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Abstract

The calculation of the branching ratio for the inclusive decay B — X, has been an
active field of research for multiple decades, yielding results that work very well as a
standard candle of the Standard Model of Particle Physics (SM). The large interest
in this observable has already led to an almost complete expression for the next-
to-leading order (NLO) part and a large number of next-to-next-to-leading order
(NNLO) contributions to the theoretical prediction. With results from colliders
becoming ever more precise, the need for higher precision of theoretical predictions
arises.

In this work, we calculate the remaining pieces for the branching ratio of the four-
body decay of a b quark into an s quark, a photon v and two additional quarks ¢g at
NLO in the strong coupling a,. The calculation of this one-loop process b — svqq,
which includes a virtual gluon, has to be supplemented by b — syqqg, since the
loop calculation results in infrared divergences that have to be cancelled by the real-
emission counterparts.

One focus of this thesis is the computation of the occurring four- and five-body
phase space integrals and the calculational techniques that are crucial in obtaining
them. These include the latest iterations of integration-by-parts (IBP) methods that
we used to obtain our sets of master integrals and a description of the differential
equations we used to solve them. We further lay out the different methods we used
to determine the necessary boundary conditions for these, tailored to the different
challenges we encountered.

Furthermore we describe our methods of renormalization and regularization. We
are using dimensional regularization throughout this work and, in this framework,
treating the final state quarks massless leads to residual collinear divergences. For
these remaining divergent expressions, we employ splitting-function regularization
to switch the regularization scheme from dimensional regularization to logarithms of
the quark masses. We also give an overview over the ongoing effort in the calculation
of the last missing piece for the future completion of the perturbative contributions

at O(as) which is tied to the next-to-leading order splitting function.
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Using these techniques, we calculate the analytic results for our correction to the
decay width of B — X,y as one of the missing pieces for the NLO branching
fraction. The expressions are made publicly available online in Mathematica format

for further use. Finally, we discuss future steps for obtaining a numerical result.



Zusammenfassung

Das Verzweigungsverhiltnis des inklusiven Zerfalls B — X,y ist seit mehreren
Jahrzehnten ein sehr aktives Feld der Teilchenphysik und funktioniert durch hohe
theoretische und experimentelle Genauigkeit als eine Standardkerze fiir das Stan-
dardmodell der Teilchenphysik (SM). Durch das hohe Interesse an einer genauen
theoretischen Vorhersage liegen heutzutage eine fast vollstdndige Berechnung auf
néchst-zu-fithrender Ordnung und eine hohe Anzahl an Beitrdgen auf néchst-zu-
néchst-zu-fithrender Ordnung vor. Die stetig steigende Prizision von Messungen an
Beschleunigern ruft auch nach einer steigenden Prézision der theoretischen Vorher-
sagen.

In der vorliegenden Arbeit berechnen wir die verbleibenden Beitrige von Vier-
Korper-Zerfillen eines b-Quark in ein s-Quark, ein Photon v und zwei zusétzliche
Quarks gq zum Verzweigungsverhéltnis in néchst-zu-fithrender Ordnung in der star-
ken Kopplung a;. Dieser Ein-Schleifen-Prozess b — syqg, der ein virtuelles Gluon g
beinhaltet, muss durch den entsprechenden reellen Abstrahlungsprozess b — syqqg
ergénzt werden, um durch das Gluon hervorgerufenene Infrarot-Divergenzen zu eli-
minieren.

Ein Fokus dieser Arbeit liegt auf der Berechnung der auftretenden Vier- und Fiinf-
Teilchen Phasenraum-Integrale und den dafiir benotigten Rechentechniken. Diese
beinhalten aktuelle Methoden der Reduktion durch partielle Integration (IBP) mit
denen wir jeweils unsere Basis an Masterintegralen identifiziert haben. Zudem be-
schreiben wir die Losung dieser Masterintegrale mithilfe von Differentialgleichungen
und die verschiedenen Arten, auf die wir die hierfiir benétigten Randbedingungen
bestimmt haben.

Weiterhin legen wir unsere Methodik fiir Renormierung und Regularisierung dar.
Da wir die Quarks im Endzustand als masselos behandeln, fithrt unsere Nutzung
von dimensionaler Regularisierung zu verbleibenden kollinearen Divergenzen. Fiir
diese verbleibenden, divergenten Ausdriicke wechseln wir das Regularisierungssche-
ma mittels Splitting-Funktionen und tauschen die verbleibenden Pole gegen einen

natiirlicheren Regulator, d.h. Logarithmen der Quark-Massen, ein. Dabei geben wir
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einen Uberblick iiber die momentan noch laufende Berechnung des letzten Teils der
Splitting-Funktion auf néchst-zu-fithrender Ordnung, der fiir eine Vervollstandigung
der perturbativen Beitrige auf O(a;) in Zukunft benotigt wird.

Unter Nutzung dieser Techniken geben wir hier analytische Ergebnisse fiir unse-
ren Beitrag zur Zerfallsbreite von B — X, als einen der letzten fehlenden Teile fiir
einen vollstandiges perturbatives Resultat fiir das NLO Verzweigungsverhéltnis. Un-
sere finalen Ausdriicke werden online im Mathematica-Format 6ffentlich zugénglich
gemacht. Als letztes diskutieren wir noch die néchsten Schritte, die nétig sind um

eine numerische Vorhersage iiber das Verzweigungsverhéltnis machen zu konnen.
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Chapter 1

Introduction

1.1 General Motivation

The Standard Model of Particle Physics (SM) is one of the most successful theories
in science. Since its formulation in the 1970s, it has been thoroughly tested and
provides a very precise description of many phenomena in particle physics [1-3].
One of the most prominent among these is the anomalous magnetic moment of the
electron, where theory and experiment agree up to 13 significant digits. Another
great success of the theory is the proposition of the Higgs particle, which was finally
found in 2012 at the Large Hadron Collider (LHC) [4,5]. This was the last missing
piece of the model, making it self-consistent.

Despite the success of the model, there are quite a few fields where it is not able
to explain the full picture, as we will see in Sect.2.1. This calls for very precise
theoretical predictions complemented by the measuring of their experimental coun-
terparts. Doing this makes it possible to see where exactly the results deviate,
letting us introduce new models or extensions of the Standard Model to explain our

observations.

1.2 Goal of this work

The inclusive radiative decay B — X,y of the B-meson is one of the most precise

tests of the Standard Model (SM) in the quark flavor sector. The dominant partonic
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process b — sv is a flavor changing neutral current (FCNC), which is forbidden at
tree-level in the Standard Model. Because it is loop-induced, it is a rare process and
very sensitive to new physics that modifies the particles running in the loop.
As this process has a very distinct signature, the value for the branching fraction has
been measured very precisely up to now. The current value of the branching ratio
of B — Xy (with E, > 1.6 GeV) is measured with a precision of about 5% [6-9]
and reads:

B&P = (3.324+0.15) - 107, (1.1)

With uncertainties on the experimental side that are this small, the result needs to be
supplemented accordingly by a theoretical value that is determined with comparable
precision. The work on the theoretical prediction for this process has been carried
out for the last twenty-five years [10-38]. This includes corrections up to next-to-
next-to-leading order (NNLO) in the strong coupling «, and the current value is
at [11]:

B = (3.40+0.17)-107*, (1.2)

which is in very good agreement with the experimental one.
With the upcoming run of Belle II [39] and the combination with data from the other
B-factories [40], the uncertainties on the experimental side will decrease further,

calling for even more precise predictions of the theoretical value.

1.3 Structure of this Thesis

In this work, we will focus on the remaining pieces that formally complete the
next-to-leading order (NLO). First, the basic frameworks are discussed, giving an
overview of the theoretical background in chapter 2 and of the computational meth-
ods in chapter 3. After these foundational chapters, the main parts of the calculation
are discussed in chapters 4 and 5, which describe the four- and five-body calculation,
respectively. After this, we discuss the renormalization of our results in chapter 6
and the regularization of remaining collinear expressions in chapter 7. Finally, the

results are given in chapter 8.



Chapter 2
Theoretical Background

The goal of particle physics is to understand the nature of elementary particles and
their interactions with each other. One of the most prominent and successful meth-
ods to probe those interactions is the analysis of collisions at particle colliders. In
these experiments, a beam of accelerated particles (typically electrons, positrons or
(anti-)protons) is either directed into an opposing beam or a fixed target. Detectors
around the point of collision measure quantities of the particles emerging from the
collision, such as energy distribution and charge. With those quantities determined,
participating particles can be identified and scattering events reconstructed. Com-
paring the experimental outcomes with theoretical predictions allows for a check
of the validity of the theoretical models and of the assumptions made about the
interactions.

A prominent class of these observables are the decay widths for specific processes,
which can then be related to the relative amount that the individual processes occur,
resulting in branching fractions. The calculation of contributions to the theoretical
prediction for such a decay width will be the main topic of this thesis.

After giving an introduction to the theoretical framework in the next sections, the

exact quantity we are calculating will be discussed in Sect. 2.3.
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1st gen. 2nd gen. 3rd gen.
up-type quarks | u (2.2 MeV) ¢ (1.3 GeV) t (173.1 GeV)
down-type quarks | d (4.7 MeV) s (93 MeV) b (4.18 GeV)
e (511 keV) p (106 MeV) 7 (1.78 GeV)
leptons
ve (< 1eV) | v, (< 0.17 MeV) | vy (< 18.2 MeV)

Table 2.1: All fermions of the Standard Model and their respective masses. The numbers
above are meant to illustrate the relative size of the values. The determination of the quark
masses are scheme-dependent, which has to be taken into account when comparing results.
For more information on how the above results were gathered, we refer to Ref. [41].

force weak electromagnetic strong
gauge boson | W* (80.39 GeV)
(Mass) Z° (91.19 GeV)

v (0 GeV) g (0 GeV)

Table 2.2: Gauge bosons of the Standard Model with their masses. For the summary of
the latest measurements, we refer to Ref. [41].

2.1 Particles of the Standard Model

In the following, we want to give a brief overview of the Standard Model of Particle
Physics with an emphasis on the parts that are relevant in this work. An in-depth
description of the SM can be found in standard literature, e.g. Refs. [42,43].

All matter that we encounter in everyday life is build from fermions, i.e. elementary
particles with a half-integer spin. Protons and Neutrons, which form the nuclei of
atoms, are formed by quarks, more precisely up quarks (or u quarks for short,
with a charge of 2/3¢) and down quarks (or d quarks for short, with a charge
of —1/3e€). Around the nuclei we find electrons e with a charge of —e. The last
type of elementary particles that we find are the very light electron-neutrinos v,
which have a charge of 0.

For all these particle types, we find two additional copies that only differ by mass.
We call these different copies generations and the different types are often referred to
as flavor. A collection of these can be found in Table 2.1. Note that the definitions

of particle masses differ across the different types of fermions. For the quarks, one
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needs to define a mass scheme, as a single quark does not occur in nature outside
of a bound state. More on these schemes and the current values can be found in
Ref. [41].

For neutrinos, this task is even more difficult. As they only interact weakly, mea-
suring their interactions needs very precise experimental setups. As of now, only
upper limits for the respective masses of the generations can be determined [41].
All of the above mentioned particles have a corresponding anti-particle, that differs
from its counterpart by having the opposing charge and is denoted with a bar over
their symbol, e.g. the anti-up quark @ with a charge of —2/3e.

One further important aspect is the mathematical property of the handedness of
the particles [42]. A particle can be left- or right-handed, an exception for this are

neutrinos, which only observed as left-handed in nature.

The particles we described interact via the four forces: gravity, electromagnetism,
weak force and strong force. The latter three are combined in the Standard Model,
in which the interactions are described by the exchange of spin-1 particles called
gauge bosons. The gauge bosons and their masses can be found in Table2.2. The
strong interaction, which is, for example, responsible for holding together the nuclei
of atoms, is mediated by the massless gluons. Electromagnetism, the force that
is probably best know in everyday life, is mediated by the massless photons. The
last of the three is the weak force. The most prominent observation of this force
can be made when studying the S-decay of neutrons. It is mediated by the charged
W+ and the neutral Z° bosons. One special notion for the weak force is that only
left-handed particles are partaking in the interactions mediated by the W= bosons.
The last missing particle to complete the Standard Model is the Higgs boson
with a mass of 124.97 GeV [4,5]. Through the Higgs mechanism, we are able to
ascribe masses to all particles in a gauge invariant way, especially giving the very
large masses to the W* and Z° bosons. In this mechanism, the Higgs field gains
a non-zero vacuum expectation value, breaking the original electroweak symmetry
of the Standard Model. Spontaneously breaking this symmetry leaves us with two
separate forces, electromagnetism and the weak force, and their respective exchange

particles that we described above.
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2.1.1 Indicators for New Physics

Despite the achievements of the SM, we know that the model does not describe the
full picture. It works very well in many aspects, but there are phenomena that it is
not able to describe sufficiently. In the following, I want to give a list of the most

prominent fields that yield the potential for new physics:

e Dark Matter:
Astrophysical experiments have established that there is a vast discrepancy
between the amount of matter that we can see and the amount of matter that
interacts gravitationally. ‘Seeing’, in this context, means an observation via
strong, weak or electromagnetic interaction with other particles. To account
for this observational gap, dark matter was introduced, but so far no definitive
discovery has been made. This non-observation could, for example, stem from
a very weak coupling between dark matter and SM particles or a new force.
The search for dark matter is a very active field, experimentally as well as
theoretically, and there are a lot of interesting approaches to shed light on

the observations. An extensive collection of these can be found in Ref. [44] or
chapter 27 of Ref. [41].

e Neutrino Masses:

In the Standard Model, neutrinos do not have any mass. One reason for this
is the non-observation of right-handed neutrinos, which would be needed for
a Dirac mass term analogous to that of the other leptons.

This stands in direct contrast to observations from neutrino oscillation exper-
iments. In these, one compares the expected rate of a certain type of neutrino
(electron, muon or tau) from e.g. the sun, a reactor or a particle accelerator
to the one that is actually measured. For all these sources, the theoretically
expected rate is understood very well. Experimental data shows that the rela-
tive content of the three generations fluctuates with distance from the source.
This implies that neutrinos can change flavor and it can be shown that the
fluctuation rate is tied to the mass differences between the generations. For a

mass difference to exist, at least one of the three flavors needs to be massive.
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There have been a number of ideas to implement massive neutrinos consistently
within the Standard Model, e.g. Majorana neutrinos, although none of them
can give a satisfatory explanation as of now. The Particle Data Group provides

a comprehensive write-up, which can be found in chapter 14 of Ref. [45].

CP Asymmetry:

In principle, from the beginning of the universe, there should be the same
amount of matter and anti-matter. This is vastly inconsistent with the obser-
vation that our universe today consists of matter. What this means is that
there has to be a mechanism that creates a difference in the way that matter
and anti-matter interact. The Standard Model technically does allow for such
a mechanism, i.e. an asymmetry between particles and their corresponding
anti-particles, which are related by a flip of their charge and parity, or CP
transformation for short. Unfortunately, the amount of CP asymmetry that
is measured is too low to account for the matter-antimatter-asymmetry that

is observed in nature [41,46].

Theory of all Four Forces:

The Standard Model incorporates a description of three of the four fundamen-
tal forces of nature (strong, weak and electromagnetic force). The fourth one,
gravity, is described in General Relativity (GR). Since the Einstein equations
that govern the behaviour of gravitational fields are non-linear, a quantiza-
tion of gravitation similar to the other forces has not been achieved until now.
The wish for unification of all forces is more of an aesthetical one, as there is
no fundamental reason that all interactions have to be described by a single
theory. Nevertheless, the success of unifying the first three sparked efforts to
find a complete theory of all four forces, which would then (probably) use the
Standard Model as a building block.

Flavor Anomalies:

In the last ten years, experiments have seen deviations from theory predictions
in the flavor sector of the SM. Notable observables here are for example Ry,
which compares the branching ratios of semi-leptonic B-meson decays to a D-

meson that only differ by lepton flavor in the final state, or P5/, which describes
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Figure 2.1: Sample diagram for the decay of a b quark in the Standard Model.

an angular distribution of the B — K*°u*pu~ decay. With the newest set of
measurements, though, we see that the tension in, for example, the observable
Ry vanished [47], whereas, for Rp.), it became smaller but is still deviat-
ing about 30 from theory [48]. Pj is also still in tension with the Standard
Model prediction [49,50]. Future analysis and experimental results are eagerly
awaited to see if the remaining tensions will prevail or newly measured observ-

ables such as BT — KTvp [51] will show interesting deviations.

We see that there is still a number of things we do not completely understand
about nature. To test the validity of existing theories and the plausibility of newly
proposed ones, we need very precise observables. In the next section, we want to

introduce such a class of observables, called inclusive rare B-decays.

2.2 Inclusive Rare B-Decays

Quarks are never found as free particles in nature. The most common bound states
we encounter are either called baryons when three quarks or three anti-quarks are
involved or mesons, which are bound states of a quark and an anti-quark.

With the whole zoo of different quarks, there is a plethora of combinations, making
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it important to define a naming scheme.

Meson states are ordered by their heaviest consituent: If this is an s quark they are
labelled kaons, if it is a ¢ quark they are called D-mesons and if a b quark is involved,
we call them B-mesons. Note that for historical reasons, the B-meson includes a b
quark and vice versa.

As an additional tag, they have their combined charge as a superscript and the other
involved quark as a subscript. If the meson is comprised of a b and an 35, we call
it BS, for example. Examining the available literature, it becomes clear that this is
not always carried out thoroughly. In the following, when we talk about the BS, we
will suppress the charge superscript, just calling it B,.

With the emergence of B-factories (i.e. accelerator experiments operating at the
production threshold of the T(4S), which is an excited state that decays mostly into
two B-mesons), such as BaBar [40], Belle [40] and Belle II [39], and the growing
precision of data, quark flavor physics is growing to be one of the most promising
fields for the detection of new physics. The term flavor physics denotes that we are
concerned with energy scales that are low enough to resolve the differences between
the light quarks, i.e. all five active flavors.

Being sensitive to these differences in the interactions makes it possible to get pre-
cise determinations of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix [52], which governs the strength of the mixing between the generations. Fur-
thermore, analysis of the flavor sector can yield complementary results for the CP
violation in the Standard Model [53].

One of the most suitable subgroups to study flavor physics are the B-meson sys-
tems. Here, we can calculate predictions for our observables in perturbation theory,
because the couplings (i.e. the strong coupling o and the electromagnetic coupling
a.) between the particles are much smaller than unity. This lets us calculate the
result order-by-order in these couplings and gives a good handle on the estimation
of missing higher orders.

In general, we also have to take into account so-called non-perturbative effects,
which originate from the b-quark not being free but part of a meson. These effects
are described, for example, by the modelling of shape functions, and for B — X,y
they have been estimated in Refs. [32,54,55]. What we can see in these works is that

the large mass of the b quark makes it less sensitive to these corrections than e.g.
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D-mesons or kaons (as these corrections are suppressed by the mass of the heavy
quark), leading to a much cleaner theoretical description. For the latter, lighter
mesons, one has to consider the wide field of bound states in their vicinity, which

makes it much more complicated to get precise results.

B-mesons decay to a wide array of different final states. Of particular interest are
the so-called rare decays. These are mediated by flavor changing neutral currents
(FCNC), which (in the Standard Model) are forbidden at tree-level'. This means
that the leading order contributions are already loop-suppressed (being proportional
to the coupling strength . /(47) < 1), making the decay rate comparatively small
and leading to the decays being rare. An example of such a loop-induced decay can
be seen in Fig.2.1.

This suppression by a loop-factor is not the only aspect that makes the decays rare.
When looking at the mediator particles in the Standard model, we see that the weak
force is the only one with gauge bosons that have non-vanishing masses, which are,
additionally, very large compared to fermion masses (one exception being the top
quark). As we will see in Sect. 2.4, each exchange of a gauge boson comes with a
factor (p?> — M?)~!, where p is the momentum and M is the mass of the mediator
particle. At low momentum exchange, this is purely dominated by the large mass,
which suppresses the size of the resulting quantity.

This means that at low energies, the other interactions are much more likely to oc-
cur, as their mediators are massless and do in turn not suffer from this suppression.
For the process B — X,v, two more mechanisms have a relevant impact on the
decay rate. The first is the CKM suppression that stems from the fact that we
describe a process between two different quark generations and the final result will
be proportional to off-diagonal elements of the CKM matrix. We will see later, in
Eq. (2.15), that the products of CKM prefactors in our effective Lagrangian are all
much smaller than unity [41].

The other effect that we have to take into account is the Glashow-Iliopoulos-

Maiani (GIM) mechanism [56]. Fig.2.1 shows that we sum over all the up-type

!The statement that rare decays are only mediated by FCNC is only true when talking about
1 — 2 decays, such as b — sy. As we will see in the next sections, multi-parton decays, such as the
process b — svyuu, for example, get contributions from a direct exchange of a W-boson at tree level
(but are heavily CKM suppressed). These tree-level contributions were calculated in Ref. [10].
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Figure 2.2: Sample diagram for an additional contribution to the process b — sy in an
extension of the Standard Model (here the Minimal Supersymmetric Standard Model [57]).

flavors in the loop. The single contributions of flavor ¢ each come with a factor
J(ma) Vi Vi

. where the function f(m;) denotes the loop functions we encounter. If
the masses were degenerate with m = m, = m. = my, this would lead to a contri-
bution of

f(m) (Vi Vi + Va Vi + Vi Vie) = 0, (2.1)

which vanishes from unitarity considerations. As the mass difference of the b and
t quark is so large, this does not happen for the process at hand. For this reason,
we call B — X,v a radiative decay instead of a rare decay, giving us a semantic

distinction to other FCNC processes, where the GIM cancellation takes effect.

