any new information. The still normal distributed structure can be seen in the
empiric distribution functions. As already discussed the uncertainty propagation plays
a smaller part in this example it shows that data-driven fuzzy computations are feasible.

7.2 Diffusion

Whereas the data-driven method of [67] has been formulated in the context of com-
putational mechanics and has already received several enhancements and applications
[59, 69, 72, 88, 34], we believe that its range and scope is much larger. Specifically
we apply the data-driven finite element framework here to diffusion problems. Diffu-
sion constitutes typical transport equations which describe numerous phenomena such
as the migration of particles, electric field and temperature evolution or the spreading
of diseases. All these phenomena may lead to large fields of unstructured experimental
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data. Because modeling empiricism adds error and uncertainty to the solutions, the
data-driven computing is expected to be particulary beneficial. Uncertainties find their
way into the simulation as scattering of the data in one data set or in form of multiple
data sets measured on multiple experiments.

Governing equations

The diffusion of particles fulfills the continuity equation

u̇ = f(u)−∇ · j (7.1)

for a particle source f(u) and a flux vector j. In other words, Eq. (7.1) follows from the
universal principle of mass balance (or mass conservation if we disregard the source term
f(u) for a moment) and is, therefore, model-free. The flux, however, is usually derived
from the assumption of a uniform and spatially homogeneous material. With a diffusion
coefficient D it is usually modeled as j = −D∇u and is, at best, empirical. In the
proposed data-driven approach, the flux modeling will be replaced by a time-dependent
data set Dt, which is composed of n measured values for the spatial flux vector j and
the descent of particle concentration i = −∇u

Dt = {(i, j)tl}nl=1 . (7.2)

Spatial heterogeneity can be accounted for by multiple data sets assigned to different
locations. In total, the resulting data-driven problem consists of the minimization of a
distance function to the current data set subject to continuity and kinematic constraints.
Specifically we illustrate the character of the data-driven boundary-value problem by
recourse to the stationary solution of Eq. (7.1). It leads to a classical Poisson problem
for u(x, t),

∇ · j = f, j = j(i), i = −∇u (7.3)

where the first equation describes equilibrium (conservation of linear momentum), the
second equation plays the role of a constitutive equation and the last relation is the
kinematic constraint. Figure 7.5 (left) illustrates that the corresponding Poisson problem
has a solution at the intercept of the two i− j-curves. As in the mechanical data-driven
problem the constitutive relation is replaced by the data set Dt and we cannot presume
that we can find an intercept with the equilibrium equation (7.3)1. The aim is therefore
to find the minimal distance between the physical equilibrium E , including all constraints
of the system, and the constitutive data set D,

(i∗, j∗) = arg
D

{
min
x∈E

min
y∈D
‖x− y‖D

}
(7.4)
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Figure 7.5: In a classical Poisson problem formulation the solution is the intercept of
the equilibrium equation and the constitutive relation (left); in the data-
driven framework there is not necessarily an intercept (right) and the so-
lution needs to be approximated.

where we understand the data points which do so as the solution of the data-driven
problem, (i∗, j∗). The norm ‖ · ‖D is defined as

‖(i, j)‖D = 1
2

∫
Ω
i : D : i+ j : (D)−1 : j dΩ. (7.5)

Norm (7.5) weights the different magnitudes (and units) of i and j by means of a
numerical diffusion tensor D = DI. We remark that this tensor can be chosen arbitrarily;
a non-isotropic form is also possible. Correspondingly, we define a global penalty function
for the distance between numerical values (i, j) and data set test values (i′, j ′) ∈ D,

W py = 1
2

∫
Ω

[(i− i′)TD(i− i′) + (j − j ′)TD−1(j − j ′)] dΩ . (7.6)

Functional (7.6) needs to be minimized, subjected to the physical constraints (7.3)1 and
(7.3)3 which are enforced by Lagrangian multipliers.

For a transient problem the temporal evolution of field u(x, t) follows Eq. (7.1).

Finite element discretization

The diffusion equation is solved in weak form and integrated in time using a backward
Euler method. Then, at a time step tk ∈ {t0 = 0, t1, t2, . . . , tk−1 + ∆t = tk, . . . } the
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constrained penalty functional (7.6) has the form

W ∗ = 1
2

∫
Ω

[(ik − i′k)D(ik − i′k) + (jk − j ′k)D−1(jk − j ′k) dΩ

+
∫

Ω
λk
(
uk − uk−1

∆t +∇ · jk − fk
)

dΩ +
∫

ΓN
λ̄k(jk · n− j̄k) dΓ

(7.7)

We remark that the kinematic constraint (7.3)3 is implicitly fulfilled by a conform finite
element discretization and so only condition (7.3)1 needs to be enforced by Lagrangian
multipliers λ.

For spatial discretization a standard finite element method is used. Taking the variations
and with the usual calculus we arrive at the finite element system

1
∆t

∫
Ω

NTN dΩ λk +
∫

Ω
BTDB dΩ uk =

∫
Ω
BTDi∗k dΩ

1
∆t

∫
Ω

NTN dΩ uk −
∫

Ω
BTDB dΩ λk =

∫
Ω
NT fk dΩ + 1

∆t

∫
Ω

NTuk−1 dΩ +
∫

Ω
BT j∗k dΩ

(7.8)

+
∫

ΓN
NT j̄k dΓ

where N is the matrix of shape functions, B the matrix of their spatial derivatives,
f is the source vector, j̄ are prescribed boundary fluxes, and u, λ are the vectors of
unknowns.

To solve for the optimal data points (i∗k, j∗k) an iterative algorithm is used which starts
with a random initialization or the value of the last time step (i∗k−1, j∗k−1). The finite
element equations (7.8) need to be solved then. Afterwards new data points (i′k, j′k) can
be assigned which are used in the next iterative step of the algorithm. The algorithm
stops if the change in the global penalty function is smaller than a certain threshold,
i. e. when (i∗k, j∗k) is reached. More details can be found in [72, 73].

Numerical examples

Here we perform numerical simulations on a two-dimensional domain Ω ∈ [0, 100]2.
The finite element mesh is regular and consists of 2 · 252 linear triangular elements (P1
elements). The boundaries are free, i.e. the flux j̄ is zero. In all simulations the initial
state is a stamp-like cluster of concentration in the center of the domain, see Fig. 7.6
(left).

Prerequisite to a data-driven simulation are data sets, Eq. (7.4). Here the data are artifi-
cially sampled and dimensionless. The descent data space covers a square equidistantly,
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Figure 7.6: Finite element mesh with initial field u (left) and isotropic diffusion after
1000 time steps computed with data set D1 (middle) and concentration
profile along the middle axis for every 100 time steps (right).

i ∈ [0, 10]2. The corresponding flux values are generated using artificial diffusion tensors
Dart. One data set then comprises the data points D = {(i, j)l}nl=1 with n = 1002 entries.

A first data set D1 is based on a simple diagonal diffusion tensor

Dart
1 = D0

(
1 0
0 1

)
(7.9)

and recreates isotropic diffusion with D0 = 0.04. To represent real-life data, we add
for the second data set D2 an uncertainty term. The artificial diffusion tensor Dart

2 is
afflicted by two stochastic terms N and U

Dart
2 = (1 +N) ·D + U (7.10)

where both stochastic variables are 2× 2 matrices

N =
(
N1 0
0 N2

)
U =

(
0 U1
0 0

)

with N1, N2 ∼ N0,0.1 and U1 ∼ U(0, 0.016). In this way, the diffusion is still almost
isotropic but, as it is observed in common experiments, the resulting flux data scatter
in a normally distributed manner. Also, by U there is put a certain weight onto the
off-diagonal element which results in a small bias of the flow.

In our first simulation with data set D1 we show that the data-driven solution approx-
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Figure 7.7: Concentration computed with data-set D2 after 1000 time steps of diffusion
(left) and profile along the diagonals (right); the color coding refers to the
legend of Fig. 7.6.

imates a classic diffusion problem. Using 100 data points per dimension we end up
computing results which are close to the expected solution. In Fig. 7.6 (right) a pro-
file through the center is shown for different time steps. Due to the sampling with an
equidistant grid there is symmetry of the profile.
In a second simulation with data set D2 we observe the effect of the stochastic terms.
A snapshot after 1000 time steps of evolution is shown in the left of Fig. 7.7. On the
right of Fig. 7.7 the concentration profiles along the domain’s diagonals are displayed
and we can see that the concentration profile of the lower-left to the upper-right corner
is wider spread than the one from top-left to bottom-right. This variation is caused by
the direction-dependent data.

Figure 7.8: Histograms of the concentration at the center of the cluster (left), above
the center (mid) and diagonally from the center (right).