Studying inclusive decays is driven in a large part by the prospect of very high pre-
cision, which makes them very sensitive to new particles beyond the SM. The usual
method of indirect detection is to see new particles by the effect of them virtually
participating via loop-corrections, an example for this is shown in Fig. 2.2. Since, for
the radiative and rare decays, the SM effects are also starting at loop-level, the new
contributions are potentially of the same size as the Standard Model ones, making
the consistency with existing measurements a very important cross-check for newly

proposed models as well as yielding discovery potential.
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2.3 Branching Fractions

One of the most important observables for radiative and rare decays is the branching
fraction B(X — Y). This quantity denotes the probability of the initial state X
decaying into the final state Y.
In this work, the main goal is a more precise theoretical prediction of the value for
B(B — X7) E,>1.6 Gev, Which describes the fraction with which a B meson decays
into a final state with a total strangeness of —1? that contains a photon with an
energy larger than 1.6 GeV. As a formula, we can write it as:

(B — X)) E,>Eo

B(B —> XS’Y)E7>EO = Ft ¢ 1(B) 9 (22)

i.e. the inclusive partonic decay rate of the process normalized to the total decay
rate.

The value that is chosen for the cut Ey in Eq. (2.2) is a consequence of both theoret-
ical and experimental constraints. For the theoretical prediction on the one hand,
the constraints stem from the uncertainties on the shape function of the B-meson,
which describes the non-perturbative processes inside the meson that become more
important the less inclusive the process gets when raising the cut-off. These shape
functions have been studied in Refs. [32,54,55] and, considering the current state
of the art, their uncertainties are irreducible. It has been found that the optimal
value for Fjy for controlling these non-perturbative effects on the theoretical side is
around 1.6 GeV, which leads to an uncertainty of around 5%.

For the experimental results, on the other hand, the cut-off has to be chosen as
high as possible, as the detection of the photon becomes more robust, the higher
the energy cut-off is set. Furthermore, as we exclude charm final states by defi-
nition, the background signals of intermediate decays of ¢ and ¢’ mesons have to
be subtracted (and thus modelled and understood) correctly. Their relative impact
becomes smaller for higher values of the cut-off. For an Fjy of 1.8 GeV, this effect
can be as large as 5%, while it becomes negligible at 2.1 GeV [58].

These constraints are opposing each other diametrically and so for current predic-

tions, the method described in Ref. [58] is used. They propose a lowering of the cut

25 and 5 quarks are assigned a strangeness of —1 and +1, respectively.
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on the experimental side as much as possible below 2.1 GeV and using extrapolation
to the theoretical prediction at 1.6 GeV. The extrapolation that was put forward in
Ref. [58] has a precision of 0.3% up to 2.0 GeV and breaks down above that value.

To link the experimentally measured quantity B(B — X,7) B,>E, to the theoret-

ical prediction, we rewrite it as [58]:

2
6 Qe

T C

VieVip

B(B — X87>E7>EO = B(B — XC€D> Vb

[P(EO)JrN(EO) . (2.3)

normalized with the semileptonic phase space factor

*T(B — X,ep)
(B — X,ev)’

Vub
Ve

C = ‘ (2.4)

where V;; are the entries of the CKM matrix, which governs the strength of mixing
between the quark flavors.
This factor C' can be determined from independent experimental channels by fit-
ting the moments of B — XU spectra. Rewriting it in this way has proven
to reduce higher-order effects and scale dependence [58]. Furthermore, relating
B(B = Xyv)g,>r, to the semileptonic process B(B — X.ev) in Eq. (2.3) gets rid of
the strong dependence on the mass of the b-quark to the fifth power.
The two terms P(Ep) and N(Ep) in Eq.(2.3) denote the perturbative and non-
perturbative contributions to the branching ratio, respectively. One advantage of
inclusive decays is that, with a low enough cut on the photon energy, the size of
non-perturbative effects is minimized. For the rate we want to calculate, we can
write

(B = XV)e,>5, = (b= X)) g o5, + O(1/my), (2.5)

which indicates that the contributions from non-perturbative effects are suppressed
by my, i.e. the mass of the b quark. This is one of the reasons that makes this
process a standard candle, since this suppression gives a very good handle on the
estimation of these corrections. As stated above, for a cut on the photon energy

of £y = 1.6 GeV, the size of the non-perturbative effects is estimated to be around
5% [32].
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In this thesis we will be concerned with corrections to the perturbative quantity
P(Ey), more precisely the decay width I'(B — XPartenicy)  These two are related
by:

2
6 Qepn

F b N Xparton V*V
( Sy b :‘ ts 00 P(Ey). (2.6)

H/Cb/vub‘2 F(b — Xgartoneﬂ) ‘/Cb

™

In Eq.(2.5), the b — XParohy denotes a b quark decaying into a hard photon
(with an energy above Fj) and any number of additional particles with a com-
bined strangeness of S = —1 (i.e. the sum of strange quarks has to be bigger by 1
than the sum of anti-strange quarks). The only additional constraint is that every
final state involving charm quarks is excluded from the definition. This keeps
the observable clean, as we avoid problems with the landscape of resonances around
the D-mesons.

Using this, the rate can be written as:

(b — XPa) =T(b — s7) + T'(b — sgy) + ['(b — sqqy) + L'(b — sqqgy) + ...,
(2.7)

where g = u, d, s (since ¢ is excluded by definition and b as well as t are excluded by

kinematics). This series can be written diagrammatically as

(2.8)

T(b— XP"y) oc Y / SICHTEN

Diagrams

p1

Pn

The contributions we are calculating in this work are the cases for p; = ¢,p; = ¢ at
NLO in a4 and p; = ¢, p2 = q,p3 = g at tree-level.

We can see from Eq. (2.8) that, in the end, we need to solve integrals over the four-
and five-body phase space, respectively.

In the next section, we go over the framework we are using to calculate these contri-
butions, making clear what the grey blob in Eq. (2.8) represents. For this, a general
introduction into the effective weak theory is given, which is then specialized to our

case.
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u S

Figure 2.3: Example diagram for 4-fermion process mediated by the W boson.

2.4 The Effective Weak Theory

Calculating the rates of inclusive B decay modes in the Standard Model leads to
conceptual problems at higher order. Short distance QCD effects yield large log-
arithms of the form o (m;)log™(m,/M), with M being either m; or my,. These
logarithms lead to huge rate enhancements, making it difficult to get meaningful
results.

Fortunately, there is a solution to this problem. The logarithmically enhanced terms
can be resummed with renormalization group techniques [59]. The most suitable
framework is the one of the so-called effective field theories. In the following
section, we give a brief overview of the concept, introducing the core ideas and tools
of the method.

2.4.1 Concept of Effective Theories

The primary goal of an effective theory is the separation of short- and long-distance
contributions to physical processes. This is achieved by integrating out all high-
energy degrees of freedom, which in the effective weak theory means all particles
with a mass above a certain energy.

We want to illustrate this method, called operator product expansion, with one

of the contributions that is important for our calculation, shown in Fig.2.3: the
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u S u S u S

(a) (b) (c)

Figure 2.4: One-Loop QCD corrections to the current-current exchange in the Standard
Model.

decay b — suu.
In the Standard Model, using Feynman rules, the amplitude for the tree-level W-
exchange is:

Gr M?2
V2 PP — M,

where G is the Fermi constant, which includes the weak coupling gs as well as the

mass of the W-boson My and is defined as

A= (57*(1 = 75)u) , (2.9)

V2 8My,

For weak meson decays, the momentum transfer p of the W propagator satisfies

(2.10)

the relation p* < MZ,. This allows us to expand in the ratio p?/M3,, leading to the

amplitude
Gr * avH <M 2 2

What we did here is expressing the amplitude in terms of effective operators,
where the first term is an operator of mass dimension six and the neglected terms
of higher orders in the expansion correspond to higher dimensional ones.

We see that the result of (2.11) can also be obtained from an effective Hamiltonian
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Figure 2.5: One-Loop QCD corrections to the current-current exchange in the Effective
Theory.

of the form

Gr. .
\/ﬁub

where we introduce the notation

Hepr = V.,s CoP, + higher dimensional operators, (2.12)

Py = (uy"(1 = 5)b) (57"(1 = ¥5)u) (2.13)

for our effective operator and Cy as its corresponding effective coupling, called
Wilson coefficient. At tree-level, the Wilson coefficient is just 1, this can be
read off when comparing the full amplitude to the one calculated via the effective
Hamiltonian. This process is called matching.

The matching, although trivial at tree-level, gets more involved as QCD corrections
are taken into account. Some of the one-loop corrections to the process above can
be seen in Fig.2.4 for the Standard Model and in Fig. 2.5 for the effective theory.
Calculating all contributions in both theories and requiring them to be equal then
allows for a determination of the Wilson coefficient order by order in a.

We encounter two additional subtleties in the calculation: First, one can see in
Figs. 2.4 and 2.5 a) and b) that both models do not change the color of the respective
currents (since the W does not carry color charge). But when calculating diagram
¢), the gluon connects the currents, allowing for color exchange. As our operator

P, (called the color-singlet operator) does not allow for this, we need to introduce a
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second one (called the color-exchange operator), defined as
Py = (@y"(1 = 7)) (571 — 75)T") . (2.14)

The process at hand, i.e. the decay of a B-meson, does not only get contributions
from these so-called current-current diagrams. As we have already seen in Fig. 2.1,
there are more possible interactions that lead to the same final states. They are also
incorporated and lead to four more effective operators that we need to consider, the
so-called penguin-operators.

The second of the aforementioned subtleties is that we do not only encounter these
so-called physical operators in our calculation. As the physical operators only span
a complete basis in four dimensions, we also have to incorporate a set of evanescent
operators that give finite contributions when shifting away from four dimensions in
dimensional regularization. In the effective weak theory, they are constructed in
such a way that we can disregard them for the calculation of bare amplitudes as
long as we compensate their effect during the calculation of counterterms in the
renormalization process.

In principle, this framework, called the effective weak theory [60,61], contains
more operators, e.g. including semi-leptonic, electro- and chromo-magnetic contri-
butions. At next-to-leading order in «y, considering the four- and five-body contri-
butions, however, they are either not contributing to the process or their insertions

have already been calculated in Ref. [62].

2.4.2 Operator Basis

As stated before, we want to determine additional contributions to the perturbative
part of B(B — XY E,>Eo-

The relevant four-body (five-body) process b — sgqy(g) we are calculating are (up
to O(ay)) described by the following Lagrangian:

4G 2 6
Lorr = Loppiocn + T;W;%[ZC;‘P;L +S¢rp ] +he., (2.15)
=1 =3
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where Lorpigep is the QCD and QED part of the Standard Model Lagrangian.

This part is then complemented by six additional effective operators of dimension

six:
Pyt = (Spyu T ur)(upy*Tby) Py = (5pyuu)(ury"br),
Py = (s17,b0) Y _(@7"q) Py = (5.7,T%1) Y (@y"T q), (2.16)
q q
Ps = (Syum7pbe) 2(517“7”7’)(1)7 Ps = (St 0, T%bz) Z@V“VWPTGC]) :
q q

Note that in this definition of the Lagrangian, C{', contain CKM phases, i.e. C{'y =
VIV, ViV, Cia, where C o are the coefficients as defined in Ref. [61]. For the
other coefficients, the relation C3 ¢ = (3, ¢ applies, where C3 g are also defined as
in Ref. [61].

The first two operators, P* and Py, are called current-current operators. They
arise from diagrams similar to those in Fig.2.5. Both external currents couple to
the W-boson, leading to them both being left-handed.

The other four operators, P; to Py, are penguin operators. As their name suggests,
they originate from penguin diagrams, such as the one in Fig. 2.1. Here, only one of
the currents is exclusively left-handed, while the gg-part of the operator (the lower
current in Fig. 2.1) is a vector current.

This will play an important role in the discussion of our calculational framework

1=
2

calculation, leading to some subtleties that need to be addressed.

later, as the left-handed projector is defined as P, = , introducing 5 into the

As stated in the last section, we also need evanescent operators. The ones that are

relevant for our calculation are [17]:

Er = (507 Yo Vs T ) (U v y*24#4 T ) — 16 Py
By = (S1%m Vs Vs tr) (Wry" ™ 9"24#3b) — 16 Py

Es = (820 Youo Vs Vs YusbL) D (@7 72927144 q) + 64P5 — 205 ,
q
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By = (51 Voo Vs s Vs T0L) D (@712 4139"19#5T %) + 64Py — 20P5. (2.17)
q

A more detailed discussion of their properties and the calculation of their contribu-

tions can be found in Sect. 6.2.

With this base of operators, following the notation of Ref. [62], we can write the

perturbative contribution to the rate as:
Db — X2 ") g o, =To »_ Cr (1) Ci(p) G, 6) (2.18)

with a normalization factor

2.5 2
Grmyae | V{;V;b|
3274

T = (2.19)

The entries of the matrix éij(,u, 9) are the interference terms of the operators P; and
P.

J

denoted by 6 =1 — 2Ey/my.

, integrated over the phase space. Their dependence on the photon energy cut is

In this work, we focus on the next-to-leading order part of the four-body con-
tributions, which have to be supplemented by five-body contributions to render the
expression free of infrared divergences. For an in-depth discussion of the latter, we
refer to Sect. 5.

The four- and five-body contributions to CNJU(,u, 8), are defined by Gy;(u,d):

I'(b— 5q37)e,>E, + I'(b = 54397)E,>5, = Lo ZC* w) G i, 0) . (2.20)

Furthermore, the G;; can be written as an expansion in a:

Ci(,8) = GO 0) + s (1) G (1, 6) + O(a?). (2.21)

v

Fig.2.6 shows the different contributions: Panel (a) shows the tree-level contribu-
tions, @5?)(6), calculated in Ref. [10] and panel (b) shows the NLO contributions
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(c)

Figure 2.6: Sample four-body cut-diagrams contributing to the branching ratio. The
ones from (c) were not calculated up until now and are subject of this work.

that were calculated in Ref. [62]. The last panel, (c), shows the up to now uncalcu-
lated contributions. The latter not only involve four-particle cuts, but to cancel all
infrared divergences, the corresponding five-particle cuts also have to be considered.
Calculating multi-parton contributions to the matrix éij (i, 9) of Eq. (2.18) is a goal
of this work. Our resulting matrix, which, together with the result from Ref. [62]
constitutes the matrix GS)(M, 9), will be called G;;(u, 6).

Before we come to the actual calculation of the decay width, the next chapter will

first introduce methods, tools and notation that will be helpful in later chapters.



22

Chapter 2. Theoretical Background




Chapter 3

Methods for Computing Integrals
in Quantum Field Theory

In this work, we are interested in calculating branching fractions, i.e. the probability
of finding a certain final state normalized to all possible final states. The size of
such a branching fraction depends, at first order, on the strength of the involved
couplings.

Another important factor are the possible momentum configurations of the involved
particles. To get a result including all configurations, one integrates over the n-
particle phase space PS,,, where n is the number of particles in the final state.
Beyond tree-level, when calculating higher-order corrections, the quantities start to
also depend on the intermediate (virtual) states that occur at loop-level.

To include all possible momentum configurations of those virtual particles, their
corresponding propagator factors are integrated with respect to the so-called loop
momenta.

In the following, we want to introduce the basic concepts of the methods we used and
the standard nomenclature, including Feynman integrals, phase space integration,

integration-by-parts relations, integral families and differential equations.
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3.1 Feynman Integrals

In this section we will discuss Feynman integrals and introduce basic notation. When
calculating loop integrals, we integrate propagator factors, such as [(p — k)* —m? +
i0]~! over the D-dimensional momentum space measure d”k. Here, D = 4 — 2¢, i.e.
we shift away from the four-dimensional space-time by 2e. This is done since, in
four dimensions, the integrals are often divergent. By shifting the dimension away
from four, one can regulate these divergences, leading to the result being a Laurent
series in €. With the method of renormalization, we can then cancel the factors of
€™, set € to zero and obtain a finite result!.

The 0 in the propagator is called the Feynman prescription and is needed to deter-
mine the sign when doing a Wick rotation from Minkowski to Euclidean space. It

is usually dropped for readability.

A very simple example of a Feynman integral is the one-loop semi-massive bub-

ble:

where the notation m;, a; on a line denotes a propagator raised to the power a; with
a mass m; and the incoming momentum is p.

We can write I[ay, as;m, 0; p] as an integral over the loop momentum k, yielding

dPk 1
(@) [ —m? + 0 [(k = p)° + 0"

I[ay, az;m, 0;p] = / (3.2)

For a; = a, = 1, this integral is divergent in four dimensions. As stated above, this

is avoided by a shift of the dimension, which makes the divergence explicit as a pole

!This power of the pole is not directly related to the number of particles in the phase space,
although both are denoted by n here.
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in e. This method, called dimensional regularization, will be discussed briefly in

the next section.

3.1.1 Dimensional Regularization

When calculating Feynman integrals in four dimensions, we encounter two types of
divergences. The first ones are ultraviolet (UV) divergences, connected to the
loop momentum k£ tending to infinity.

In Eq. (3.2) (from here on omitting the dependence on m; and p), we observe this

behaviour for a; = ay = 1 and very large k:

1[1,1]~/<;lﬂ";4 [kiP ~ 0. (3.3)

The second type of singularity that we encounter is rooted in the denominators
approaching zero. These infrared (IR) divergences are subdivided into soft and
collinear divergences. Taking the propagator of a massive particle with four-

momentum p; and a massless particle with four-momentum p,, we can derive:

1 1 1 1

(D1 tp?—mi 2pipe EiBa =912 pop (1 i Z_ECOS(QIQD ’
(3.4)

where F; and p; denote energy and three-momentum of the corresponding particle.

We can distinguish two limits for the denominator in Eq. (3.4). The first is Ey — 0,
the energy of the massless particle going to zero, which corresponds to a soft diver-
gence (even though the emitting particle is massive). The second type of divergence
only occurs if both particles are massless, i.e. m; = 0. In this limit, the denominator
vanishes for 15 — 0, the angle between the two particles going to zero, which is
called a collinear divergence.

When calculating Feynman integrals, these divergences are a problem, since we know
that, as real-world observations, our results, e.g. branching ratios or cross-sections,
can not be infinite.

The problem is solved by shifting the dimension away from four using D = 4 — 2¢
instead. This allows us to make the divergences explicit as poles in €. In the end of

the calculation, when the UV poles are renormalized and the IR poles cancel or are
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n

regularized in a different scheme, terms proportional to €e™" vanish and we can go

back to four dimensions by taking the limit ¢ — 0.

3.1.2 Feynman Parametrization

After introducing the dimensional regulator, we can start solving the integral with-
out encountering (explicitly) infinite results. One of the most fundamental methods
for this is the use of Feynman parameters. The general formula for two denomi-

nators reads:
(3.5)

1 T(m+n) /1 I g lgnt
AmBr  T(m)[(n) [Ax + Bx]mtn’

where the standard notation z = 1 — z is used.

This method essentially trades the introduction of an additional integral for the

benefit of changing a product of two denominators into a sum, which often simplifies

computation significantly.

Applying this to our example yields:

D a1—1za2—1
I[ay, as) / das/ d k R — : (3.6)

— ) + (k= p)aj e

For simplicity, we now take a; = as = 1 and again, impose the condition p? = m?:

10, 1] /dx/ 7k —m2)w:—(k‘—p)2:v]2’ (3.7)

and, after completing the square and shifting k, we arrive at:

11, 1) / dz / 7k _i2m2>]2. (3.8)

For one-loop integrals in this form, we know the general solution for performing the

loop momentum integration. The formula can e.g. be found in Ref. [42] or Ref. [43].
It reads:

/ dPk ke i1y 1 1 T(a+ D/2)T[(b—a— D/2)
(2m)P (k2 = A) (4m)P/2 Abme=D/2 I(b)r(D/2) 39
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Using Eq. (3.9) then leads to:

I1,1] = /0 dz (iSr)(=1)I(1 — )T(e)(z*m?) ™
(—1)T(1 — e)T'(e)T'(1 — 2e)

. 2\ —€
= (#5) T(2 - 2¢) (")
|1
= —(iSr) (m?) {E + 2} + O(e) . (3.10)
Here, we introduce the notation
1

Sp =

(1 —e)(4m)2—c’

collecting the factors that regularly occur in Feynman and phase space integrals.
As we can see, the integral is divergent in four dimensions, i.e. it has a pole in e.
In the end, these poles have to cancel to allow the limit ¢ — 0. The method by

which this is achieved, called renormalization, will be discussed in a later chapter.