Since we can not make any statement regarding uncertainties from only one simulation,
we consider now the scenario of multiple measurements. Let us assume that several data
sets have been measured which all have the deviations as modeled by Eq. (7.10). This
results here in 200 different data sets of type D2 which are now used for the data-driven
finite element analysis. We use one of those D2 data sets for the complete domain Ω
but remark that it would be also possible to use different sets for subdomains. Such
assumptions, however, would need a physical justification. Here we assume uncertain
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data of type (7.10) for the full domain and show the resulting histograms of concentration
value distribution for three different points in Fig. 7.8.
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8 Conclusions

At the end of this thesis we want to summarize the results and attempt an outlook
of what is next for the data-driven finite element method. After we introduced the
DD-FEM approach we extensively investigated the approach and extended it in sev-
eral meanings. The data-driven approach allows to circumvent the empirical fitting of
material models to material data and to incorporate the data directly in finite element
computations. This methodology reduces the efforts spent on the fitting process and
model uncertainties completely.

We first investigated the results of the DD-FEM in a cantilever plate problem with dif-
ferent sizes of data sets. The data density, i.e. the area covered by data points divided by
the number of data points, is a crucial input for the quality of the data-driven method.
However, too much data increases the numerical cost significantly and make the com-
putation unpractical. A number of around 100 data points per strain/stress coefficient
showed good results when the covered space is between the maximal strain/stress values
and the double maximal value. We then investigated the robustness of the DD-FEM
towards the input of the numerical material tensor. The DD-FEM showed exceptional
results. While the error is relatively small even for the halved or doubled Young’s modu-
lus the data-driven computation also gives a hint into which direction the perfect choice
of value lies. At the end of Chapter 4 we compared the DD-FEM to the stochastic finite
element method to incorporate material uncertainties. Those can be included in the
DD-FEM in a natural way as we don’t need to choose a model here too. The material
uncertainties are implemented by multiple data sets which correspond to the measure-
ments. The DD-FEM reproduced the resulting distribution of the SFEM successfully
with a small shift due to the discrete data set. A mathematical convergence can be
assumed too which, however, was not proven here.

One drawback of the data-driven approach is the increase of the numerical cost. While
the effort of solving the second system of equations is low due to the same stiffness
matrix, the numerical cost of the nearest-neighbor search increase the cost rapidly. Here
we proposed a numerical method that splits the data-driven computation into more
simulations with an adapting data set. In the first layer a coarse data set is used to only
identify the regions of material states needed in the simulation. The following layers
increase the precision by refined data set in the identified area. With this method, we
are able to conduct full three-dimensional data-driven computations with a relatively
small computing time and storage demand.
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Most data sets used in this thesis are synthetic data sets sampled with a hidden material
law. In Chapter 6 we generated a data set from RVE calculations and used them
for DD-FEM computations. Performing measurements in three dimension to deduce
the material behavior are still hard and expensive to perform. Therefore, a numerical
alternative is presented here. The foundation of this approach are µCT-scans of the
material microstructure. A representative volume element is generated with the deduced
information. Simple deformation states are used to generate the basis of the data set.
Due to the linear regime of loading a large database can be generated afterwards and
used in the DD-FEM simulations.
In Chapter 7 two applications of the data-driven method are briefly investigated to il-
lustrate the possibilities of this method. First, the DD-FEM is used in a polymorphic
uncertainty computation together with an additional fuzzy variable. From the results
fuzzy-probability distributions can be deduced. The data-driven approach is an inter-
esting ansatz for polymorphic descriptions as the variable which is described by the data
does not need to be sampled. The data that is at hand is a realization of the uncertain
parameter value.
In the second part of the chapter the data-driven framework is applied to a diffusion
problem. It shows the easiness of applying the DD-FEM to a different problem. Again
probability distributions are computed where this time the stochastic part influences the
isotropy of the diffusion process.

Outlook

Many data-driven methods have been presented in the recent past. These are often
used for the material description in mechanical engineering. They allow the use of
material data without explicitly employing an analytical function, a so-called model-free
simulation. While this can be useful in general when we have problems fitting the data to
known models, it does not make sense when the data can be fitted to a known model. A
physically motivated and interpretable model allows much more insight into the physical
processes and so the attempt to replace constitutive laws also meets criticism. David
Gonzalez comments in his paper [46]: “While there is a growing interest in this sense
around the machine learning community, some recent works have attempted to simply
substitute physical laws by data. We believe that getting rid of centuries of scientific
knowledge is simply nonsense. There are models whose validity and usefulness is out
of any doubt, so try to substitute them by data seems to be a waste of knowledge.
While it is true that fitting well-known physical laws to experimental data is sometimes
a painful process, a good theory continues to be practical and provide useful insights to
interpret the phenomena taking place”. This criticism must be agreed under the above
points, which is why the future of these methodologies definitely lies in the areas of new
and complex materials for which current material models must be adapted again and
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again. For example, foam-like structures or the currently popular additive manufacturing
provides new and different material behaviors. Finding a separate material law for each
new printing pattern would be a great effort. This is where data-driven methodologies
can stand out and present fast and attractive solutions.