3.2 Integral Families

In the last section we explicitly calculated a diagram for linear propagator powers.
In general, this does not have to be the case, propagators can occur for any integer
power, even negative ones.

If integrals only differ by the power of their denominators, they can be assigned to
a so-called family of integrals.

Additionally to the denominator powers being different, the integrals occurring in
calculations often have numerators that contain products of all the occurring mo-
menta. At next-to-leading order, this can already lead to thousands of integrals that
need to be computed, which gets impractical, if not impossible, very quickly.

For this reason, several methods of simplifying the integrals and reducing their num-
ber have been found. In this section, we want to briefly introduce the concept of two

of them, namely Passarino-Veltman reduction and integration-by-parts relations.
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3.2.1 Passarino-Veltman Reduction

The integrals discussed up to this point have been scalar ones, meaning they did
not have open Lorentz indices. This is only the simplest case, as we see that in real
calculations we encounter vector (one open index) or even tensor (more than one

open index) integrals. A vector integral, for example, can look as follows:

w dPk 2
v~ | G T (311)

We now use the knowledge that this integral only depends on one external momen-
tum, i.e. p*. This means that after the loop integration is done, this can be the only

object with an open index, leading to the ansatz:
" =prA. (3.12)

With this ansatz, we can contract both sides with 2p, (again, we work in the case

p? = m? for simplicity):
D H
2p, 1" = / ‘ kD 2 2]2)“]{ 2
@m)P (k2 —m2)][(k - p)?]

:/ d’k  (k—p)? — k> —p?
2m)P [(k* —m?)][(k — p)?]

dPk 1 1 o2
= / (27T)D (k»? — m?2 + (k’ _p)Q - [(/{52 — mz)][(k _p)2]> (3.13)
=1[1,0] — 2m*I[1, 1]
=2p,pl'A= 2m2A. (3.14)

In Eq. (3.13) we have used that scaleless integrals are set to zero when using
dimensional regularization. After the shift & — k' 4+ p in the second term, there is
no external scale present anymore and the contribution vanishes.

From Egs. (3.14) we can now deduce that:

" = pt (1[1’0] —1[1, 1]) , (3.15)

2m?2
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and we have reduced the calculation of the vector integral to the computation of

scalar integrals.

This method can be extended to multiple external vectors as well as more than
one open Lorentz index. In general, the ansatz has to include all possible Lorentz
structures that can occur in the result. These then have to be contracted with the
different momenta and metric tensors. Doing these contractions leads to a matrix
A, ; (instead of just A in the example above), that is then inverted, yielding the

result in terms of scalar integrals [63].

3.2.2 Integration-by-Parts Reduction

In this section we will discuss a method that is even more powerful when it comes
to reducing integrals. This method, called Integration-by-parts (IBP) [64], inter-
connects integrals of a family, e.g. integrals with high denominator and numerator
powers to ones with lower powers.

This means that we can effectively narrow down the problem of calculating a large
number of integrals to the problem of reducing them to a subset that is significantly
smaller. The IBP reduction expresses the original integrals as a linear combination
of this small subset, the so-called master integrals, which are then left to be com-
puted.

Here, we want to introduce the concept and notation of this method, which is ex-

tensively used in this work.

We first consider a general family F), of multi-loop integrals (the index m will
later run from one to the maximum number of families to label them, for now it is

kept general):

dPk, dPky, 1
F, = .. . 1
m[a'h 7a7’b] / (27T)D / (27T)D D" Dy® ... D, (3 6)

The family F;, is defined by the set of denominators D;, which are Feynman prop-

agators, e.g. D; = [(k; + p2)? — m2]. The a; denote the power of the propagators,

which can take any integer value.
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With this definition, we can now consider carrying out integration-by-parts on the

integrals. The general form of such a relation can be written as

/ dPk, / dPk; 0 e » .
(27T)D (27T)D 6]{? D1a1D2a2 . Dna" =U. .

The derivatives are taken with respect to any of the loop-momenta and the numer-

ator v* stands for any of the loop- or external momenta. With L the number of
loops and E the number of independent external momenta, this means that for any

given set of values for the a; we can get L(L + F) relations.

To illustrate the procedure of an IBP reduction, we can look at our example di-

agram from Eq. (3.1) again, leading to the general relations:

dPk 0 oM
/ (2m)P Ok" [(k2 — m2)]' [(k — p)2]* 0, v="Fp. (3.18)

Explicitly calculating both equations then yields (v = k*):

(D — 2@1 — ag)I[al, (12] — &21[&1 — 1, as + 1]— (319)
m2a11[a1 +1,as] — ag(m2 - pz)I[al, as+1] =0,

Ho_

and (v = p"):

(—CLI —+ a2>I[CL1, 0/2] + alI[al —+ 1, Ao — 1] — CLQI[CLl — 1, as + 1]— (320)
(m? + pH)aI[a; + 1, ag] — az(m? — p*)I[ar,a; +1] = 0.

We can now see explicitly how the integrals with different values for a; and ay are
related.

We now start at low a; and increase them, the results can then be solved for:

(—D “+ a + 2@2) I[al, GQ} + I[Cll + 1, a9 — 1]
al (p* —m?) p*—m?

I[(ll + ]_, CLQ] = > (321)
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and

D(m? +p?) —3aam? — (2a; + az)p* T[ay, as]
as (p? —m2)
Ila; — 1,as + 1] 2am?Ta; +1,ay — 1]

I[al, as + 1] =

(3.22)

p2 —m2 as <p2 _ m2)

Both of these equations now lower A = a; + as and by repeatedly applying them we
can reduce all occurring integrals to master integrals. For this problem, these are
I[1,1] and I[1,0]. In principle, I[0, 1] does also occur, but it is a scaleless integral
and thus set to zero.

This process becomes quite cumbersome very quickly when dealing with a large
number of integrals and/or denominators. To automate the procedure of IBP re-
ductions, the Laporta algorithm was introduced [65]. To illustrate the basics of
the algorithm, we need to define two quantities: The first one is @), which, for a
given integral, denotes the number of lines of a respective integral, i.e. the number
of positive a;. The second one is A which is defined as A = ZZ]\LI |a;|.

The Laporta algorithm starts at the highest appearing values of @), using Gaussian
elimination to express the relations in terms of a subset of the occurring integrals, the
so-called master integrals. It then decreases () stepwise to include lower sectors,
i.e. integrals with fewer distinct denominators. In each of the respective sectors, A
is then increased stepwise also. This leads to a number of master integrals for each
sector, relating integrals with high A to integrals with lower A from the same sector
and to integrals from lower sectors.

It has been shown that with growing () and A, the number of equations grows faster
than the number of unknowns, and with that the ensuing reduction always leads to

a finite number of master integrals [66].

The method of IBP reductions is very powerful and opened up the field for cal-
culations at four and even five loops and beyond, applications at this level can be
found, for example, in Refs. [67-70].

Increasing the number of loops and particles in the final state increases the possible
combinations of momenta. As the denominators in the family have to form a linearly

independent basis to make it possible to express every occurring scalar product as
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a combination of them, the choice of these bases can have a significant impact on
the reduction process.

For example, if we need more than one family, there can be multiple choices in how
to group the original set of integrals, which can in turn result in a different number
of master integrals. As the minimal number of master integrals cannot depend on
the external choices, we know that in such a case, some of the master integrals have
to be expressible as a linear combination of the others.

If the supplemented integrals have too low values of () and A and it is implemented
in a way that only goes over the minimally needed values, the Laporta algorithm
can miss some relations. To circumvent this, one can on the one hand cross-check
the results with a different set of families or on the other hand give the reduction

extra integrals with higher powers of numerators and denominators.

3.3 Phase Space Integration

When calculating processes with more than one particle in the initial and final state,
one has to take all their possible momentum configurations into account. This is
taken care of by integrating over the whole phase space that the particles can
occupy.

In this work we are concerned with the decay of a b quark, the corresponding struc-
ture being 1 — n with n massless particles in the final state.

The phase space integral for such a decay process is defined as:

[arsi=(T1] Gtpags) oot =So0. 039

where pj, is the momentum of the incoming b quark and the py (Ey) are the momenta
(energies) of the particles in the final state. To make the above formula applicable in
a real calculation, it is often rewritten in terms of the (dimensionless) momentum
invariants, defined as s;; = 2p; - p;/M? (in our case M? = m3).

Doing this eliminates trivial dependences on the angular configurations of the par-
ticles. This essentially means that the momentum integrations (over s;;) are dis-

entangled from the integrations over the angular volumes (d2p). The latter then
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simply result in: D)
2m
L3

2

V(D) = / dQp = (3.24)

After doing this change of variables, one arrives at the following expressions for the
different number of particles (for the derivation of the two-, three- and four-particle
expressions, we refer to Ref. [71]):

D—4 p-adQp_1

dPSy = (2m)2 P(m?) "7 (s12) 2 dsyy 6(1 — s19), (3.25)

for the two-particle case and

D—4

dPS; =(2m)* P27 P (m)P 2 (s12513823) 7 0(1 — $12 — S13 — S23) (3.26)
dQp_1 dQp_o dsia dsi3 dsag,

for the three-particle case.

Most integrations in this work are done for four and five particles in the final state,
requiring the expressions for dP.S; and dPSs5. Since they become rather lengthy, only
dPS, is shown here, whereas dPS; (which was originally calculated in Ref. [72]) can
be found in Appendix H:

3D—8
2 5(1 — 812 — S13 — S93 — S14 — S94 — 834) (327)

dPS, =(2m)*7?P27172P (m})
D-5

(—Ay) 2 O(=Ay) dQp_1 dQp_o dQp_3 ds12 ds13 dses dsiy dsay dssy .
A, is the Gram determinant, for n = 4 it is:
Ay = A(S12534, S13524, S14593 ), (3.28)
with

Mx,y,2) = 22 +y* + 22 = 2(ay + 72 + y2). (3.29)

In this section we only considered integrations over the full phase space to explain
the concept and notation. In our calculation the phase space is restricted, with a

lower cut on the energy of the photon. There are several subtleties tied to this,



34 Chapter 3. Methods for Computing Integrals in Quantum Field Theory

which will be explained when doing the actual computations in Sect. 4.3.

3.4 Mellin-Barnes Representation

With the tools introduced up to this point, we are able to generate integral expres-
sions from Feynman diagrams and further reduce these expressions to arrive at a
set of master integrals. These master integrals then need to be computed to yield
analytical results. We have already introduced the method of Feynman parameters,
which is very useful. When handling integrals that contain more loops and a higher
number of lines (i.e. propagators with positive power), this method alone becomes
inefficient (if not impossible) to use very quickly though, as a lot of parameters have
to be introduced. This makes the resulting integrals much more complicated than
in our example, calling for additional methods of computation.

One of these methods is the so-called Mellin-Barnes representation, which fac-

torizes sums in a denominator at the cost of an additional integration:

b /%md—“ D(—0)T(c+ o) AT A;¢° (3.30)
(AL + Ag)e  T(0) Sy 2~ )T '

—100

The contour of the integrations is chosen in such a way as to separate the poles in
the I'(—o) and I'(c + o). What this essentially means is that our choice makes the
real part of all the arguments in the I' functions positive.

By applying the formula multiple times, it can be generalized to more than two

terms in the sum:

1 1 1 ~Y1+ico n+i00
= doy -+ doy, 3.31
(A1 + As+ ...+ Ay)e Te) (2mi)nt /W o L 7 (3:51)

1—100 ' —100

[(—01) - D(—=0p_1)D(cH+ o1+ 4 0p1) AT AT ATt

Here we must again chose the contours to separate the poles, which becomes a
tedious effort for larger n and a growing number of I'-functions. There are algorithms
to find appropriate values for the 7;, e.g. implemented in Refs. [73] and [74].

The above procedure may sound counterintuitive at first, since the first step in
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most of the calculations is often the introduction of Feynman parameters, changing
products into sums, whereas this method works in the opposite direction. But, using
both methods in succession can make it possible to carry out Feynman integrations
analytically that were not doable before.
For example, factorizing an expression can reduce the dependence of variables to
very basic structures that can be resolved via the help of e.g. the Beta-function B:
1
B(z,y) :/ dt t*7t vt = L0 (3.32)
0 (

where we defined ¢ = 1 — t. Carrying out the Feynman parameter integrations of-
ten introduces additional I'-functions that depend on the Mellin-Barnes variables.
Low-dimensional representations can be solved by summing their residues on either
side of the contour, after using analytic continuation to e — 0 (The regularization
of the integrals used in Ref. [73] also uses € # 0 to define the contour, which then
has to be continued to zero).
For higher-dimensional representations, this is often not possible. For these, we rely
on the help of additional auxiliary functions to simplify the expressions and lower
the dimension of the representation. The functions and relations that were most

helpful for this work are collected and discussed in Sect. 3.6.

There are two lemmata connected to the Mellin-Barnes representation [75]. These
prove to be very powerful, as we often encounter expressions that are of the struc-
ture we see on the left sides of Egs. (3.33) and (3.34).

The first lemma reads:

c+ioo d
/ ST+ 0)T O+ )T (s — )T (s — ) = (3.33)

LA 4+ A3)T (A1 + A)T (A + A3)T (g + A\y)
LA+ A2 + A3+ \g) ’
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and the second one is:

(3.34)

T do (M + o) LA+ o)L (A3 + )T (A — o) (N5 —0)

/H.oo 2mi TA + A+ A3+ M+ X5+ 0) -
DAL 4+ AT (o + X5) T 4 AT (A3 + Ag) T( Mg + M)T(As + Xs)
P 4+ X+ M+A) T+ 23+ X+ X5) Ta+ A3+ A+ X5)

When encountering not only I'-functions but also their derivatives (such as Polygamma-
functions W), additional functional relations can be obtained from the above for-
mulas by taking derivatives with respect to the arguments \; on both sides. An auto-
matic application of these lemmata is implemented in the package barnesroutines.m
[76].

3.5 Differential Equations

3.5.1 The Principal Method

In this section we introduce the method of differential equations [77-79]. It has
become one of the most important methods to compute master integrals and huge
efforts are channeled into the research of this field. The main appeal of the methodol-
ogy is the fact that the solution of the integrals is achieved without direct evaluations
of the integrands (in the following, these are often called the ‘integration kernels’).
This is achieved with the following steps: We start with a set of master integrals
that the integration-by-parts reduction yields. We can then utilize their functional
dependence on kinematical invariants to build a system of differential equations for
this basis of master integrals. After applying derivatives with respect to the kine-
matical quantities, we can reexpress them in terms of the propagators of the basis,
the powers of which have changed compared to the original set of masters. These
results can then be IBP reduced again to get back to our original basis, leaving us
with a system of first order differential equations.

To solve this system, one boundary condition for each master integral is required,
which can be calculated at a fixed point. Usually at one of the invariants being zero

or one, or from the asymptotic behaviour in a certain region (we will see later that
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the choice of this point can not be completely arbitrary, because this swaps two
infinitesimal operations and we have to preserve the analytical behaviour of these
limits after swapping). Eliminating the dependence on one variable (and choosing
the point properly) makes the explicit calculation of the remaining function much

easier, reducing the complexity of the original problem significantly.

To illustrate the method, let us come back to the family of integrals we have al-

ready analyzed in the sections before:

dPk 1
towoe) = | 035 P = 339

In the section about integration-by-parts relations we have seen that our base con-

sists of two integrals and we can write down the basis vector

2 (101,0]
F= <I[1,1]> . (3.36)

For the next step we want to find a dimensionless quantity that our base depends
on and we choose x = p?/m?, which reduces the dimensionality of the problem from
two to one. In the process of the variable transformation we need to translate the
derivative with respect to x into a derivative with respect to the quantities of the
kernel, which in our case is p*. Using the chain rule and multiplying by p#, we arrive

at . 5
of _p" of
- = 3.37
or  2x Op* ( )

This can now be used in Eq. (3.35), where, after rewriting the result in terms of our

basis, it yields

of o (11,0 1 0
Oox  Or <1[1, 1]) 2 ((m2 — pMI[1,2] +1]0,2] —I[1, 1]) ' (3.38)

This system is not yet in its desired form, as we want to have a closed system of

equations, making it necessary to use the integration-by-parts relations we derived
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earlier. This brings it into the form
of _ 0 (T1,00\ _ 0 ) (3.39)
Oz Oz \I[1,1] St (7 + I 0] = (57 + 521, 1

B 0 0 I[1,0
sty (R 11,1

Eq. (3.39) now defines the matrix A(z,¢) that connects our basis vector f to its

derivative.

A few observations on this can be made: First, the equation for I[1,0] is trivial,
since it does not depend on p* and therefore the system does not produce additional
information about it.

Secondly, the dependence on x of the matrix follows a clear pattern, and we can

further decompose the matrix into

xr —

Alw,e) =) &k(ik, (3.40)

where the singularity structure of the equation is manifest through the given singu-
lar points z,. This is called the Fuchsian form, where the a, are matrices that
contain functions of e [80].

In general, the matrix does not have to take this simple form directly: It can have

an additional term for a (spurious) singularity at infinity

Az, e) = Z n(e) +p(z,€) . (3.41)

r—X
k k

It has been shown by Ref. [81] that one can algorithmically introduce transforma-

tions on the system to eliminate these spurious poles.

In our case, only x; = {0,1} appear and we can make an ansatz for I[1,1] as a
Laurent series in . When using our knowledge of I[1,0] and calculating I[1, 1] for
x = 1 as boundary conditions, we can solve the equation order by order in € using

standard methods for the solution of linear differential equations of first order.
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The boundary conditions up to O(e) read

anz(wﬂ@ﬁﬂ*(%+1+eOﬁf§>+O@%) (3.42)
" I[1,1] .= (45r)(m?) ¢ (% +2+ (4 + %2) €+ 0(62)> , (3.43)

leading to the solution for I[1,1]:

€ T

Iﬂ@}:@%ﬂm%6<1+<2+1_xbg1—@> (3.44)

r—1

+e <4 + s +— (Liz(z) + log*(1 — z) — 2log(1 — x))) + (’)(62)> :

6

The process described above is very powerful and led to huge advancements in
multi-loop calculations, as the complexity of the problem gets lowered quite signif-
icantly. Thus, integrals that were deemed too complex before become accessible to

computation, opening up the field for higher and higher precision.

3.5.2 The Canonical Form

What we arrived at in the last section was a system of equations that relates the vec-
tor of basis integrals to its derivative with respect to certain kinematical variables.
This matrix depends on the kinematical variables and the dimensional regulator e.
In this section, we want to introduce the canonical form of the system of equa-

tions, which decouples the dependence on the kinematics from the dependence on e.

First, we consider a general transformation of our basis vector f via the trans-

formation 7" with
G=T"F. (3.45)

changing the form of our system as follows:

0.f=Af = 0.(T5) =A(Tg). (3.46)
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Making the differential equation in g explicit, we arrive at:
0,5 = (T‘1AT - T—laﬂ’) 7. (3.47)

As utilizing the method of differential equations in calculations gained traction, it
was observed that it is favourable to have the dependence on € via just a prefactor
of €, since this decouples the different orders of the solution [82].

An algorithmic approach to the construction of the matrix 7" was proposed in
Ref. [83], making it possible to systematically bring differential equations into a
canonical form.

Utilizing this, several tools emerged that could find such an e-base for a given
system of equations automatically, for example epsilon [84], fuchsia [85] and
CANONICA [86].

Making use of these algorithms, i.e. finding a suitable transformation 7', the differ-

ential equations can be brought into the form

- o ay -
0, = €A g=c¢ [; p xk] g, (3.48)
where the a; are matrices that contain only rational numbers.

The members of the set of x;, which is also called the alphabet, depend on the
problem itself. The constituents encountered most commonly are z;, = {0,+1},
but, depending on the kinematics, the alphabet can also contain rational functions
or square roots of the invariants that appear in the integrals.

It is one of the challenges of this method to choose the variables of the equations in

such a manner as to arrive at the simplest alphabet.

Let us now illustrate how this transformation works, using the set of master in-

tegrals from the last sections:

7 1[1,0] N 0 0
I= <1[1,1]>’ A= (ﬁ(ﬁJr%) (=2 4 1y ) . (3.49)
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Using one of the aforementioned codes, we find the transformation

1 0
T=1 (@1 361 : (3.50)

2(2e—1)x (2e—1)z

leading us to the system of equations in our new basis g:

_ 0 0 _
axg:e< ) ry )g. (3.51)

The two integrals spanning the new basis ¢ are linear combinations of the ones from

the original basis, following the transformation from Eq. (3.45):

L (91) _ ( I[1,0] ) .
g 92 (ﬁ — %) I[1,0] + <_ﬁ . 3%21)) 1.1 ,

We can solve these equations systematically in terms of iterated integrals and we
see in Eq. (3.51) that, for a given order in ¢, only solutions from lower orders in €
partake in the equation.

Another helpful quantity is the concept of a weight that can be attached to these
iterated integrals, corresponding to the number of iterations that have been carried
out. This means that the appearing functions and transcendental constants also get
a weight attached to them, for weight n these include 7™, Li,, log"(z) and {(n).
Having this notion of weight then leads to an interesting observation: If one factors
out the appropriate (e-dependent) prefactor and attaches a weight of —n to €, one
is able to arrive at uniformly transcendental expressions (or UT expressions, for
short). An expression being uniformly transcendental means that all terms in the
result have the same weight.

This can be used as a cross-check for results, as all solutions belonging to a sin-
gle system should be brought into this form by factoring out the same e-dependent

prefactor.

We can determine the necessary factor for example at the boundaries of g, plug-
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ging in Egs. (3.42) and (3.43):

Floco = 27iSp— 7 15 7 O() (3.53)
(1—6) \ g + Z+ 0(e?)

which, with the prescriptions from above, has a uniform transcendental weight of

Zero.

Before we now solve the equation, it will be useful to first discuss the types of spe-
cial functions that are often used in Feynman integral calculations. For the above
problem, we will see that the solution can be very elegantly expressed in terms of
harmonic polylogarithms, but we will also talk about hypergeometric functions and

the Meijer-G function, since they are all related and used throughout this work.

3.6 Useful Classes of Functions

3.6.1 Hypergeometric Functions

When calculating Feynman integrals, one of the most basic tools used in their com-
putation are hypergeometric functions. The first hypergeometric function one

encounters in the calculation of master integrals, called o F(a, b; ¢; z), is defined as

Fla+1I(b+1)
I'(a+b+2)

1
/ dt t* (1 —1t)" (1 —ut)® = oFi(—c,a+1;a4+b+2;u). (3.54)
0

Integrating further leads to the 3F5 function:

Fa+ 10+ 1)
Fla+b+2)

1
/ dt t* (1—1t)" 3 Fy(ay, ag; by ut) = sFy(ay, as, a+1; by, a+b+2;u),
0

(3.55)

or, in general:

1
/ dt t* (1 — t)b p,qu,l(al, vy Ap—1; bl, ey bqfl; Ut) (356)
0

~ Tla+1)I(b+1)
- T(a+b+2)

oFylar, . oap_1,a4+ 156y, b1, a+ b+ 2;u) . (3.57)
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These functions are of great use, since their analytic properties are very well studied.
Especially at low p and ¢, they allow for a wide variety of argument transformations
and reshuffling of the indices, leading to large simplification of integral expressions.
An extensive amount of helpful relations is collected in Ref. [87].

They can also be expanded around a small parameter, in our case €, to get the ex-
plicit coefficients of the Laurent series in the end. For this, the package HypExp [88]
can be used. As this expansion swaps two limits, one has to be careful, as long as
there are still integrations to be done on the functions, as these can introduce addi-

tional poles in €. If that is the case, a premature expansion leads to incorrect results.

3.6.2 Iterated Integrals and Harmonic Polylogarithms

One structure that we encounter regularly, especially when solving differential equa-
tions in the e-form, are iterated integrals. In Eq. (3.51), we see that we have a very
clear structural dependence on x, with either z or 1 — x in the denominator. As
we solve these equations iteratively order by order in e, we can make use of a very
powerful class of functions called harmonic polylogarithms (HPLs).

They are defined in the following way [89]:

Hgyyooan(2) = / dt fo,(t) Ho,. a4, (t), (atleast one a; # 0), (3.58)
0

and
Hal,---an(z) = logn(z) ) a; = ... = apn = 0. (359)

with the starting point of the iteration Hy(2) = 1.
The f,,(t) are weight functions, given by:

1 1

fo(t) = % filt) = ——, fal)= T

— (3.60)

Using the subscripts a; = {0, 41} is called A-notation and it allows us to assign
the notion of weight to an HPL: We say that an HPL with n indices (in A-notation)

is of weight n.
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From Eq. (3.58) we can read off the basic HPLs of weight one:
Hy=log(z), Hy=-log(1—2), H_;=log(l+2z2). (3.61)

At weight two, we see products of these, but also start to encounter Polylogarithms,

such as Liy(z), and constants of corresponding weight, e.g. 2.

A shorthand notation that is useful for HPLs of higher weight is the M-notation
(opposed to the A-notation from before). Here, the number of zeroes to the left of
+1 is replaced by +(m + 1):

Ho0,01,00-1=Hy-3. (3.62)

Besides their behaviour concerning iterated integrals, the harmonic polylogarithms
have a lot of useful properties, which are all implemented in the Mathematica pack-
age HPL [90], which is included in HypExp [88].

They fulfil a Hopf algebra, meaning that products of HPLs can be rewritten as

sums thereof. Denoting indices with a vector, the algebra looks as follows:

Hi(e) Hyz) = Y Hil2), (36

ceawl

where @uwb is the set of index vectors that contain all entries from @ and b while

preserving the internal ordering, respectively. Take as an example the integral
? 1 . .
Fi(2) = [t ilt) §log(t)(Lia(t)log(t) ~ 2Lia(t). (3.64)
0

where fi(t) is one of the weight functions from Eq. (3.60).

We can now express them as HPLs and make use of the Hopf algebra:

Fi(z) = / "t fu(t) (Hooo(t) Horo()

= /Z dt fi(t) (Hs0(t) + Hayoo(t) + Hs0,00(t) + H20,000(t))
0

= Hy50(2) + H1400(2) + Hi13000(2) + H1,20000(2) - (3.65)

77777
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With the rewriting in terms of HPLs, we were able to solve the integral algorith-
mically in terms of well understood functions. These can then also (for the lower
weights at least) be reexpressed in terms of polylogarithms, logarithms and con-

stants again.

Another property that proved very useful in our calculation was the use of the
Hopf algebra to extract the logarithmic dependence of a function. This is used, for
example, in the study of the asymptotic behaviour in a singular point.

Consider that we have integrated an expression and arrived at the result
FQ(Z) = Hl,O,l,()(Z) s (366)

and as a boundary condition for the integration we want to compare the behaviour
in z — 0 with a given function. These logarithmic divergences in zero are indicated
by zeroes at the end of the index array (‘trailing zeroes’). The Hopf algebra (imple-
mented in HypExp) gives us a prescription to extract these explicitly in the form of

logarithms:

Fy(z) = Ho(2)Hy(2)Hs(z) — 2H1(2)H3(2) — 2Ho(2)Ha1(2) + Ha2(2) + 4Hs1(2) ,
(3.67)

where we can read of the coefficients of Hy(z) = log(z).

Explicit Solution of an Integral through Iteration

Let us now again consider the two integrals from Sect.3.5.2. With the differential
equation in Eq. (3.51) and the boundaries in Eq. (3.53), we have all the ingredients
to solve the system.

We start at the lowest order, which in this case is e !. As is the nature of the
differential equation in e-form, at the starting order, we only have to determine the

constant by reading it off from the boundary condiction, because the integrand from
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the previous order is zero. The result from this is

g or
92 127

For the next order, we now plug this result as g into the right side of Eq. (3.51) and

use the harmonic polylogarithms to express the iterated integrals:

(0)
g1 . G
— 27 Sy . (3.69)
<g§”)> (%Hl(:v) - c2>

We can now take the limit x — 0 and by comparing with the boundary condition

in the same limit, we conclude

9" 0
g5 wH, (z)

The same procedure is done for the next order, leading to the result:

(1) £
) = 2mise | 12 . (3.71)
) o (Hoa(w) +2H, 1 (7)) + 75

Putting together the previous findings, we get the result in the UT-basis:

1 4 me
M) —omise [, e T 12 (372
92 o+ &= Hi(x) + € (g=(Hoa(z) + 2Hy 1 (2)) + 55)

This can now be turned back to basic functions and, using the transformation ma-
trix from Eq. (3.50), returned to the original basis of I[1,0] and I[1, 1] to compare
the results. Doing this correctly yields the exact result from Eq. (3.44) again, but
arguably in a much more compact form.

The only limiting factor for the iteration here is the highest known order of the
boundary condition, because, as we saw in the last section, the integration and the

limit  — 0 can be carried out algorithmically to (in principle) arbitrary weight.
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3.6.2.1 Generalized Polylogarithms

As of their primary definition, harmonic polylogarithms are only defined for the
letters {0, £1}. For sets of master integrals that contain a high number of (massive)
lines, it is often not possible to find a basis that avoids letters differing from these
basic three. To include these cases, the definition of HPLs can be expanded, resulting
in so-called Generalized Polylogarithms [91]. Their basic definition looks very
similar to that in Eq. (3.58):

1
t—a1

Gay,.an(2) = / Cat Goas....an () . (3.73)
0

In contrast to the definition of HPLs though, a; is not restricted to {0,+1} any

more.

The generalization of the definition now lets us include a larger class of iterated

integrals that we can now also apply the Hopf algebra to, e.g. extracting logarithmic

dependencies or simplifiying the product of two functions, as for the HPLs.

An implementation of this can e.g. be found in the package PolyLogTools [92].

3.6.3 The MeijerG Function

Another tool that proved very helpful in the computation of loop integrals is the
MeijerG function [93], which was constructed to include most special functions as
particular limits. As we will see in this section, it is (by design) very closely related
to hypergeometric functions as well as Mellin-Barnes integrals, making it a very
potent link between the methods.

One of the standard ways to define the functions is:

amn | o {a/17"‘7a'r‘b}7 {an+1,...,ap} _
e (b1, b} s {Brsts oons b}
Y yvymJ oo m P » Yq

p ﬁ Lb;—s) [IT(1—ak+s)
R i 2 (3.74)

; q
P P —b+s) 11 Tl —s)
j=m+1

=

Il
—
w
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After transforming an integral to its Mellin-Barnes representation, we can then con-
vert the corresponding integrals over I'-functions into a MeijerG function.
As mentioned before, we also can relate hypergeometric functions to MeijerG func-

tions, for example via the following formula:

Fp_l(al, coey Aps b17 ...,bp_l; —Z) =

L(b1)..T(bp-1) -1, Z 1—ay,...,1—a,}, {}
F(CL1>...F(CLP) Gp’p< {0}’ {1 _ bl; - 1— bp+1} ) . (375)

p

These types of conversions prove very helpful when encountering complicated argu-
ments in the ,F, that do not immediately allow for a transformation (e.g. because
the transformation only allows positive z). Turning the expression into a MeijerG
with the help of Eq. (3.75) and then via Eq. (3.74) into a Mellin-Barnes integral can
then enable further analytic progress.

For a collection of the analytic properties and transformations, we refer to Ref. [87].



Chapter 4

Calculation of the Four-Body

Virtual Contributions

As we discussed before in Sect. 2.3, the main goal of this work is the calculation of
multi-parton corrections to the branching fraction B(B — X,7)g, >, To be
more precise, our focus is on the pieces that are missing at next-to-leading order
in QCD, complementing the four-body contributions that were calculated previ-
ously [10,62].

The actual calculation of this involves multiple steps: In this chapter, we calculate
the one-loop four-body contributions to the process. To cancel out infrared
divergences occurring in these diagrams, we then proceed in computing the corre-
sponding five-body contributions in Chapter5, where the gluon is emitted as
an on-shell parton. As we have seen in Fig. 2.6, these diagrams are very similar,
as most of them can be obtained by appropriately shifting the cut. Adding these
up eliminates the infrared divergences associated with the gluon, leaving only those
from collinear photons and ultraviolet (UV) ones.

To get rid of the UV divergences, we renormalize the expressions by adding the
appropriate counterterms. This procedure will be discussed in Chapter 6.

Finally, Chapter 7 will then address the remaining infinite pieces, i.e. the collinear
divergences associated with the photon. We will explain the change of scheme we

employ to trade the explicit poles in € for logarithms of the light quark masses,
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Figure 4.1: Examples for the different insertions that are encountered in the calculation.
We see that the cases a) and b) only allow the additional quark-antiquark pair to be ua,
while the insertion of a penguin (cf. ¢)) on both sides makes it possible to have ¢ = u,d, s
in the final state.

so-called collinear logarithms, via DGLAP splitting functions.

With our procedure outlined in this way, we can now start with the first part of

our calculation, the four-body one-loop bare diagrams.

4.1 Operator Insertions

The operators that are relevant for our computation have already been listed in
Eq. (2.16). We have to compute every possible insertion of these on the left- and on
the right-hand side of the cut. We will denote these combinations by (P, x P;).

What we can read off from the operator basis is that each of the operators Py, Ps
and Ps is related to one of the others (P, P, and Py, respectively) by a change of

occurring color matrices. This makes the calculation a lot simpler as it means that
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I =
s
[
P | Py
(a)
| s |
[
| +
= P =
Py : Py |
(b) (c)

Figure 4.2: In the case of all final state quarks being s quarks, the operator insertions
a) allow for two cases: b) The ‘straight insertion’, parallel to the case of ¢ = u,d and c)
the ‘crossed’ insertions, where there is only one fermion line.

these insertions only differ by color factors, which we can add after the calculation
of the contributions.

For example, we compute the insertion (P; x P3) without carrying out color traces.
In the final result we can then supplement the correct color factors for Py and thus
get the results (P3 x Py), (P x P3) and (P, x Pj) without doing the Dirac

algebra and the loop calculations again. These color factors are given in Sect. 5.8.

Our list of operators can be divided into two subparts: The current-current operators
P and Py, denoted by (C), and the four penguin operators Ps-Fs, which we will
denote by (P). From this we can see that, diagrammatically, we encounter three
types of insertions: (C' x (), (P x P) and (C x P). Examples for these three
types of diagrams are shown in Fig. 4.1.

One subtlety arises when considering the case of penguin operators with ¢ = s. In
that case, it is possible to form more than one split of the fermion lines leading to
two different contributions, called the ‘straight” and the ‘crossed’ insertion. These

two different types can be seen in Fig.4.2 and have to be computed separately.
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€

| |
| |
| |
I > L 1 > L
| |
| |

Figure 4.3: This figure shows the different ways that the gluon and photon can attach
to the quark legs. A cross denotes a possible spot for the photon to attach, it always has
to choose one on the left and one on the right of the cut. When counting the number of
diagrams, we can distinguish between two different groups of gluon behaviour:

Left: The gluon attaches to the same leg it originated from, giving the photon two spots
it can attach to the left of the cut. Note that if the photon attaches elsewhere, the diagram
would be counted towards the wave function renormalization procedure.

Right: The gluon changes the quark line. There are six of these configurations with six
possibilities for the photon to attach, respectively.

4.2 Gluons and Photons

For a given insertion of operators, we now have to accommodate for the photon and
gluon, accounting for all possible attachments of the two. In our case, there are two
different topologies for the gluon, as we can see in Fig.4.3. As there are four of the
first one and six of the second one, and counting all the possibilities for the photon,

we arrive at 4 X 2 x 446 X 6 x 4 = 176 diagrams for each operator insertion.

4.3 Generation and Evaluation of the Diagrams

Now that it is clear which diagrams are neccessary for the calculation, all needed
parts are generated with QGRAF [94]. What is created are the left and right side of
the cut independently, which are fused in the next step, when output of QGRAF is
fed into FORM [95]. Here, the amplitudes are combined by carrying out spin sums,
the symbolic vertices and propagators are replaced by their Feynman rules and the
resulting fermion traces are evaluated.

In general, this step is very straightforward, but in this calculation one major sub-
tlety was encountered: The operators of Eq.(2.16) contain the matrix 5. The

problems that arise from this and our solution will be topic of the next section.
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4.3.1 The treatment of 5

The Dirac matrix 75 is introduced in weak processes as a part of the axial current

Yus- 1t is defined in the following way:

Y5 = iY0V17275 - (4.1)

From this relation, one can infer the anticommutation property

{75, 7.} =0, (4.2)

and that the matrix is its own inverse:
i=1. (4.3)
We also can define the behaviour of traces containing ~s:
Tr(ysyFryt2teyht) = jehth2isiaTy(]) (4.4)

It gets clear from the definition in Eq. (4.1) that 5 is an inherently four dimensional
object. This leads to problems when calculating quantities in dimensional regular-
ization that involve traces over s, as there is no unique way to analytically continue
the above properties from four to D dimensions. For example, one can show that
retaining the cyclicity of the trace and anticommutation of v5 leads to different re-
sults for different starting points of the trace. A very comprehensive analysis of
the ambiguities that can arise in calculations with weak axial currents is given in
Ref. [96].

In order to treat the occurring expressions containing =5 consistently in D dimen-
sions, we need a scheme that deals with these emerging ambiguities. Many schemes
have been proposed over the years, such as the 't Hooft-Veltmann scheme [97] that
splits 75 into a four dimensional and an € dimensional part, eliminating the am-
biguity in the anticommutation relation but introducing a lot of new terms and
bookkeeping. Other common schemes are the Larin scheme [98] and naive dimen-
sional regularisation (NDR) [99].
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For our calculation, we adapted the so called KKS scheme, which was developed
by Kreimer, Kérner and Schilcher [100,101] .
It is a ‘reading-point scheme’ and can be broken down to the following rules that

one has to implement for traces containing ~s:

1. Loss of cyclicity of traces. From this follows the need for a consistent reading

point prescription.
2. Start the traces at the axial vertex 7,75

3. If there is more than one axial vertex, average over all possible starting points

(‘Bosonization’):

1
6 (Voy Voo V5 Vois Vpua V5) = 5 (7 (Vo V5 Vo Yiaa V5 Vo) + 07 (Vpa Y51 Ve V5 Vis))

4. Anticommute all occurring 75 to the end of the trace
5. Use 72 = 1 until a maximum of one 75 remains

6. If a single 5 remains, replace it by %&?““””’yu’yl/ypfyo

As Fig. 4.1 shows, we encounter two different types of trace topologies. In the
case of one trace, we are either left with a trace free of 5, which can be treated
normally, or with only one remaining ~5. The treatment of the latter expressions,
which result in a single e-tensor, will be topic of the next section.

For the case of two traces, there is an additional case that we have to consider: If
two traces that are multiplied contain a single 5, we end up with a product of two
Levi-Civita tensors after step 6 of our procedure. This product has to be treated
consistently and we chose the following procedure, linking their product to metric

tensors:
g’“”l . g’“”‘*

ghibaspagvaas — det | - - (4.5)

4V1 4V4
gt e g?

This prescription respects the symmetric properties and restores the correct de-
pendence on the dimension. The resulting metric tensors are then handled as D-

dimensional objects in the usual way, which is discussed, for example, in Ref. [102].
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Applying this scheme allowed us to replicate the tree-level results from Ref. [10].
After going through the above procedure, we are now only left with either traces

without 75 or with expressions containing a single gtt#2#384,

4.3.2 Cancellation of terms containing c#1+2#3H4

One can show that the pieces proportional to the antisymmetric tensor cancel out
in the end by the following argument, similar to the one made in Ref. [62]:
Introducing the fully antisymmetric tensor as we did above leads to terms in the
calculation that contain pieces such as €, s P Ph°P5° " in the final result. As
it is not straightforward how to correctly interpret these terms, it is fortunate that
they cancel out when fully carrying out the angular integrations occurring in the
phase space.

Let us go to the rest frame of the b quark and fix all momentum invariants p; - p;.
We can derive from momentum conservation that all the energies p, - p; are fixed.
From this, we can infer that the p, - p; are fixed, still leaving us with free choice of
the coordinate system. If we define a plane with p; and p,, this fixes p5 up to its
orientation relative to the plane. Choosing this sign then also fixes p,.

With this argument we can see that the expression €, s 5 P5° Py is fixed by
the invariants p;-p; up to the sign we chose. Now, when carrying out the phase space
integration, we encounter terms that have the form F(p; - Dj) €1 popspaPt Ps 05 PY*.
Since the function F(p; - p;) is parity-even, i.e. does not depend on the orientation
of the momenta, when encountering it alone, we can trivially carry out the angular
integrations. But, as we have shown above, this does not hold true for the second
part, et1H2r3k - ag it changes the sign under change of orientation of e.g. ps.

What is integrated then is the product of a parity-even and a parity-odd expres-
siong (yielding a parity-odd one) that vanishes after integrating over the symmetric
angular variables. Logically, this should also be the case, as our final observable is
parity-even and there should be no parity-odd contributions.

The logic of the above statements also holds true when imposing cut on the phase
space via a lower bound on the photon energy. We will see in Eqs. (4.13) and (4.14)
that we can relate the cut parameter to momentum invariants, which then simply

contribute to F(p; - p;)-
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4.4 Phase Space Parametrization with Cut on the

Photon Energy

In Sect. 3.3, we already listed dPS,, the measure for the four-particle phase space.
With the help of this, the unpolarized decay rate for a decaying b quark is given by

1 1
=——— [ dPS 2 4.6
me QNC 4 Szpl; |M| ’ ( )
color

where we average over incoming and sum over outgoing spin and color configurations.