The future of the data-driven computational analysis

The data-driven methodology presented in this thesis is still very young. It attempts to
form further foundations for the development of the method. The DD-FEM does not
only replace the material modeling process, but even removes it. Instead of a material
model, the data itself is directly used in the finite element computation. Up to this point,
the method shows satisfactory results. Model risks are avoided, and with a sufficient
data density, the solution is equivalent to those of the classical FEM with a material
model. Additional numerical effort can be kept low in the future by means of intelligent
search and initialization algorithms.

As a still new approach, simpler models are used in the DD-FEM currently. As men-
tioned above, these will certainly have to be discarded in the future. From a theoretical
point of view, the method has already been extended to further applications like inelas-
ticity, diffusion, fracture and some more. One of the future goals must be the practical
application, that is, measuring data and using it in simulations. This is already very
difficult and costly for recording three-dimensional strain-stress data. To record such
data for diffusion processes or crack growth seems to go one step further, so the practical
applicability must not be lost sight of. If the data-driven method is to prevail in the
future, the structured construction of a material database must be simple and feasible.
If it is even feasible to collect such data sets in-situ, the data-driven methodology can
help create so-called digital twins. Another way could be the numerical generation of
data as presented in this thesis. Therefore, the possibility to produce data with models
of the micro structures should also be further researched.

However, there is also still room for more theoretical research. The directions in which
we see further research are divided into three areas: the method itself, data manipu-
lation, and the further expansion of applications. First, the energy densities that were
chosen so far, together with the numerical stiffness parameter, still need to be improved,
especially for nonlinear data. A fixed weighting constant leads to converging problems
that need to be further researched. Second, the data used in this thesis is always un-
processed to implement the uncertainties as they were measured. However, interesting
approaches using cluster theory or tensor voting manipulate the data for faster com-
putation or more insight. Many statistical methods may be used upon the data before
the computation. Third, also further application areas can still be researched such as
electrostatics, hydrodynamics or others where a constitutive equation plays a major role
and measurements may be easier for three-dimensional data.
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8 Conclusions

All in all, the data-driven methodology seems to be a promising method that is worth
researching. The knowledge about the possibility to use the data itself should solely
motivate users to generate, record and save more data. Then, the data-driven method
can excel with the growth of big data repositories of material data in the future.
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A Appendix

Equivalence of the principle of minimum potential energy and
variational approach

To derive the weak form∫
Ω
δε : σ dΩ−

∫
Ω
b · δu dΩ−

∫
Γσ
t · δu dΓ

from the strong form

div(σ) + b = 0 (A.1)

we first multiply the balance of linear momentum with an arbitrary smooth function v
and integrate over the whole domain∫

Ω
(div(σ) + b) · v dΩ = 0 (A.2)

The function v is often called test function and can be interpreted as a virtual displace-
ment. Using the product rule of differentiation

∇ · (σ · v) = (∇ · σ) · v +∇v : σ

for the first term we get∫
Ω
∇ · (σ · v)−∇v : σ dΩ +

∫
Ω
b · v dΩ = 0

⇔
∫

Ω
∇v : σ −∇ · (σ · v) dΩ−

∫
Ω
b · v dΩ = 0

Using the divergence theorem by Gauss∫
Ω

diva dΩ =
∫

Γ
a · n dΓ

we obtain ∫
Ω
∇v : σ dΩ−

∫
Γ
σ · n · v dΓ−

∫
Ω
b · v dΩ = 0.
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As v can be seen as a virtual displacement it needs to vanish at the Dirichlet boundary
such that the integral over the boundary reduces to the Neumann boundary where we
can use the Neumann boundary condition t = σ · n∫

Ω
∇v : σ dΩ−

∫
Ω
b · v dΩ−

∫
Γσ
t · v dΓ = 0

which is the weak formulation of the problem as v equals δu of the Lagrangian notation
in (2.10).