As we argued in the last section, the > |M|?> = K(s;;) only depends on the di-

mensionless momentum invariants, which we define as

Sij = . (47)
From here on, introducing shorthand notation, we will also use
Sijk = Sij + Sik + Sjk Sijkl = Sij + Sik + Sk + S+ S+ Sk - (4.8)

As the kernels that are integrated over do not depend on the angular configurations,

we can carry out the respective integrations separately:
87‘{' 3D276

F(D;1>F<D;2)F(D;3) )

(4.9)

/ 0 1A 5 5 —

Plugging this into the decay rate and also using the explicit form of the phase space

measure, we arrive at

I'=N(D) /[Sij] (1= si) Klsiy) (—A4)"T O(=2Ay), (4.10)

with the prefactor defined as

~6628—5D7T1—3D/2m2D—9

_H
N<D> - 4NCF(D2_1)F(D2_2)F(D2_3) '

(4.11)
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4.4.1 Introducing the Cut on £,

In our calculation we are interested in the kinematics of the four-body decay

b(pe) — q(p1)q(p2)s(ps)Y(pa) -

We additionally impose a restriction on the energy of the photon that we define in

the restframe of the b quark (following e.g. Ref. [62]) as

. m m
B, = pbmf‘* = (10t sa + s31) > (1= 9). (4.12)

leading to:
(814 + So4 + 834) > (1 — 6) . (413)

We now have to incorporate this cut on the phase space into our integrations. This
is done by introducing an additional integration and a delta function, a method
that was for example used in Ref. [62]. We define the additional cut variable z
and multiply the integrand with the function 6(1 — z — s34 — S24 — $34). Now we
can integrate over this newly introduced variable from 0 to §, which enforces the

restrictions on the phase space:

5 1
/ i / (ds15] (1= 2 — $14— 591 — 531)5(2 — 519 — 513 — 895 K. (515) (=Aa) T-O(=A)
o (4.14)
where the first delta function fixes the cut and the other one originates from mo-
mentum conservation. We can now use these to fix two of the invariants, arriving

at five integrations left to perform:

0 z Z—S34 z Z—512
FE7>E0 :N<D)/O dZ/Ov 6183,4/0v d814/0 d812/0 d523

x K(siy) (—Ag) 7 O(=Ay)

§13=2—512—523

§24=2—514—534

(4.15)

where we again used the ‘bar’-notation z =1 — z.
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We use a suitable parametrization that factorizes the Gram determinant A, as
well as mapping the integrations to the unit hypercube. We adapt here the one

introduced in Ref. [62], where a detailed derivation can be found.

The parametrization is as follows:

S12 = 20W S34 = zZU
S14 = ZUX s3=(a"—a )u+a" (4.16)
813 = Z — S12 — 523 S24 = Z — S14 — S34,
with
ot = z[owz + @7 £ 2(Pwnrz)? . (4.17)

With this the determinant now factorizes:

D—4

5 1
I'p>p = N(D) 4D_4/ dz (zz)D_S/ du dv dz dw (uﬂ)%vl)_g’(@m’;ww)TK.
0 0
(4.18)

These integrals now have to be carried out and, for integration kernels IC(u, v, x, w, 2)
that are simple enough, this can be done (semi-)automatically in terms of hyperge-
ometric functions.

Before we solve our integrals with this parametrization, we first reduce the number
of integrals significantly by carrying out an integration-by-parts (IBP) reduction as

our next step, the basics of which were discussed in Sect. 3.2.2.

4.4.2 Implementing the Cut on F, into the IBP Reduction

One minor point when employing IBP reductions is that the method is oblivious
to phase space restrictions such as our cut on the photon energy. To solve this,
Ref. [103] proposed the method of reversed unitarity, trading delta functions for
propagators.

To illustrate the method, we look at a contribution occurring in the tree level case
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of our calculation:

p1

P2 N / dPpy dPpy dPp3 6(p2)5(p2)0(p3)d(p3)d(z — s123)

AW‘\‘L‘ D3 [(p3 +p4)2]2
(4.19)

where the first four delta functions are enforcing the on-shell conditions for the final-

Py

)

state particles and the last delta functions implements the cut condition.

We now can use Cutkosky rules [104] to replace these by propagators:

1 1
2mi 6(p* — m?) — - : 4.20
mio(pm—m’) p>—m2+i0 p?—m?—1i0 (4.:20)
In diagrammatic form this can be depicted as
2
p1
P2
Py = Db Db s (4.21)

R W

showing the principle of trading the square of a Born amplitude for a multiloop for-
ward scattering diagram. A cut propagator in the diagram means that the Cutkosky
rules have been used.

These replacements make the resulting expressions eligible for the processing by an
integration-by-parts routine, letting us reduce the number of integrals by multiple
orders of magnitude. After the reduction process, the relation from Eq.(4.20) is
used backwards, turning the multiloop-integrals back into their original form.

Note that the IBP reduction yields the same result, irrespective of the sign of the
imaginary part +i0 in Eq. (4.20) (if one reverts the expressions back after the re-

duction). To avoid unnecessary bookkeeping, we can thus use the relation

1

. 2 2
271'25(]? —m)%m

(4.22)
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4.5 Specifics of the IBP Reduction

After applying the reverse unitarity relations, we can group the diagrams into three
families that we call F; — Fa:

Fi= {pf, p%, p§ ) (pb - p123)27 p%23 - ng, k27 (/f +py — p13)27 (k +p2)2,
(k—p3)?, (k—p1)? (0o — p13)°% (oo — p23)?, (01 +p3)% (p2 +p3)°}, (4.23)

fQ - {p%a p%a pg ) (pb - p123)27 p%23 - ng, k:27 (k — Db +p12)27 (k - p2)27

(k- pb)2 - mi, (k — p3)2, (py — p23)2, (po — p12)2, (p1 + p3)2, (p2 +p3)2} )
(4.24)

Fs = {p}, 03 D3, (0o — P123)°, Dlaz — 2myp, K2, (k — pras)® — mi, (k — p2)?,

(k—pp)* —mj, (k—p3)% (pp— p12)% (0o — p13)°, (p1 +p3)°, (P2 +p3)°}-
(4.25)

To fit all the occurring integrals into these three families, we can use symmetries in
the momenta to our advantage:

If there were no restrictions on the phase space, we could interchange py, po, p3
and ps at will, but since we cut the energy of the photon, we have to be careful
with the corresponding momentum p4. Note that we have used the replacement rule
P4 = Py — P123 in the above families to avoid hidden linear dependencies.

The first five propagators are the same in each family and originate from reverse
unitarity relations, which means that their occurrence is mandatory. In these, we
see a symmetry in the first three momenta p,, p> and ps.

We can interchange these three while keeping the result unchanged, making it pos-
sible to fit the originally (O(10000) integrals into the three families with O(2000)
integrals each.

We have labelled the families such that, with increasing family number, the number
of massive propagators also increases. In the first family, we have collected all dia-

grams that contain no massive propagators, while in the second one there can be a
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Figure 4.4: Left: Diagrammatic representation of a typical phase space integral occur-
ring during the IBP reduction with the d-functions turned into propagators.

Right: One of the propagators from reversed unitarity gets pinched in the reduction
process, creating a massless tadpole. The integral thus becomes zero. Details on the
diagrammatical representation of the integrals are found in Sect. 4.6.

maximum of one. In the third one, the maximum of massive propagators appears,

which is two for the four-body one-loop part of the calculation.

4.5.1 Vanishing Integrals

As we stated above, the first five entries in each family are the cut propagators,
which are the results of applying reverse unitarity. If, during the reduction process,
the power of one of these becomes non-positive, we set the integral to zero (we
adopt here the standard notation introduced in Sect. 3.2.2, i.e. denominators having
positive and numerators having negative powers).

The reasoning behind this approach can be illustrated in multiple ways: First, let
us assume that the propagator power of p? is lowered from one to zero by the term
being multiplied by p?:

! —]ﬁ—é 2 p? 4
T2 (p1)pi — 0. (4.26)
1

When reverting the propagator back to a delta function, we see that, after integra-
tion, the expression vanishes.

The vanishing of the integral can also be made clear by a diagrammatic approach.
Looking at Fig. 4.4, we see that ”pinching” one of the cut propagators (i.e. lowering
its power, thus eliminating it from the diagram) creates a massless tadpole in the
diagram. As massless tadpoles create scaleless integrals, which are set to zero in
dimensional regularization, we find in this another way to illustrate the validity of

the approach.
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4.6 The Four-Body Master Integrals

The reductions are carried out in FIRE [105] on the OMNI computing cluster [106].
Using the C++ routine of FIRE (in comparison to its Mathematica interface) speeds
the reduction up by a lot. The massless family only takes a few minutes while the
other two can take up to a few days.

The three reductions yield 30 master integrals in total. All of them are given dia-
gramatically in Fig. 4.5.

In this depiction, we use the light blue solid lines to denote denominators. If these
denominators are massive, we use double-lines and if a denominator is squared,
this is shown by an additional dot on it.

The dashed black lines indicate the propagators from reversed unitary that origi-
nate in the delta functions, the orange cross denoting the momentum of the photon
that is subject to the energy cut condition. Numerators are included in the following
way: If a dotted red line connects two propagators with momenta [, and [l flowing
through them, respectively, the integral includes a numerator (I; — l5)? — m? — m2.
We additionally list them here, in the notation of Eq. (3.16), as this makes a future

comparison more convenient:

1,1,1,1,1;0,0,1,1,0,0,0,0,0],

Fip1 = F
F[1,1,1,1,1;0,1,0,1,0,0,0,0,0],

F4B2: 1

[ ]
[ ]
Fips = Fi[1,1,1,1,1;0,1,0,2,0,0,0,0,0] ,
Fipa = Fi[1,1,1,1,1;1,1,0,0,0,0,0,0,0] ,
Fips = Fi[1,1,1,1,1;1,0,1,0,0,0,0,0,0] ,
Figs = Fi[1,1,1,1,1;1,0,2,0,0,0,0,0,0] ,

}

F4B7:Fl[la1717171;171717()’170917070 3

F4B8 = F2[17 17 17 17 1;070707 17070707070} )
F4B9 = F2[17 17 17 17 1;070707 17 170707070} )
F4B10 - F2[]-7 ]-7 17 17 1;070707 ]-7 270707070} )
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Fip11 = F»[1,1,1,1,1;0,0,0,2,1,0,0,0,0],
Fyp1o = F3[1,1,1,1,1;0,1,0,1,0,0,0,0,0],
Fipi3 = F3[1,1,1,1,1;0,1,0,2,0,0,0,0,0],
Fip14 = F3[1,1,1,1,1;0,0,0,1,1,1,0,0,0],
Fipi5 = F3[1,1,1,1,1;0,1,0,1,0,1,0,0,0],
Fipig = F3[1,1,1,1,1;0,1,0,1,1,0,0,0,0],
Fipi7 = F3[1,1,1,1,1;1,1,0,1,0,0,0,0,0],
Fypis = F»[1,1,1,1,1;1,1,0,1,0,1,0,0,0],
Fypi9 = F3[1,1,1,1,1;1,1,0,1,1,0,0,0,0],
Fipoo = F3[1,1,1,1,1;1,1,0,2,0,1,0,0,0],
Fypo1 = F3[1,1,1,1,1;1,1,0,1,1,1,0,0,0],
Fypos = F3[1,1,1,1,1;1,1,0,1,-1,0,0,0,0],

Fypes = F3[1,1,1,1,1;1,1,0,0,0,0,0,0,0],
Fypos = F3[1,1,1,1,1;0,1,0,0,1,—1,0,0, 0],
Fypos = F3[1,1,1,1,1;0,1,0,1,1,0,0,0,0],
Fypos = F3[1,1,1,1,1;0,1,0,1,2,0,0,0,0],
Fypor = F3[1,1,1,1,1;1,1,0,1,0,0,0,0,0],
Fypog = F3[1,1,1,1,1;1,1,0,0,1,0,1,0,0]
Fypag = F3[1,1,1,1,1;1,1,0,1,1,0,1,0,0],
Fipso = F3[1,1,1,1,1;1,1,0,1,1,1,0,0,0] .

)

Let us make some remarks regarding the list of master integrals: First, note that
there is not a complete congruence of the integrals listed here and the ones that our
reduction in FIRE yielded as master integrals. If possible, the impementations of the
Laporta algorthm avoid numerators and reduce their input to a list of denominator-
only master integrals. Here, some of the original ones had to be replaced to make
them suitable for the next step, i.e. the differential equations method. The search
for new integrals was done by hand, for further reading on the topic of choosing the
right integrals basis, cf. Refs. [107,108].
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Figure 4.5: The full set of one-loop four-body master integrals that was calculated in
the course of this work. The dashed lines indicated the cut propagators from reversed
unitarity relations, the solid light blue (double-)lines indicate (massive) propagators. The
dotted red lines show numerators in the following way: When connecting two lines with
momenta [; and lg, the corresponding numerator is (I — l2)® —m} —m3. The orange cross
denotes the cut propagator with momentum p4 as the symmetry in the momenta is broken
here through the cut on the photon energy.
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Additionally, as the master integrals do not all stem from the same reduction,
they are not necessarily forming a basis, i.e. they are not completely independent.
One can see that e.g. F5 and F3 have a lot of denominators in common, meaning
that if we go to a low enough sector there will be a significant overlap. There is
an ambiguity in assigning the original integrals to the families, which can lead to
hidden relations between the master integrals. A strong hint that this is the case is
the need for unexpectedly high powers of € in the solution of master integrals, when
analyzing their prefactors.

These additional relations can be found by rewriting the integrals in terms of an-
other family and applying the respective rules or by using another IBP reduction
program, e.g. Kira [109] (For our calculation, we used these additional relations
as cross-checks for the validity of the reduction). Another possible solution is the
introduction of additional seed integrals, i.e. suggesting a master integral base to
the program that is more fitting or adding higher line integrals at the start.

The relations we encountered in the calculation of the four-body integrals are given
in Sect. 4.11.

4.7 Calculating the Master Integrals

To calculate the master integrals, we employ the method of differential equations,
which was outlined in Sect. 3.5. For this, we are using the fact that our treatment
of the cut on the photon energy E. via the delta function 6(z — s13 — s13 — So23)
introduces a dependence on the dimensionless parameter z. After the phase space
integrations we want to stay differential in this parameter, which means that the
resulting expressions can only be a functions of z and the mass of the b quark, my,.
But, as the latter is the only variable with a mass dimension in our problem, we
can set it to one (i.e. m? = 1) during the calculation and restore the correct power
afterwards by dimensional considerations. We then use the dependence on z to build
and solve our system of differential equations. Furthermore, as we see in Eqs. (4.23)

~ (4.25), we only have one denominator that directly depends on z, i.e. (ply; — 2 m7).
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Let us consider for example the integral

0(p7)d(p3)d(p3)d(p3)d(z — s123)
(k2] [(k + po — p13)?] [(k — p3)?]

Fyps = /dPS4 (4.27)
taken from the family F;. We use reverse unitarity, converting the delta functions
into denominators and further make use of the shorthand notation introduced in
Eq. (3.16). Note that, in this notation, negative numbers indicate numerators.

This leads to the following expression (note that we omit the prefactors from reversed

unitarity relations, as we use them the other way again in the end):

1
Fuss = [ s, P A P 7 [ — 213 [k & 20— pra)® [k — po)®
= F[1,1,1,1,1;1,1,0,1,0,0,0,0,0,0] . (4.29)

(4.28)

The semicolon is added for better readability to separate the (always present) first
five denominators introduced by applying reverse unitarity from the rest.

We can now take the derivative with respect to z:

1
9:Fus = 0 [ s, PP [ — 512 P [ & 7o — o) 2] [k — pa)
= / dPS, -
P2 2 22 172) (2 — uaa) 2 1R2) [k + 2o — pra)?] [F — )2
= F[1,1,1,1,2;1,1,0,1,0,0,0,0,0,0] (4.30)

and we see that the only effect is squaring the numerator stemming from the cut
condition.

This is done for all the master integrals in Sect. 4.6, which are then given to the IBP
reduction again to get a closed linear system of differential equations.

For illustration purpose, we give the explicit result for the example integral from

above:
g 2(1=20  (1-2¢
2B e(z—1)2(22— 1) ™ ez =122z —1) "
2(1 — 2¢)3 21— 5 6(1 —
( d Fyps + ( d Fips + Sl Fipe . (4.31)

e(z—1)z(22 — 1) 2z —1 2(1 —2¢)(22—1)
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We see that the system is closed under the reduction which lets us bring it into the
general form (cf. Sect.3.5):
8. F = Az, e)F, (4.32)

where the vector F' contains the master integrals and the matrix A(z, €) contains

the reduction coeflicients.

4.7.1 Solving the Differential Equations

The differential equations are generated for each family separately. For this, we
define three sets of integrals that are closed under the IBP reductions. The condition
that the sets have to be closed under the reduction leads to the fact that some of
the lower-line integrals are contained in more than one family.

Using the labelling introduced in Fig. 4.5, the sets read:

ﬁl = {F4B17 F4B27 F4B37 F4B47 F4B57 F4B67 F4B7} ) (433>

Fy = {Fyps, Fipo, Fup10, Fup11, Fap12, Fip13, Fipa, Fipia,
Figis, Fipis, Fair, Fagis, Fagio, Finoo, Fio1, Fapao}, (4.34)

and

F3 = {Figs, Fupo, Fi10, Fup11, Fup12, Fup2s, Fapia, Fipou,
Fip15, Fipos, Fupae, Fipor, Fapas, Fip2g, Finso} - (4.35)

These sets are sorted by sectors, i.e. their number of positive entries in the Fj-
notation. Choosing the right order brings the respective differential equation ma-
trices into triangular form, which is favored in the following steps of obtaining the

e-form of the system.

We then can define the equations in the original bases:

O.F; = Ai(z,0)F;  i=1,2,3. (4.36)
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The matrix A,(z, ), for example, takes the form:

_ 526722j3e+1 0 0 0
- 5ze—2z—3e+1 €(3e—1)
0 o 2Z ) - 2z(2e—1)2 0
2(2¢—1) 3ze—z+te
0 2z o 2z 0
Ai(z,€) = 0 0 0 _ Bze=2e—tet]l
0 2(2e—1)3 21 _2(2¢—1)3
2(2z—1)ze? 2(22—1)ze 2(22—1)ze2
0 20(2e—1)3(4e—1) 4(z2—3)(2e—1)(4e—1)  20(2e—1)3(4e—1)
32(2z—1)ze(e+1) 32(22—1)z(e+1) 32(2z—1)ze(e+1)
0 _ 8(2¢—1)3(4e—1) 8(2e—1)(4e—1) 8(2e—1)3(4e—1)
2(22—1)z3€2(3e+1) (22—1)z3¢(3e+1) 2(22—1)z3€2(3e+1)
0 0 0
0 0 0
0 0 0
0 0 0 (4.37)
_ 2(5e—-1) 3(e+1) 0
2z—1 (2z—1)(4e—1
2(z+2)e(4e—1)(5e—1) . (422—3z+335 0
32(2z—1)z(e+1) z(2z—1)z
2(22—1)z2(3e+1) 2(22—1)2z2(3e+1) 2z

The matrices Ay(z,€) and As(z, €) are not explicitly given, but can be constructed

by reversing the relation from Eq. (3.47), which yields:
A’i(z7 6) = ﬂAi,Eﬂ_l + (azj_’l)j—;_l )
where the results from Appendix C and Appendix F can be plugged in.

An interesting observation for the above matrix (which also holds true for the other
two) is that it contains poles in z = 1/2. But, as we will see later on, these drop
out after the change of basis. If they persisted, we would have to use generalized
polylogarithms for the construction of our solution, but as only z and z survive, we
can restrict ourselves to harmonic polylogarithms. This convenience does not fully
carry over to the five-body case (as we will see in chapter 5), where the rotation to
the new base does not get rid of all letters that lie outside of the realm of HPLs.

Another observation regarding Fy is the complete decoupling of Fyg;. This integral

is nominally part of the family, but it does not mix with the other ones in the re-
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duction. This will also hold true for the change into the new basis, where we also
see that the corresponding integral is not brought into the form of uniform tran-

scendentality by the same factor as the others.

The matrices 4;(z,€) can now be brought into e-form. There are multiple imple-
mentations of the algorithmic approach by Lee [83], for our calculation we use the
program epsilon [84].

Running the program gives us the necessary ingredients to change our basis, namely
the transformation matrices 7; and the differential equation matrices A; .. Changing

our base from F; to éi, these matrices are defined in the following way:

A—1 =

G, =T, F;, (4.38)

(2

relating the old and new base, resulting in a new system of equations for each family:

The transformation matrices T; are given explicitly in Appendix F.
The matrices can be simplified even further, because of their simple dependence on
only 1/z and 1/z, splitting them into

A~

1~ A
A15<2) = ;Az,z + Ai,g, (440)

)

Q| =

where the entries of the matrices are now only rational constants. These matrices
are given in Appendix C.

As for the nomenclature of these integrals, the three bases are:

él = {G4B17 G4B27 G4B?n G4B47 G4B57 G4BGa G4B7} ) (441)

G2 = {G4B87 C"Y4B97 C;14B107 G4B117 G4B127 G4B137 G4B147 G4Bl57

G4B167 G4B177 G4BlSa G4B197 G4BQO; G4B21a G4B227 G4B38} ) (442)
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and

GS = {G4BQ37 G4B247 G4B257 G4B26a G4B277 G4B287 G4B29a G4B307
C7Y4B317 G4B327 G4B337 G4B34a G4B35> G4B367 G(4B37} . (443>

We now have successfully brought our equations into the form introduced in Sect. 3.5.2.
This enables us to solve them via iterated integrals, using harmonic polylogarithms,
as discussed in Sect. 3.6.2.

The only piece that is missing at this point in the calculation of the integrals are

the boundary conditions to fix the constant part at each order in e.

4.8 Calculation of the Boundary Conditions

This section will discuss the different methods we used to acquire the boundary
conditions needed for the calculation of the integrals from families F} to F3.

Each determination of a boundary condition was done via one of the following three
methods: full analytic dependence, asymptotic behaviour without Mellin-
barnes representation and asymptotic behaviour with Mellin-barnes rep-
resentation. To make clear what we mean by these three methods, we now give

an example for each of them.

Case 1: Full Analytic Dependence

In the case of the simplest integrals (having a low number of denominators and
being non-massive mostly), we were able to calculate them analytically. If we were
not using the differential equations method, we would be done at this point, but
because the system we want to solve is constructed via an IBP reduction, these
integrals mix into the equations of the ones from higher sectors. This makes it
necessary to compute an asymptotic expansion for them, too. As an example, let

us look at Fypy/3, which only differ by the power of one of the denominators:

dPk 1
F4B2/3 = /dPS4/ (27T)D []{;Q]n[( +p234)2] . (444)




4.8. Calculation of the Boundary Conditions 71

where Fypy/3 corresponds to n = 1 and n = 2, respectively.

Now we introduce Feynman parameters and perform the loop integration (m? is set
to 1):

Fisays = /dPS4 (—iSr)(—1)"T(1 — )T (~1 —i—n—i—e)/dy "

[—(p354yy) — 0]~ 1Hnte
= /dPS4 (ZSF)F(l — 6) F(IT(; tZtZ)ES(Q —n — E) (_1)6(8234>1_n_6 '

(4.45)

In these types of integrals, one has to be careful with the ¢0-prescription when
pulling out the sign from the denominator, as the value of the imaginary part has
to be consistent before and after the evaluation of the integral.

For the next step, we introduce our parametrization from Eq. (4.16), leading to:

JTA—=e)T(-14+n+el(2—n—¢)

Fypass = N(D) 47 (iSr) (1) I'(3—n— 2¢)

s 1
e [ du o do du (2 ) 20 ) o1 - o)
0 0
(4.46)
which we can solve in terms of I'- and hypergeometric functions:

J(=1+n+el'(2—n—€e)l'(3—n—3e¢)
I'B—n—2¢)I'(4—n — 4e)

Fypaszs = N(D) 473 (iSr) (—1)

['(1—¢€)T(1/2—¢)?
['(2 —2€)2T'(1 — 2¢)

5
/ dz (z2)7"* oFi(n+e—1,1—¢62—262). (4.47)
0

With this, we can then calculate the boundary condition for G4p,, which given by:

4(4e — 1)(2¢ — 1)3
3(z —1)ze3(3e + 1)

2(4e —1)(2e — 1)
32€2(3e+ 1)

Gip2 = Fipa + Fips . (4.48)
After plugging in the result from Eq. (4.47) and expanding with HypExp, we can take
the limit of z — 0 to get the asymptotic behaviour of the integral.

Note that we are interchanging the order of the remaining integrations and the e-

expansion. This is only possible because at this point, the integration in z cannot
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generate further divergences here. If it did, changing the two procedures would not
be allowed. One also has to be careful not to take the limit z — 0,1 too soon in
the calculation for the same reason. This will become clearer for the other types of

boundaries in the next section.

The result for the boundary up to O(€?) reads!:

~ 1 mSg 4 8 4.
Gz = G 3g0-29| 37° (§H°<Z> N 5”) i
2 (8, 16 2 3
+ € gmHo(z) -3 00(2) +2m% ) +O(e”) |, (4.49)

where the coefficients in front have been taken out to make the uniform transcen-

dentality of the integral explicit.

Case 2: Asymptotic Behaviour Order-By-Order without Mellin-

Barnes Representation

For our set of integrals, it is not always possible to determine the full analytic results,
even for the boundary conditions. Two different methods were used for obtaining the
asymptotic behaviour in terms of a series in ¢, i.e. as an asymptotic expansion with
and without the help of Mellin-Barnes representations. We first want to describe
the latter in this section, the next section will then address the former method.

For illustration, we consider the integral Fypg:

D
Fio — / dPS, / (d h ! | (4.50)

2m)P (k2" [(k + p12a)” — mu?]

We can use the same method as in the first case, up to a certain point:

1
[ — (P3s4yy) — 0]

Fipg = / dPSy(iSr)T(1 — €)T(e) / dy

IHere we introduce the notation G and F for the boundary conditions.
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2, €

:/dPS4 (iSr)I(1 —e)F(e)/dy [ Y

1 —1/5124]E
(1 -
:/dPS4 (ZSF)(F(Q—e_)E)@)/dy 2F1(6,1;2—6; 8124)

(1 —€)*T(e
= N(D) 42 (iSr) 26_ 3 / / du dv dr dw (2z)' %

(uw) Y2012 (Tazw) "¢ o Fi(e,1;2 — e;v(1 — 2@))
[(1—¢)°T(e) T(1/2—¢)?

I['(2—€e)'(3—3¢) I'(1—2¢)

5 1
/ dz (22)126/ dw (ww)™ 3F5(e,1,2 — 26,2 — €,3 — 3¢; 1 — zw) (4.51)
0 0

— N(D) 47 (iSr)

We see that by adding a mass, we introduce hypergeometric functions into the
calculation, increasing its complexity, as one would suspect. The integration over w
that remains in Eq. (4.51) cannot be done analytically.

But, as we only need the asymptotic behaviour in one point of z, we can set it to a
definite value in the argument of the 3F5 and compute the expansion in e.

One has to be careful though with this choice of z, as the integration over w can
still introduce new poles in e. As this procedure interchanges the two limits of
expansion in a small parameter and integration, we have to make sure our treatment
is consistent.

For this reason, we cannot choose z — 0 as our limit, which makes the argument of
the hypergeometric function independent of w, subsequently leading to inconsistent
results. Instead, we choose z — 1, simplifiying the argument to w, which enables the

computation of the remaining integral over w in terms of a hypergeometric function:

[(1—¢€)°T(e) T(1/2—¢)?
['2—-eI'(3—3¢) T'(1— 2e)
5 1
/ dz (zz)l_gﬁ/ dw (ww)™ € 3F5(e,1,2 — 26,2 — €,3 — 3¢;w)  (4.52)

(1 —€)"T(e) [(1/2 —¢)?
['2—-el'(2—-2¢)I'(3—3¢) T'(1— 2¢)

ﬁ4B9‘z%l = N(D) 472 (iSr)

= N(D) 4% (iSr)

0
/ dz (22)'7% 3Fy(e,1, —€;2 — 26,3 — 3¢; 1) . (4.53)
0
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This result can now be expanded in €, additionally setting terms ~ log(z) to zero as

they vanish in the limit z — 1:

- Q4
ﬁ, o 7Z7TSF
4139|z—>1 = 2z

2
1+e (—QIOg(z) iy + 13)

+ € (2 log®(2) + g (7% — 39) log(z)

1072

~16((3) — —— + 103) +—C)@3)]. (4.54)
Note that the prefactor still contains a z, which would vanish in our limit. But, as
we can read off from the transformation matrices in Appendix F, some of the entries
introduce powers of z that negate the ones from the old (F-)base. This means that,
strictly, we can only take the limit 2 — 1 after the transformation to the new
(G-)base. This was taken care of in our calculation, the ‘premature’ limit was taken
here only for illustration.

This method of setting z — 1 works for a lot of integrals in the medium sectors,
e.g. Fygio,Fup11 and Fygio. These are, amongst others, related to G4go4. Expanding
them each to the appropriate order, transforming to the new base and taking the

asymptotic limit z — 1 yields the boundary condition:

- i 2ns 1111 ([ 11 1,
Lo Amor S ey U H () — o
Gamot = G002 | ~T20 o ) T ( g011(2) = 5™
11 11 77
3 _ —— 2 = _ 4
+e€ < 260 1(2) E 1,1,1(2) 30<(3)> + O(€")

(4.55)

Case 3: Asymptotic Behaviour Order-By-Order with Mellin-

Barnes Representation

For the last case of integrals, calculating the asymptotic behaviour is not as straight-
forward as before: For more than two propagators, we generally need to introduce
more than one Feynman parameter, leading to more complicated structures in the

denominator, which can often not be expressed in terms of hypergeometric func-
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tions.

To give an example for this type of integral, we now want to look at Fypag:

de 1
Fipzg = /dPS4/ (2m)P [k2)[(k — ps)*][(k — p12s)” — mp?)[(k — pp)* — my2)s2a
(4.56)

As there are four propagators, we introduce three Feynman parameter integrations

to combine them and resolve the loop integration afterwards:

I(1—eT(2+¢)

F41329 :/dPS4 (ZSF)

524
T3T3
dxy dxy dx - . 4.57
/ P Ty — (@1ps + mopa — po)2asTs — 10]2H (457)
Using our parametrization of the phase space, we then arrive at:
5 1
Fanao = N(D) 4% (iSp) T(1 — )T(2 + ¢) / d / du dv d dw (23)%
0 0
\—1/2—€,,1=2€ (750700, 57y —€ 72— 1—€
/dml dey ds 7(uu) 71} 7(v:m:ww) ?3 9337 (w3
[X1230 + V21 232W + Tz + VT L2237 + ToyTyZ]?T€
(4.58)

As we elaborated before, the structure in the denominator is highly complex and
there is no straightforward analytical solution for the integrations. To disentangle
the sum, we now recast the integral in terms of several Mellin-Barnes representations,
iteratively using the formula from Eq. (3.30). This leads to the introduction of four

additional integrations, which we trade for now factorized numerators:

§ 1
Fipao = N(D) 47% (iSp) T(1 — )T(2 + 6)/ dz/ du dv dz dw (2z)' 7>
0 0

dzy dzg dzz dzy T(—21)(—20)0(—23)(—24) (€ + 21 + 22 + 23 + 24 + 2)

27 2mi 27i 27 (e +2)

/da:l dxy dws(11030) (92371 2) T3 2B T2 (ry2320) 2 (VT 2037

(4.59)
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At first glance this looks intimidating, but since all the terms are now factorized we
can carry out all the phase space and Feynman parameter integrations:
F4B29 :N(D) (ZS#) 46*56 71_6*36 /05 dz %%%% 222726+1223+24726
I (4- 6)2 (1 —€)°T(—e¢)
(1 — 2€)%T(—2¢)
[(zg — e+ D25+ 24+ 1)I(21 + 20 + 23 + 1) (20 + 23 — 26 + 1)
I(—21—20—23—24—2e—2)[(21+ 20+ 23+ 24+ €+ 2)
[(20 — 2+ 2)T(25+ 24 + 2)T'(21 + 22 + 23 — 3¢ + 2)

[(—21)D(=22)T(—23)0(—24)T (24 + 1) (21 — e+ 1)

(4.60)

After this, we are only left with the Mellin-Barnes integrations. Calculating such
high-dimensional representations is very cumbersome, but as we are only interested
in the asymptotic behaviour, we can make use of the expansion properties of these
integrals. For this we are using the programs MB [73| and MBasymptotics [110],
to first expand the expression as a series in € and then determine the asymptotic
behaviour in z — 0, 1.

After using the aforementioned tools, the four-fold representation simplifies greatly,

leaving us with a maximum of two-fold representations to be calculated.

Calculating the Mellin-Barnes integrals amounts to summing the residues of the
expressions after closing the contour to the left or right side. The summations
are either done with internal routines of Mathematica [111] or with the additional
package HarmonicSums [112]. HarmonicSums is especially useful for sums over poly-
logarithms that are not included in Mathematica.

After completing all the above steps, we finally arrive at the boundary condition:

Fypag = =l s + € <§7T log(z) — 7¢(3) — 3)
2 4 4
4 62< _ iLiQ(g) +28¢(3) log(z) — §7T2 log”(z) + §7r2 log(2)
5’/T4 27'('2 3
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which can be directly translated into the e-basis via the matrix T's (as there is only
one entry for this part of the transformation), given in Appendix F.3, yielding the

result for 64336:

Lo s (—WQHI(z) - %g(g))

~ i 2mSh
Gapse = v - 4

et (1 —2¢)?

+ ¢ (—42§(3)H1(z) —4m?Hy1(2) — %w‘*) + 0(65)] . (4.62)

4.9 Results for the Boundary Conditions

With the three procedures from the previous sections, we were able to determine all
necessary boundary conditions for the four-body integrals Fyg;—Fjpss. Most of the
time, we determined them in the limit z — 1, but for some the limit z — 0 led to a
simplification of the computation.

For the following integrals, we used z — 1:
Gupi 225 Gup; i € {8..34,36,37,38} (4.63)
whereas the remaining ones were computed for the limit z — 0:
Gupi =25 G i€ {1..7,35} . (4.64)
Each family has a unique e-dependent normalization factor, which read as follows:

no(e) = 27S¢,

o no(€)
ml) = Goi 300 20
i nole)
nae) = = i-20° (4.65)
) no(E)
ns(e) = gm7
1

or = [(1—e)(dm)2—<"
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With these definitions, we can give the full array of boundaries that we calculated:

- no(€) ) 1, 2
Gapr = € L+e (7 B BHO(Z)) +€ _37H0<Z) + 9H0,O(Z> + ZT[' + ?
3 3 2 3 2
te ( = 5™ Ho(2) = 57" Ho(2) + 97Ho(2) — 2THy,00(2)
1 1 73
(3 A2 _) O 4
+3C()—|—477r+6 +0O(e |,

~ 4 8 4 8 16
Gupz =n(e) | — 5 +¢ (—Ho(z) — —i7T> + € (—mHo(z) — —Hyo(z) + 27r2>

3 3 3 3 3

16 32 80 14
+ 63 (—47T2H0(Z) — ?’L’ﬂ'Ho’O(Z) + E 0,070(2) + ?C(?)) + Eiﬂ'g)

160 28 . 32 .
+ €4< — TC(:S)H()(Z) — g'l’ﬂ'gHg(Z) + 87T2H0,0(Z) + §Z7TH07070(2)

64 80 49
— = Hoooo(2) + Zim((3) — 55 ) + O(E)

Gaps = n1(e) |0+ O(°)

Y

Giama = ma ()| — % e (—Ho(z) _ -m) e (—mHo(z) 8 o)+ —7#)

40 16 . 32 16 .
+é3 <——7r2H0(z) — §Z7TH0,0(Z) + gHo,o,o(Z) +32¢(3) + gm?’)

32 80 32
e (=643 Ho(2) — i Ho(2) + g Hool2) + T imHooo(2)

— —Ho.00(2) + 32im((3) — _W4> T 0(65)] ’
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64135 = n1(€)

64B6 = nl(E)

64B7 = n1(€)

64139 = n2(€)

2
3

8

4
+ ¢ (32((3)H0(z) + §¢W3H0(z) — —mHy

)

+ O(€%)

0+ O(e)

Y

64
+ € (—7‘(‘2]‘10(2) +36imHyo(2) — 108Hp00(2) — ?Q(S) — —ir

3

4 1

— —Hi11.1(2) + 5¢(5)

15 2

11 11

- Malally = 2
360 T eqsphl?) e <

3

4 2
— el +é <§72H0(z) —16¢(3) — §i7r3>

(z) — 16iw¢(3) + =m*

)

4
e = 1280(2) + € (~12in o (2) + 36Hao(2) — 7

328 52 4
9

)
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- . 99 847
e <_C(3)H1(z) + %WQHLI(Z) + EHLMJ(Z) T 162007T4)

641310 = nz(ﬁ) € 1080

11 11
2 24l <_

+ € <%C(3)H1(2) + £7T2H1,1<Z) + iﬂ'4>

Ciamn = na(e) [ el s (——772H1(z) _ —g(3>>

é4B12 = n2(€)
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15 5 300
133 76
65( — T Hi(2) +8C(3)H1a(2) = 2 ()
648 168 28 5 6
- ?H1,1,1,1,1(Z) — ?C(5) + 1—57T C(3)> +0(€) |,

Gapia = na(e) [ S + € (—%Hl(z) - LW)

+ € —liﬂ'H (2) — iH’ (z) + L
90 Tt 30 162
1 1 1 4 9
3 —n2H,(2) — —inH _—H = = in®
+ € <547r 1(2) SOW 11(2) 10 111(2) + 45C(3) + 4O5z7r )
+ (LU () + onim Hy(2) 4~ H (=) — scimH i (2)
“\15 ! 135 " 1 18" Lt 10 LI
3 4 4 4
— 1—OH1,1’171(Z) + 4—5m§(3) — mw4> e <1—527T§(3)H1(z)
4 4 9 1
— ﬁﬂAHl(Z) + 5<(3>H171(2) + EZW?)HLl(Z) + 672HLL1(Z)
3 9 4 4 i’
_ 2irH ~u 2¢) — —x2¢(3) — )
1o () = g Hhanna(z) 4 £00) = 52md(3) - 5rap
+0()],
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i , 16 17
€ (GO ~ g Hale) — F Hranale) ~ )
56

137 43
+e( - grog” H1(2) + T2CB) Hia(2) = =i (2)
484

49 5
- 1—5H1,1,1,1,1(2) - %C(@ + EWQC(?))) + 0(56)] ;

64816 = n2(€)

1
+ (= () + 03 Hia(2) = T Hia(2)

484 32

15 111,11(2) + —¢(5) — iWQC(?’)) +0(e")

é4B18 = n2(€)

1 7. 3 7 i3
+ 63 (ﬁﬂ'QHl(Z) — @’Lﬂ'HlJ(Z) — %HLLl(’Z) — @C(B) — _180)
4 37
4( = =2 Y
+ (= 2C@H(=) + T Hia (=) = SSimHya(2)



4.9. Results for the Boundary Conditions

11 1 7
- EHLI’I’I(Z) — %WC(S) + m74> +0(€) |,
641319 = ny(€) et 1i7r3H1(z) + 17T2H1 1(2) + iﬂﬁl
6 6 ’ 360

+é (9i7TC(3)H1(Z) - £W4H1(3) +9C(3)Hi1(2) + gm?’HLl(z)

+ orHu10(2) +9(5) + £n%C(3) + gin®) + O(e)

~ 5) 5 1 1 1 5
_ D e 2H () + —i 2 ( ZinHy(2) + —Hy(2) — —n?
G4ng ng(E) [72+€(36 1(2)—|— 18271') + € (9Z7T 1(Z)+ 18 171(2’) 3671' )
11 1 16 31 5
3 (-2 = - o1 2.3
te (277T Hi(2) = gimHia(2) + 5 Hi(2) + 7008) + o im )
+0(eY]
~ 1 1 2. 2
Gupor = no(€) | — = — —eH (2) + € | ZinH(2) + ZHy1(2)
6 3 3 3
2 14 . 38 14 2.
—é <§7T2H1(Z) - §Z7TH171(2) - §H1 11(2) + ?C(S) - §m3)
2
(= SCBH() = SiT Hy(2) = SortHia(2) + imHy g (2)
302 4. 74
5 M)+ i) ) + 0(65)] |

641322 = n2(€)
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11 1 7
4 eH 2 g — =
0 tapethle) e (10 11(2) fm>

+é <——7r2H1(z) + éHLl,l(Z) _ &3)>

FEH01a(2) — 2005) + 27C(3)) + 0(66>] 7

~ 11 22
_ 2.2 3 __ —= 2 =~
G4B25 = Tl3<€) [ 7€ 4+ € ( 1807’(’ Hl(Z) 15<(3)>

44 11 44
4 ( == H e 2H -4 5
+ € < 15((3) 1(2) 50" 11(2) i ) + O(e )] ;
5 011 5 511 5 44
Gapas = n3(€) [e 1807T + € 907r Hy(z) 15((3)

1 1 2 A7
— te—H Sl - — ———?
350 T €1050 1<ZHE( 75 (2) %m”)
67 118 181
s(_ 2L e — S o
te ( 350" 1) — 555 a(?) 10504(3))

é4B27 = n3(€)
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121 127 776 419
4 == H et 2H - _——H _
e ( 5250 B H12) = o™ Hia(z) = o (z) = o
169 118 614
+e (- ors0™ M)+ g (B (2) = e M (2)
4792 247 311,
T L111,1(2) — %C(@ + 57T C(3)>
+0(e) |

v (~ ) + S () - 1))

Gypao = ns(e€) [ - 2—107T2€2 + € (—%Wng(Z) - §<(3))

4t (—%4(3)1{1(2) - %ﬁHu(z) - —7r4) + O

~ 1 1 2 17
Gamgo = ns(€) [3150 ~ g @)+ (_1_75H1’1(Z) - 9450772>

1 2 13
3 __~- 2 _ = 7
+e < = H(2) = oeHia(2) 35()((3))

88 37

+ ¢ (—EC(Z%)Hl(z) - ﬁ7T2]-1171(z) H z2)— ——

525 1575
28

337 82
e5< — mw4Hl(Z) + %C(?))Hm(z) - ﬁW2HI,1,1<Z)

g D0(5) + = (3) + 0<eﬁ>] ,

™ Trgtanal®) — 7¢0) + g

~ g () = e

)
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Gupsl = —
31 = 13(€) | o 5 60

Lome) e (EHM(Z) _ ”2)

13 7
+ & (3—107T2H1(Z) + EHl,l,l(Z) - 54(3))

+ 64 <—4<(3)H1 (Z) + 171'2[“[1’1(2) -+ 16H171’171(Z) 19 4>

15 T 1800
+ 0(65)] :
~ 1 8 13
Gupsz = ns(e€) | — geﬂl(z) + €2 (—g]—_lm(z) _ @ﬁ)

+ 63 <—1—707T2H1(Z> - %Hl,l,l(z) — 5§(3))

o6 74
+ (‘EC<3>H1<Z> =3 Hia(2) = 64H11a(2) 55”4>

641333 =n3(e) |0+ O(e") | ,

64834 =ns(e) [0+ O<E5) )

é4B35 =n3(e) |0+ 0(66) )

Gapss = ng(e) | — —m2€> + € (—7T2H1(Z) — %g(?)))
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Y

+ et (—42((3)]—!1(2) —4n*Hy 1 (2) — 1—527r4) + O(€)

~ 11 1 |
Gapsr = n3(€) | — 3 Z€H1<Z) +é (éHll(Z) + sz)

+é (%WZHl(Z) +11Hy11(2) + %C(?’))