Function spaces

Another question we can ask is to which function spaces do the solution and the other
variables belong. The weak formulation is called „weak“ as it weakens the differential
conditions onto the solution. While in the strong form the solution u needed to be
two times differentiable it only need to have derivatives of first order in the weak form.
Furthermore it need to be ensured that the integrals in the weak form still exist∫

Ω
∇v : σ dΩ <∞ ,

∫
Ω
f · v dΩ <∞ ,

∫
Γ1

t · v dΓ1 <∞ .

As we have to do with products the functions have to be square integrable by Hölder’s
inequality. Following we define some of the generally used function spaces. The L2-space
is the space of all functions which are square-integrable

L2(Ω) := {g : Ω→ R :
∫

Ω
|g|2 <∞}

By a bold notation we mean the functions which takes values in multi-dimensional vector
spaces

L2(Ω) := {g : Ω→ Rd :
∫

Ω
|g|2 <∞}

while the dimension d equals three most of the times in our case. Generally, we get the
Lp-space by replacing both twos by p

Lp(Ω) := {g : Ω→ Rd :
∫

Ω
|g|p <∞}

If we also demand that all mixed partial derivatives of maximum order k are in Lp we
arrive at the Sobolev-spaces

Wk,p(Ω) = {g ∈ Lp(Ω) : Dαg ∈ Lp(Ω) ∀|α| ≤ k}
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For the case of p = 2 the Sobolev-space Wk,2 is also a Hilbert-space which we name
Hk(Ω) then. For the case k = 1 the norm induced by the scalar product is

√
〈g, g〉H1

(Ω) = ||g||H1
(Ω) =

(∫
Ω
|g|2 + |∇g|2 dΩ

)1/2

As mentioned before the displacement need to be differentiable and also the derivatives
need to be square-integrable. That means that the Hilbert-space H1(Ω) is the space in
where we are looking for a solution. Often also some subspaces are defined for functions
which fulfil the essential boundary conditions

H1
Γ0(Ω) = {g ∈ H1(Ω) : g|Γ0 = ū}

or vanish at the essential boundary

H1
0(Ω) = {g ∈ H1(Ω) : g|Γ0 = 0}

The second space is the space which we select for the test functions as we are not allowed
to apply a virtual displacement where essential boundary conditions are enforced but
need the same differential and integral conditions as before. The weak form then reads
as follows

Find u ∈ H1
Γ0(Ω) such that ∀v ∈ H1

0(Ω)∫
Ω
∇v : σ dΩ =

∫
Ω
f · v dΩ +

∫
Γ1

t · v dΓ

For the loads we also need to assume to be square-integrable over their corresponding
space f ∈ L2(Ω) and t ∈ L2(Γ1), however, loads that are not smooth can also be
considered without many problems [119].

Minimal property

Strictly speaking there is no evidence until now that the solution of δΠ = 0 minimizes
the potential energy. For a minimum it is sufficient to show that

δ2Π > 0 .

This is quickly shown in our case with help of the second variation. As the only the first
term of Π inhabits a quadratic term

Π = 1
2

∫
Ω
ε : C : ε−

∫
Ω
b · u dΩ−

∫
Γ1
t · u dΓ
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the others vanish and we obtain

δ2Π =
∫

Ω
δε : C : δε dΩ

By the positive definiteness of C the integrand is positive and so is the integral. This is
sufficient.

Data-driven problem formulation

The local continuous problem at a fixed location is given by

min
y∈C(x0)

min
z∈D(x0)

||y− z||C◦(x0)

with the given norm

||(ε,σ)||C◦(x0) =
(
ε(x0) : C◦(x0) : ε(x0) + σ(x0) : (C◦)−1(x0) : σ(x0)

)1/2

The global continuous problem is described by

min
y∈C

min
z∈D
||y− z||C◦(x)

with the given norm

||z(x)|| =
(∫

Ω
ε(x) : C◦(x) : ε(x) + σ(x) : (C◦)−1(x) : σ(x) dΩ

)1/2

The local discretized problem is described by

min
y∈Cm

min
z∈Dm

||y− z||C◦m

with the given norm

||(ε,σ)||C◦m =
(
ε : C◦m : ε+ σ : (C◦m)−1 : σ

)1/2

Stationary Gaussian fields

Gaussian fields are very attractive because they are defined by a few parameters. Namely,
these are the expected value function and the autocovariance function. Furthermore, for
Gaussian fields it holds that stationarity in a wide sense is equivalent to stationarity
in a strict sense. Generally, stationarity in a wide sense does not imply stationarity in
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a strict sense. The behavior of stationary processes at two different locations depends
solely on the distance then. The stochastic process χ is said to be strictly stationary if

Fχ(xt1 , . . . , xtn) = Fχ(xt1+τ , . . . , xtn+τ ) ∀τ, t1, . . . , tn ∈ R, n ∈ N

where F is the cumulative distribution function of the joint distribution at given times
or locations.