29 43
+ € <—4§(3)H1(z) + §F2Hl’1(z) + 98H1 11,1 (2) + @74>
+ (9(55)] ,
~ 1 37 1
Gipss = na(€) 995 T E<27()0 1(z) + 180"
3 143 26 121
(it M- 2 ) (-
+e (10027r 1(2) + 5700 11(2) 5005 € 500" 1(2)
43 601 433 2
23, o Hia(2) = ((3) - i)
+ 200" 11(2) 5700 111(2) 1350<( ) 675"
493 1 163
64( — 5rCB)Hi(2) - EWSHl(z) - %W2H1,1(2)
193 2507 5, L
+ %mHLM(Z) + mHl,l,l,l<z) - %WCQ) - 607507T4)
+0(€)

Except for the first boundary condition, 5’431, we can bring every expression
coming from the same family into UT form with the same factor n;(¢). The first
integral is an exception as it is not related to the others via the differential equations
and is solved on its own. It can be made UT by a different factor, but this does not

yield additional information, so it is left in its original form.
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4.10 Results for the Four-Body Master Integrals

With the boundary conditions at hand, we can now finally calculate the integrals
themselves. The z dependent part is fully determined by iterative application of the
differential equations, where the e-form allows us to calculate the results order by
order. The constant terms are then fixed at each order separately by comparing the
asymptotic behaviour in the same limit as the corresponding boundary condition.

Taking the same integral as in case three of the boundary calculation, G4ps6, as an

example, we arrive at the result:

3 1 21
G4B36 = n3<€) [62§H170(2) + €3< — §7T2H1 (Z) + 3H1,2<Z> — ?HI,O,O(Z) + 6H171’0(2))

+ ¢t (245272(2) +9¢(3)Hy(z) + 7T2H1,0(Z) - 27T2H1,1(Z) — 33H,3(2)

117
— 24H371(Z) + 6H17172(2) — 9H172’0(2) + THLO’O’O(Z) — 42H171’0,0<Z)

+ 18H171,170(z)> L O] (4.66)

The complete results for all 38 integrals G4p; are collected in Appendix A. These
can then be related back to the Fyp; base via the inverse of the transformation
defined in Eq. (4.38). They are also collected in electronic form (in both bases) on
GitHub [113].

Looking at our results, we notice that the members of each family are brought into
the form of uniform transcendentality by the same factor, which is a first sanity
check for the results. An exception for this is G471, but this is to be expected since

its determination is completely decoupled from that of the others.

4.11 Relations Between the Master Integrals

As we mentioned before, there are some additional relations between some of the
integrals across the families. These were used as an additional cross-check for our

results.
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For completeness, we give them here:

1—ce€ 2z(e—1)+2e—1 2z(4e — 3
Fypiz = ( )F4B8 (22 ) )F4B12 + <—2)F4B247
z—1 z—1 (z—1)
e—1 2 —4e € 1
Fypis = ( > )F4B8 + ( - )F4B9 + Fypia — —Fipn
Al ze 2e —1 ze
6ze —4z —4e + 3 2z —-1)(4e =3 €
+ ( = )F4B12 A _)3( >F4B24 + Fypis
Z%€ z€ 1—2¢
(e—1)(2(4e —3)+ 1) (2 — 4e) (€ — 3€?)
Fypas = F. F. —F,
4B26 (z—1)% 4B8 T S lmo + 9e _ 1 [4Bu
1 1—2¢ e(3e—1
+ Fipio + ( )F4B11 + QF4B15
z—1 € — z€ 2¢e —1
(2(22 =122+ 3) e + (222 + 232 —H) e — 222 — 52+ 1)
+ (z—1)% Fipia

224 =3)((z+3)e—2—1) Fuas
(z — 1)%e o

(4.67)

(4.68)

(4.69)
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Chapter 5

Calculation of the Five-Body

Gluon Bremsstrahlung Diagrams

After the calculation of the four-body one-loop diagrams we now turn to the real-
emission counterpart, which in our case are the five-body gluon bremsstrahlung di-
agrams. These need to be added to the scattering amplitude to cancel the infrared
divergences caused by the gluon in our calculation. This cancellation is described by
the Kinoshita-Lee-Nauenberg theorem, which is discussed in-depth in the standard
literature, for example in Refs. [42,43].

If we integrated over the entire phase space, the same statement would hold for the
infrared diveregences generated by the photon. But, because of the cut on E, this
does not hold true and we have to use splitting functions to regulate these later in

chapter 7.

5.1 Setup of the Calculation Compared to the
Four-Body One-Loop Case

The general setup of the calculation is reused from the case of the four-body one-
loop diagrams. This means that we have the same operator insertions as discussed
in Sect. 4.1 and that we treat the occurrence of 75 in the same way we described in
Sect. 4.3.
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>
A4 > |

Figure 5.1: This figure shows the different ways that the photon can attach to the quark
legs for a given gluon configuration. A cross denotes a possible spot for the photon to
attach. It always has to choose one on the left and one on the right side of the cut.

Instead of 176 diagrams in the four-body case, we now encounter 16 x 25 = 400
diagrams. This number is put together from the 4 x 4 ways to attach the gluon on
each side of the cut multiplied by the then 5 x 5 ways to add a photon to this. The
possible attachments are shown in Fig. 5.1 for one of the 16 gluon configurations.
Note that there is no one-to-one correspondence between the four- and five-body di-
agrams as, for example, gluon insertions that are absorbed by wave-function renor-
malization in the four-particle case have corresponding five-particle cuts that are
counted towards the unrenormalized squared amplitude.

We generate and process the diagrams using the same setup as before, i.e. utilizing
QGRAF and Form. The resulting integrals are then reduced in FIRE.

5.2 Phase Space Parametrization for the Five-Body

Diagrams

For the diagrams at hand, we have an extra particle, the gluon, in the final state and
thus need to integrate them over the five-particle phase space dPS5. The momenta

of the process in question are assigned as follows:

b(ps) — q(p1)q(p2)s(p3)y(pa)g(ps) -
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Since there are more independent momentum invariants, this involves more integra-
tions than in the four-particle case, making the direct calculation very cumbersome.
The complete derivation of the parametrization we are using can be found in Ref.
[72], a brief overview is given in Appendix H. The final result we are using for the

invariants is the following:

S1345/0° = t7, $34/q° = totgtity,
s134/q% = tetr, s15/q¢° = tets[l — to(1 — tata)] — yio
s13/q* = ttqla, so5/q° =ys + (Y — yg )ts
803/ @ = tatr(1 — taty)(teto +to), S35/q° = tatols(1l — tats),
s14/q° = totatety 515/6% , = Y10 + (Ui — Yio)tho
s2/0" = y5 + (Y5 — v5)ts) (5.1)

with the phase space integrations reading;:

L g

/ AP . = kP (43200 / T T tltsts) ™ ~[tststrotao) >~
0o J=2
X [t2t6%6%7]1726[(fgtgfgt;;iﬁgfg)]76t$736 . (52)
The prefactor IC(FB) is defined as:

K = (2m)°~1P2722P2=8y (D — 1)V(D — 2)V(D — 3)V(D — 4)
446

T 2T (—26)T(2 — 2¢) (5:3)
with the angular volumes V' defined as
27TD/2
D) = ) 4
V(D)= 5575 (5.4)

In the four-body case, the parametrization of the invariants included the cut variable
z explicitly. For the five-body integrals, we chose a different approach for obtaining
the boundary conditions that removes the dependence on the cut, allowing us to use

the above parametrization. This will be discussed in detail in Sect. 5.6.
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Not including the cut explicitly for the calculation of boundary conditions later gives
us the freedom to relabel all the invariants in Eq. (5.1), but during the reduction
step we still have to exclude py, the photon momentum, from this symmetry (as we
did in the last chapter).

5.3 Specifics of the IBP Reduction

Similar to the four-body case, we are also conducting an integration-by-parts reduc-
tion on the integrals of the five-body diagrams. We can sort them into a total of
six different families, of which the first three contain only massless propagators, the
fourth containts a single massive one and the last two contain up to two massive

propagators. They are defined as follows:

Fior = {p%a p%, p§ ) (pb - p123)2, p§> p%235 - ng, (pb - P13)2> (pb - P235)27
(py — ]9135)27 (7 +p5)2, (p2 +p5)2, (ps +P5)2, (! +p3)2, (p2 +p3)2} ;

Fro2 = {p3, P35, P5, (0o — P123)°, D3, Plass — 2mp, (py — pa3)®, (oo — p13)*,
(py — ]9235)2; (py — p135)2, (p1 +p5)2, (ps +p5)27 (p1 +p3)2, (p2 +P3)2},

Fioz = {p?, p§, p§ ) (pb - p123)2, pé, p%235 - zmi, (pb - p23)2, (pb - P13)27
(py — ]9135)2, (p1 +p5)27 (p2 +p5)2, (ps +p5)2, (p1 +p3)2, (p2 +p3)2} )

Fios = {p?, p%, p§ ) (pb - p123)2, pﬁ, p%235 - nga (Pb - ]95)2 - m%, (pb - p12)2,
(py — p235)2, (py — p125)2, (p2 +p5)2, (ps +p5)27 (p1 +p3)27 (p2 +P3)2} )

Fios = {pi, p3, P53, (Do — P123)°, D3, Dlass — 2my, (p123)” — mi, (po — ps)” — mg,

(py — P12)27 (pp — p135)2, (p2 +P5)27 (ps +p5)2, (p1 +p3)2, (p2 + p3)2} )

Fi06 = {p%a pi, p§ , (Po — p123)27 ng pf235 - ng, (]9123)2 - sz;a (P — p5)2 - mi,

(py — p13)2, (po —p135)27 (py — p125)2, (1 +p5)2, (p1 +p3)2, (p2 +P3)2} .
(5.5)
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Here, as before, we eliminated p; in favor of the other momenta to make all the
denominators linearly independent. When sorting the integrals into the six families,
we can use symmetries in the momenta of all final-state particles except the photon,
i.e. p1, p2, p3 and ps.

Using reversed unitarity in this case leads to an additional propagator, p2, compared
to the four-body reduction, so now the first 6 denominators are fixed and their

corresponding diagrams are set to zero if their power becomes non-positive.

5.3.1 Relations Between the Four- and Five-Body Reduc-

tions

One interesting observation we made in the course of the calculation is that there
is a correspondence between the reductions of the four- and five-body case. When
applying reversed unitarity, we treat the involved momenta as loop momenta. This
leads to the interesting fact that, regarding the reduction algorithm, the behaviour
of the p; does not conceptually differ from that of £ anymore.

Observing this, one can establish a relation between the reductions by relabelling
ps as k or the other way round. This makes it in priciple possible to reduce the
overall number of required families, because under relabeling they can be mapped
onto each other.

The downside to this is that the aforementioned vanishing of the diagrams for neg-
ative powers of the denominators is not as straightforward to implement, as we do
not have an on-shell condition for k. Hence, this has to be done by hand diagram-
by-diagram when turning k£ back into ps. For our case, the non-vanishing of certain
integrals leads to a larger number of terms during the reduction process, making the
combined reductions slower than the separate ones.

This could be optimized for future projects similar to this one, while for us it serves

as a semi-independent cross-check for the reduction results.

5.4 The Five-Body Master Integrals

The reductions, as in the four-body case, are done in FIRE while utilising the OMNI

cluster of the Siegen University, yielding a total of 36 master integrals across the six
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families. We collect them here, using the families defined in Sect. 5.5 and the nota-
tion introduced in Sect.4.6. The integrals are additionally given diagrammatically
in Fig. 5.2.

5.4.1 List of the Five-Body Master Integrals

Fsp1 = Finu[1,1,1,1,1,1;0,0,0,0,0,0,0,0],
Fspo = Fim[1,1,1,1,1,1;1,0,0,0,0,0,0,0],
Fsps = Fim[1,1,1,1,1,1;1,0,0,1,0,0,0,0],
Fsps = Fin[1,1,1,1,1,1;1,0,0,2,0,0,0,0],
Fsps = Fio1[1,1,1,1,1,1;0,1,1,1,1,0,0,0] ,

Fspe = Fioo[1,1,1,1,1,1;1,1,0,0,0,0,0,0],
Fspr = Fipo[1,1,1,1,1,1;1,2,0,0,0,0,0,0],
Fsps = Fle[1,1,1,1,1,1;1,1,—-1,0,0,0,0,0],
Fspg = Floe[1,1,1,1,1,1;1,1,0,0,0,—1,0,0],
Fspio = Fipe[1,1,1,1,1,1;1,1,1,1,0,0,0,0],

F5B11 = F103[]-) 17 17 ]-7 ]-7 1; 17 170707 17070a O] )
F5B12 = F103[17 17 17 1a ]-7 1a 17 1a07 ]-7 1705()’ O] )

Fspi3 = Fio4[1,1,1,1,1,1;1,0,0,0,0,0,0,0],
Fspis = Fio4[1,1,1,1,1,1;1,0,0,1,0,0,0,0],
Fsp1s = Fioa[1,1,1,1,1,1;1,1,0,0,0,0,0,0],
1,1,1,1,1,1;1,1,0,0,—1,1,0,0]

[
[
[
F5B16 - F104[
1,1,1,1,1,1;1,0,0,1,0,1,0,0],
[
[
[

Fspi7 = Fioa
Fspis = Fioa[l,1,1,1,1,1;1,1,1,0,0,0,0,0],
1,1,1,1,1,1;1,1,1,-1,0,—1,0,0]
Fspoo = Fioa[1,1,1,1,1,1;1,1,1,1,0,0,0,0],

F5B19 = F104
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F5B21 = F104[17 17 1a ]-7 17 17 1a07 ]-7 170a ]-a 070] ;

Fspoo = Fip5[1,1,1,1,1,1;1,0,0,0,0,0,0,0],
Fspog = Fips[1,1,1,1,1,1;1,1,0,0,0,0,0,0],
Fspog = Fips[1,1,1,1,1,1;1,0,0,1,0,0,0,0],
Fspos = Fips[1,1,1,1,1,1;1,0,1,0,0,0,0,0],
Fspag = Fios[1,1,1,1,1,1;1,0,2,0,0,0,0,0],
Fspor = Fips[1,1,1,1,1,1;1,0,0,1,0,1,0,0] ,
Fspos = Fip5[1,1,1,1,1,1;1,1,0,1,0,1,0,0],
,1,1,1,1,1;1,-1,1,0,0,0,0, 0],
Fspso = Fips[1,1,1,1,1,1;1,1,1,0,0,0,0,0],
Fsps1 = Fis[1,1,1,1,1,1;1,1,2,0,0,0,0,0],
Fspss = Fios[1,1,1,1,1,1;1,1,1,0,0,1,0,0],

F5B29 = F105

Fspss = Fie[1,1,1,1,1,1;0,1,1,0,0,—2,0,0] ,
Fspsqy = Fi6[1,1,1,1,1,1;1,—-1,1,0,0,0,0,—1],
Fspss = Fie[l,1,1,1,1,1;1,0,1,1,0,0,0,0],
Fsps¢ = Fios[1,1,1,1,1,1;1,1,1,1,0,0,0,0].

As we discussed in the four-body case, some of the integrals that FIRE suggest as
master integrals have to be replaced after this step by manually interchaning them
with ones that are more suitable. This pertains to either integrals that already have
a dot on one of the propagators from reversed unitarity (i.e. one of the first six
entries is > 2), as it is unclear how to treat these properly, or to integrals that result

in a non-decoupling of z and € in the differential equation later on.
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Figure 5.2: The full set of master integrals for the five-body bremsstrahlung contri-
butions that was calculated in the course of this work. The dashed lines indicated the
cut propagators from reversed unitarity relations, the solid light blue (double-)lines in-
dicate (massive) propagators. The dotted red lines show numerators in the following
way: When connecting two lines with momenta [; and l3, the corresponding numerator is
(I3 — I2)> — m? — m3. The orange cross denotes the cut propagator with momentum py as
the symmetry in the momenta is broken here through the cut on the photon energy.
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5.5 Calculating the Master Integrals

The method we use to construct the general solutions for the five-body master
integrals is the same that is described in Sect. 4.7 for the four-body case.
The derivative in z acting on a given integral squares the denominator originating

from the d-function implementing the cut, i.e.
D.[s1235 — 27" = [s1235 — 2] 2.

These new integrals are reduced again and lead to six systems of equations, one for

each family. They all are of the form:

O.F = A(z,€)F . (5.6)

5.5.1 Solving the differential equations

After the IBP reduction gives us our basis of master integrals and we have made

the neccessary changes discussed above, we arrive at the following sets of integrals:

Fio = {Fsp1, F5B2, Fsps, Fspa, Frps } (5.7)
ﬁlOQ = {F5B17 F5B27 F5B67 F5B77 F5B87 F5B37 F5B47 F5B9> FSBlo} 3 (58>
Fio3 = {FsB1, Fsp2, Fsps, Fspa, Fspe, Fsp7, Fsp, F5B10, F5B11} (5.9)

Fioa = {Fsp1, Fspe, F5p3, Fspa, Fspis, Fspia, Fspis,

F5B167 F5Bl7a F5B18> F5B19a F5B207 FSBQI} ) (510)

-

/
F105 - {F5B1a F5B27 F5B13) F5B227 F5B23; F5Bl57 F5B167 F5B24)

F5B257 F5B267 F5B277 F5B28a F5B297 F5B307 F5B317 F5B32} ) (511)
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and

iy
F106 - {F5B17 F5B27 F5B13; F5B227 F5B237 F5B247 F5Bl47 F5B15a

F5B337 F5B25a F5B26> F5B347 F5B357 F5B30> F51331, F5B36} . (512>

Note that there is a significant overlap between these sets, as we need to make sure
that our bases are closed under the reduction.

We further want to explain the ‘prime’-notation for the last two groups: In these, we
were not able to fully cast them into the e-form, because the choice of basis integrals
leads to non-integer powers in the matrices A(z, €). The algorithm we use to change
our basis cannot easily account for this and fails to find a transformation. Trying
to solve this problem, we changed our basis by changing powers of denominators in
the integrals with the most lines, but we were not able to find a basis that eludes
the problematic entries in the differential equation matrix. Because of this, we
eliminated the last three from each group and computed them separately via the
differential equation in original form. This will be discussed in Sect.5.7. The new

integral-vectors without these read:

F105 = {F5B17 F5B27 F5B137 F5B227 F5B237 F5B157 F5B167 F5B247
F5B257 F5B267 F5B277 F5B287 F5B29} ) (513)

and

F106 - {F5B17 F5B27 F5B137 F5B227 F5B237 F5B247 F5B147 F5B157
F5p33, F5pas, 526, F5B34, F5B35} . (5.14)

With these adjustments, we can define the respective systems as:
O.F; = A(z,€)F; i e{101,102,103,104, 105,106} . (5.15)
These systems are now transformed into a basis, where they take the form

azéz = 61211'76(2)6(1‘ s (516)
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via the transformation matrices 7" that fulfil:

A—1 =

G=T F. (5.17)

The matrices 71T can be found in Appendix G.

The new differential equation systems that the transformations yielded were found
to have poles in z = 0,1,2. For this reason, we rewrote them in terms of z to get
an alphabet of Z = —1,0, 1, enabling us to solve the equations in terms of HPLs.

After the change of variables, we can write the systems as (notice the minus sign

from the transformation):

82éi = —EAi7€<Z>éi, (518)
with the matrices Ai,e splitting into:

1 - 1 -
Ay = Airsz. 5.19
I R B (5.19)

N

A = Ai,z +

ST

The complete differential equation matrices can be found in AppendixD.

Contrary to the four-body integrals, we only use the e-basis to solve the integrals
iteratively in terms of HPLs, not fixing the boundary conditions there. This has its
reason in the method we chose for determining the latter, which we now want to

discuss.

5.6 Calculation of the Boundary Conditions

For the determination of the boundary conditions for our five-body integrals, we
chose a method that differs from the ones we used in the four-body case.

When comparing the parametrizations of the phase space, we see that because of
the extra particle it is not an easy task to avoid introducing roots into the integrals,
which quickly makes analytic calculation, or even an expanded result via Mellin-
Barnes representations, cumbersome, if not impossible.