System of equations and material data of Chapter 6

Systems of equations for the F,P formulation

The linear finite element system of Eq. (??) and (??) reads:

Ke
uûe = f eu : Ke

u = µ0

∫
Ωe

BeTBe dΩ Ku =
⋃
E

Ke

f eu = µ0

∫
Ωe

Beε∗ dΩ fu =
⋃
E

f e

Ke
λλ̂e = f eλ : Ke

λ = µ0

∫
Ωe

BeTBe dΩ Kλ =
⋃
E

Ke

f eλ = f e −
∫

Ωe
BeTσ∗ dΩ fλ =

⋃
E

f e

Systems of equations for the C,S formulation

The non-linear finite element system of Eq. (6.20) reads as residual equations

Ru =
∫

Ωe
BeT

(
2µ0FeT

(
FeTFe −C∗

)
−BeT λ̂S∗ − µ0BeT λ̂Beλ̂FeT

)
dΩ = 0

Rλ =
∫

Ωe
µ0BeTFeBeλ̂FeT + BeTFeS∗ dΩ− f ext = 0

A corresponding Newton-Raphson iteration step has the form[
ûj+1

λ̂j+1

]
=
[
ûj
λ̂j

]
+
[
∆û
∆λ̂

]
mit

[
Ru(ûj, λ̂j)
Rλ(ûj, λ̂j)

]
+
[
Kuu Kuλ

Kλu Kλλ

] [
∆û
∆λ̂

]
= 0
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where the K terms abbreviate the current tangent stiffness matrix. Their entries are
calculated as

Kuu = ∂Ru

∂u
=
∫

Ωe
BeT

(
2µ0BeT (FeTFe −C∗)

+ 4µ0FeTBeTFe − µ0BeT λ̂Beλ̂BeT

)
dΩ

Kuλ = ∂Ru

∂λ
=
∫

Ωe
−BeTBeTS∗ −BeTµ0BeTBeλ̂FeT

−BeTµ0BeT λ̂BeFeT dΩ

Kλu = ∂Rλ

∂u
=
∫

Ωe
µ0BeTBeBeλ̂FeT + µ0BeTFeBeλ̂BeT

+ BeTBeTS∗ dΩ

Kλλ = ∂Rλ

∂λ
=
∫

Ωe
µ0BeTFeBeFeT dΩ

In each time or load step and in each data iteration the iterative solution of the system
is necessary.

Data generation of the 3-D example

For the three dimensional example in Section ?? the six deformations of the linear case
C are described by six homogenized strain values. Remind that in the linear regime
C ≈ 2ε + 1 and we can also gain data of other strain and stress equivalents in this
regime. Therefore, we adopt small strain notation which leads to the six strain tensors
in Voigt notation

ε̄(1) =



α
0
0
0
0
0


, ε̄(2) =



0
α
0
0
0
0


, ε̄(3) =



0
0
α
0
0
0


, ε̄(4) =



0
0
0
α
0
0


, ε̄(5) =



0
0
0
0
α
0


, ε̄(6) =



0
0
0
0
0
α


. (A.3)

with an arbitrary deformation defined by α ∈ R. These are applied to the RVE in
individual simulations via the boundary conditions. The six computations with the
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introduced RVE lead with α = 0.02 to the six homogenized stresses σ̄(i), i = 1, . . . , 6:

σ̄(1) =
(
9.13 3.87 3.96 −0.00 0.00 −0.00

)T
· 104 Pa

σ̄(2) =
(
3.87 8.57 3.89 0.00 0.00 −0.00

)T
· 104 Pa

σ̄(3) =
(
3.96 3.89 8.89 −0.00 0.00 −0.00

)T
· 104 Pa

σ̄(4) =
(
−0.00 0.00 0.00 1.94 −0.00 0.00

)T
· 104 Pa

σ̄(5) =
(
0.00 0.00 0.00 0.00 1.96 0.00

)T
· 104 Pa

σ̄(6) =
(
−0.00 −0.00 −0.00 0.00 −0.00 1.99

)T
· 104 Pa
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