For this reason, we used a method that avoids having to calculate the integrals with

the cut on the energy of the photon, i.e. dropping the §(z — $1235) in the phase space
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integrals. Let us now explain in detail how this works.

5.6.1 Determination of Constants by Integration Over z

The basic idea of this method is that if we integrate a kernel over the whole phase
space without the cut on the photon energy, the result has to be equal to the one
with the d-function that is introduced to account for the cut, when the latter is
integrated over z from zero to one.

This integration, which normally only ranges from zero to the cut value d, completes
the full phase space and we can read off the correct constant part of the solutions
we got from the differential equations by comparison. This method was introduced
in Ref. [114] and has been successfully applied, for example, in Ref. [115].

Introducing the notation F for the boundary conditions, we can write:

/0 dz Fi(z,€) = /O dz (T(z,€)G(z,¢€)); = Fy(e). (5.20)

The matrix 7 is the transformation matrix between the original and the e-basis and
the vector G contains the solutions of the differential equations with undetermined
constant parts.

Note that Fj(z,€) and ]:;Z(e) are related by the removal of the propagator from
reversed unitarity that originates in the 6(p2y35—2 m?) (in case that there are no poles
in the transformation when integrating over z, more on that in the next section).
For the right-hand side of the equation, the cut-less integrals E, we can furthermore

apply a second integration-by-parts reduction:

F(0)Z Y ey(0) Hy(e) (5.21)

J
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Figure 5.3: The full set of master integrals we encounter in the reduction without the
cut on the photon energy. The dashed lines indicated the cut propagators from reversed
unitarity relations, the solid light blue (double-)lines indicate (massive) propagators.

Diagrammatically, our approach looks as follows:

%\\\ \\
1 \\\\\\ \\\ \\
/ dz —e e = —4 T
0 \\\\7//// \:\\7////
mp 2(4e — 3) (e —4)(5e —3) - -
1 AR A 5.22
Qe—D@Be—1) (5.22)

For the reduction, we are using the families defined in Eq. (5.5) with the propa-

gator [ply3; — 2 mj] replaced by [plys;)-
Eliminating the dependence on z significantly lowers the number of master integrals

we encounter for these reductions. We are left with a total of nine integrals, which
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are shown in Fig. 5.3. In the propagator notation, they read:

HSBI - F101[17 17 ]-7 17 170;070707070707070] )
H5B2 - F101[17 17 ]-a ]-) 1707()’ ]-) 17 17 1a07070] )

H5B3 = F102[17 17 L 17 1707 1a 170707()’07070] 5
H5B4 - F102[17 15 17 17 1707 17 17 17 170707070] )

H5B5 = F104[17 17 17 17 1707 17 17 17070707070] )

Hspg = Fios[1,1,1,1,1,0;0,1,0,0,0,0,0,0],
Hspr = Fip5[1,1,1,1,1,0;0,1,0,1,0,0,0,0] ,
Hsps = Fios[1,1,1,1,1,0;1,0,0,1,0,1,0,0],
Hspg = Fips[1,1,1,1,1,0;1,1,1,0,0,1,0,0].

The massless integrals in Fig. 5.3 were already calculated in Ref. [116] and we
could use these results to calculate the boundary conditions for the first three fam-
ilies. For the other three families, which contain massive lines, we calculated them

ourselves via Mellin-Barnes representations as a series in e.

Collecting the results, we arrive at the following solutions for the base of integrals

we use to construct the boundary conditions:

1 n 71 26815 72\ L ) (3) + 872675 Tl 5\ 4
— + —€ — — — € —— - —T
144 576 20736 54 12 82944 216

355«3) . 220099831 26815 , n 17
—— - ™ ™
48 2985984 7776 2160

Hsp = no(E) [

Y

Do)

n 11 7 2972 1
Hepo = o€) [— — e+ (Z — 376T ) e + 3 (—834¢(3) — 117 + 2977) €*
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1
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+ ( —39¢(3) + %r?c(i%) — 75¢(5) — gﬂ4>€2 +0()

I

1 1 23 1 43 8 53
H589=nige)[————e+< 2——)62+(—C(3)——+ 2)63

—7 —7
36 9 432 3 8 9 108

43 20 53 143
+ (560 - 5+ 3om+ ) €+ 0

—m 4+ —7
9 36 1080

Combining Egs. (5.20) and (5.21) leads to:
1
/ dz Fy(z,¢€) = Z cij(€) Hj(e) . (5.23)
0 -
J

On the left-hand side, we plug in our general solutions from the differential equations
and integrate over z. On the other side we can use the integrals we just determined.
By comparing the general solution with the expressions on the right, we can extract
the analytic values for the constants order-by-order in e.

Note that this method has one subtlety tied to the transformation from the e- to
the original basis. The entries of T'(z, €) in Eq. (5.20) are functions of z and thus can
contain poles in this parameter, e.g. being proportional to 2~ and (1—2)7?, leading
to the integrations being non-convergent. The origin of these poles is the fact that
the e-expansion and the integration over z do not commute for every integral.

The next section thus will be about the solution to this problem and the treatment

of these poles.

5.6.2 Avoiding Poles in the Integration

For the fixing of the boundary conditions, we need the integrations over z to be
finite in order to get meaningful results. To ensure convergence, we identify the
problematic denominators z=¢ and (1 — 2)~% and multiply by their inverse to avoid
poles in the integration region. This multiplication makes the terms finite, but since
we changed the left-hand side of Eq. (5.20), we also have to find a proper adjustment
for the right-hand side.
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To do this, we are using a property of the d-function that allows us to replace the z

under the integration:

/ dz /dPS5 2 — S1235) / dz/dPS5 (2 — s1235) [(S1235)

:/dPS5f(31235), (5.24)

where f(z) is a polynomial in z.

For our case, this introduces diagrams with addidtional numerators s7y35, depending
on the power of the poles in z.

This is best illustrated for the boundary condition of Figs, where we encounter a

pole of (1 —z)7":

& = B & -9
1 N N
[ e — ) e (529)
0 / \ / \
« - - « - »
PRREEY
/ N/
:—46—.»777>7<***.7
/N
[ S
& - -9
26 N/
IBP
= e e (5.26)
5e¢ — 1 /N
¢ - — 9

As for the other diagrams in this thesis, the dotted red line here indicates a nu-
merator N, given by the difference of the two connected momenta [y and l,: N =
(I} — I3)* —m?2 — m3.

This means that for the integrals where we encounter poles z7%(1 — 2)7 in the
transformation, we multiply the expression by z%(1 — 2)°, the integrated version of
which we then call ﬁg,Bi. To avoid ambiguities, the polynomial we multiply to the
expression is always the one with the minimal power of a and b that eliminates the

problematic poles.
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5.6.3 Results for the Boundary Conditions

Circumventing the divergences stemming from poles introduced by the transforma-
tion with the method from the last section, we can fix all boundary conditions for the
integrals Fsg1—F5p3s. We give them here up to the respective order that is needed

in our diagrams, the normalization factors are defined in Eq. (4.65):

- 171 26815 872675 71 5
Frng — L L g f4bolo T 3 e N
m1 = no(€) | 7 ez e <20736 54) ‘ ( 82044 216 12«3))
220009831 26815 17 355
4 2 4 5
- Lt 223y 0
( 2085084 7776 " T 2160”48 o )) +0(€)
- 17 7357 72 46517 5672 5C(3)
Py — L b 900 T 3 _ _ O
m2 = mo(€) | 57 +eg F (864 9> ‘ ( 648 27 2 )+ ()]

- 1 4 49 4r2\ 2
B — ”c;gf) Cre e (_ _ i) — 268 (=201 + 1672 + 45¢(3))

1397 196 17
g (1090 196 5 17 4 5
€ ( i 5™ Too" 80((3)) + O(€)

3 3 9

1220 320 592
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~ 10 40 8072
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2%43931323 75¢ (5 O(é
# (—gmt - 39003) + or%(E) - T566)) + O
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ﬁ5329 = n0(€)

ﬁ5B30 = no(ﬁ)

~ TNl €
Fsps1 = 602(;
~ Nl €
Fypss = "9

ﬁ5B33 = no(ﬁ)

ﬁ5B34 = no(E)

157 2
2502 E“LO(E)]’
7T2
119 /193 2 ;
6% €<T_€>+O(€)]’
1 11,83 11 ,\ (535 121 , 23 A
IPRASTI (12 367T)+6<12 567 28] o)
1 271 ,
—E—E%+O(€) 5
0+0(e) |,
_—W—2—|—e —§7r2—§§(3) + O(€?)
12 1 2 ’
! 13 72\ L,/ 115 17, 11 ,

With the boundary conditions as the last missing piece, we can then calculate all

integrals from the families F 1017}3106. These can be found in Appendix B.

Note that the six families do not include all master integrals, as we had to take out

some of them to make the transformation to the e-basis possible. Four of them have

to be calculated separately, which we will discuss in the next section.
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5.7 The Remaining Integrals

The integrals Fspso, Fsp31, Fspse and Fipsg are solved via the differential equations
in the original basis. These equations are written in full length in Appendix E, their

general form is:

2(2ze +2e + 1 2

0, Fspso = Rso(e, 2) — ( (- +3)3 ) Fspso — 13 Fspai, (5.27)
(3e —1)(4e — 1) 2(z+6e+1)

0. Fipsy = Ry (c. T 5.28

5B31 s1(€,2) + (= 13)2 5B30 = 13)z 5B31 ( )

Je—1 1 5z€ + z — 3¢

0, Fspso = Rsa(e, 2) + ( — )F5B30 + —F5p31 — Q}%ng, (5.29)

27 27 27

1 (2¢ +1)

0, Fspss = Rse(e, 2) + EF5B31 — = Fspse (5.30)

The functions R; (e, z) contain all the parts proportional to the other integrals, which
are known from the last section. This means that the task at hand is the solution
of inhomogeneous differential equations of first order.

There is one complication though, as we see that we cannot work our way iteratively
from the top to the bottom of the equations in Egs. (5.27) — (5.30). The reason for
this is the non-decoupling of the first two equations, which have to be solved at the
same time.

For this, we first use a variable transformation of

1—=2
z2—3’

xr = (5.31)
which simplifies the alphabet.

After this we can solve these order-by-order in € via Goncharov polylogarithms. We
see that the solutions have letters including j:\/ig = —+r3, which also explains why it
was not possible for us to find a transformation to the e-base. (There may be a way

to find a transformation when applying the change of variables from Eq. (5.31) to
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the whole systems F /105 and F ,106 and finding a e-basis for the price of complicating
the calculation of the lower-line integrals.)

After the first two of the remaining integrals are computed in this way, the other
two are following straightforwardly since they are not coupled anymore. The results

can be found together with the other master integrals in Appendix B.

With the master integrals done, we now can insert them into the diagrams and
combine the four- and five-body squared amplitudes. After this combination, the
infrared divergences due to gluons cancel out, but we still encounter poles in e.
These have two different origins: On the one hand, we still suffer from ultraviolet
divergences, and on the other hand, there are still infrared collinear divergences from
photons contained in the expression. These will be cancelled by renormalization and
the use of splitting functions, respectively, which will be discussed in chapters 6 and
7.

5.8 Color Factors

Let us discuss here the different color structures that are partaking in the squared
amplitude. As we discussed in the beginning of the calculation, we calculate the ex-
pressions without explicit color factors and in the end multiply by the corresponding
factors to get, for example the insertions (P3 x Fj), (Py X Ps) and (P, x Py)
from the calculation of (P3 x P).

When taking the color traces, we have to differentiate between the cases of one and
two traces, both of which can be found in Fig. 5.4 and Fig. 5.5, respectively.

N, is the number of colors, Cr and C'4 are the Casimir operators of the fundamental
and the adjoint representation of the SU(3) group, respectively. In our case, the

N2

o =3 and Cy = N, = 3.

numeric values are N, = 3, Cp =
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O,
T, T, I1®1
O
=
0 Repyys? O T,eT, Yo C2C
2
Tr(OQTcTcC)lOQOl) 1 ® 1 C(FC(A CFCA
O,
T, T, 1®1
O,
=
O, O, Ty ®T, leCF (CA - 2CF) C}QT‘CA
Tr(05Te01T.0201) el -3Cp CrCy
O,
T, T, I1®1
O
=
0, o T, @1, %CF (Ca —Cr) —%C’F
1
Tr(OchologTCOI) IT®1l _ECF C(FC’A

Figure 5.4: All occurring color traces in the case of one fermion line. The color of the
gluon is denoted by T., while O; and Oy are the color structures of the operators P;—Fs.
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O,

(

Tr(0102)Tr(02T. T:01)

V)

O, o

Tr(0201T.)Tr(02T.01)

»

Oy O,

TI‘(OQT(;Ol)TI‘(OQTcol)

O,
T, ®1T, 1®1
O,
T, @1, %C%CA 0
I1®1 0 C%CA
O,
T, ®1, 1®1
O,
T, ® T, 4—11 (CFCE‘ — 2CF) %CFCA
1®1 1CrCy 0
O,
1,91, 11
O,
Ty, @ Ty —%C’F %C’FC'A
1®1 1CrCy 0

Figure 5.5: All occurring color traces in the case of two fermion lines. The color of the
gluon is denoted by T, while O; and O are the color structures of the operators P;—F;.




Chapter 6
Renormalization

After we calculated the bare contributions, our result still suffers from poles up to
1/€%

These have two different sources: The first one are the collinear infrared divergences
from the photons that do not cancel in the process of summing the virtual and real
part of the amplitude and the other source are ultraviolet divergences. The latter

are going to be adressed in this section.

6.1 Standard Model Renormalization

In a first step, we renormalize the parameters of the Standard Model Lagrangian.
For this, we define the occurring parameters X as bare quantities, denoting them
as Xp. If we analyze the tree-level four-body diagrams, we see that the relevant
quantities are the wave functions of the light (massless) and heavy (massive) quarks
V; p and U}, g, the photon vertex Vg, the mass of the b quark m; p and the wave-
function of the photon A, p. The corresponding counterterm diagrams are shown
in Fig.6.1 a) — ¢). The respective contributions will be discussed in detail in the
next sections.

These quantities are related to the physical parameters by Z-factors, which we define
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c) d)

Figure 6.1: All types of contributions that are needed to cancel the UV divergences of
the four- and five-body diagrams calculated up until now:

Diagrams of type a) show the insertion of a renormalized quark propagator, splitting into
parts proportional to the mass- and wave function renormalization constants. Additionally,
we encounter b) renormalization of the photon vertex, ¢) wave function renormalization
of the external legs and, finally, d) operator renormalization.

as follows:
Uyp =220y, U5 =270,
My, = Zm My, Aun =23 A, (6.1)
Vs =2V

These factors can be expressed in a series in «:
(o] as k
Zx =1+ <E) z® (6.2)
k=1

As we are calculating the next-to-leading order in «y, we are interested in the Zﬁg)
expressions, which can can be found in the literature [42,43,117]. For the O(ay)
correction to the photon vertex, a simple comparison of the diagrams shows that it

is related to the O(c.) correction by a multiplication of the color factor Cp.
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Our choice of renormalization scheme is the so called on-shell scheme (or OS scheme).
At O(as), the factors (in Feynman gauge, £ = 1) can be given as an all-order

expression in €:

720 = 8 136)21;(6) ee(uts)

20 =z,

AN AN

zM =0, (6.3)
Z{N =0, (6.4)

where vp is the FEuler-Mascheroni constant. We also introduced the shorthand
L,= log(mﬁg) for the logarithm incorporating the renormalization scale .

Note that we do not need to renormalize the photon wave function at this order, as
the corrections in the strong coupling only start at O(a.a;). This is because gluons

can not directly couple to the photon and need e.g. a quark loop to couple to.

In the following discussion we will only renormalize the left side of the cut. This is
done similar to the calculation of the four-body diagrams, where we only calculated
the loop on the left side and then took the complex conjugate to get the expression
for the right side. Here, we also only insert the counterterms to the left and build

the right side insertions by conjugation.

6.1.1 Quark Propagator Renormalization

Occurring divergences from quark propagators are renormalized by counterterm in-
sertions of the type in Fig.6.1 a). Inserting a counterterm changes the propagator

expression in the following way:

(zm) N (zm) (i[(Zy = )P — (ZyZum — 1)m,)) (zm> ,

2 _ 02 2 _ 02 2 _ 2
pT—my pr—my pT —my
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where ¢ is either [ for the light quarks or A for the b quark propagator.

Inserting the relation from Eq. (6.2) this becomes:

(i) (52) ([0 —m)] —ilzm)) (£ ) o)

Here we observe that the first part is directly proportional to the original propagator
again, whereas the second part leads to a new type of diagrams with a dot on the
propagator. Taking one of the occurring diagrams as an example, we can write this

as:

‘ _ (s &) ‘ ) ‘
oo =) [‘Zh Lo i mqﬁ] '
As the second term is proportional to the quark mass, we see that only the diagrams
with the b quark propagator play a role for the mass renormalization. Furthermore,

we see that the first term is simply a multiplication of the tree-level squared ampli-

tude by the corresponding Z-factor.

6.1.2 Quark Wave Function Renormalization

The external quark spinors also need to be renormalized. For this, we replace the
external legs via the relation in Eq. (6.1). Plugging in the relation from Eq. (6.2)

leads to:

_A_ = (&) L,
TS

@ —_ p—
47

2 h

Since only the heavy quark contribution is non-zero, we get a prefactor of % from

the expansion of the square root in Eq. (6.1).
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6.1.3 Photon Vertex Renormalization

As for the wave function, the photon vertex renormalization also is multiplicative.

We can write the insertion as:

which cancels with the first part of the mass renormalization, cf. Eq. (6.5).

6.2 Operator Renormalization

After renormalizing the Standard Model Parameters, we have eliminated almost all
sources of UV divergences. What is left now are the ones from the insertion of the
operators. To calculate the relevant contributions to our process, we again have
to determine the O(ay) corrections to the tree-level amplitudes, when inserting the
bare operators P, g to the left of the cut (as before, we get the corresponding right

insertion by complex conjugation) [62]:

' CGPp= Y. CZpp)yPi+ Y. Ci(Zpp)iE;

i=1u,2u,3,4,5,6 i,j=1u,2u,3,4,5,6 i=1u,2u,3,4,5,6
Jj=12,3,4

1 oy
= > G <5ij + ZE(dzpp)ij) P;

i,j=1u,2u,3,4,5,6

1 ay
+ > G ((51-]- + EE<5ZPE)ij> E;

i=1u,2u,3,4,5,6

Jj=12,34
= g C: P+ g Ci E;
i=1u,2u,3,4,5,6 i=1,2,3,4
1 ay
+ . g Ci(0Zpp)ij Py + E Ci(0Zpr)ij Ej |,
,j=1u,2u,3,4,5,6 i=1u,2u,3,4,5,6
j=1,2,34
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where the 0Z;; are entries of the operator mixing matrices that will be discussed in
the next section. The operators denoted by E; are the evanescent operators defined
in Eq.(2.17). These operators vanish in four dimensions, i.e. their contributions
start at O(e). But, when calculating expressions that are not UV-finite in and of
themselves, they multiply UV divergences, which leads to finite terms. Since we
have not included them in the calculation of the bare amplitudes, we now account
for this effect here in the renormalization step.

The first term in the second to last row of the Eq. (6.6) was already calculated in
Ref. [10] and the second term vanishes in the limit ¢ — 0. For our calculation, we
only need the two terms in the last row, as they are of O(ay). As before, we can
express the procedure diagrammatically, for the insertions of the operator P; to the

left of the cut, the diagrams we have to calculate take the following form:

()| ¥ e,

7=1u,2u,3,4,5,6

+ > (6Zpp)y

§=1,2,3,4

6.2.1 The Z Matrices for Operator Mixing

The mixing matrices that are relevant for our calculation can be determined without
calculation of additional diagrams. For the sum of all possible insertions, the matrix
has already been calculated in Ref. [117].

As this calculation is formally a completion of the one in Ref. [62], we have to be
careful as to not double-count certain elements. To circumvent this, we take the
entries of the 6 Zpp matrix that were already used there and subtract them from the
ones in Ref. [117], the results of which lead to the matrix we need. As Ref. [62] did

not need evanescent contributions, we take our dZpg as is from Ref. [117].



6.3. Cancellation of the UV Poles 123

Both matrices take the following form:

.
Wl
e}
[en)}
e}
[en}

128 80 20 1

00 =5 -5 5 —3
5 200
1 00 0
0 00 0

(6Zpp) = . (6.8)

0 00 0
0 00 1
002 3

6.3 Cancellation of the UV Poles

Adding all previous diagrams up and dressing them with the corresponding Z fac-
tors leads to four-body tree-level kernels that we need to integrate. The diagram
expressions are generated with the same toolkit as before (QGRAF and Form) and
can then be integrated in Mathematica. For this, we use the parametrization we
introduced in Eq. (4.16). Because we only encounter tree-level diagrams here, the
factorizing parametrization makes this a straightforward task.

After calculating all the above counterterm contributions to our expression, we end
up with a UV finite correction for each entry of G;; (cf. Eq.(2.20)) that includes all

four- and five-body corrections at O(as). As we discussed before, the expressions
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that remain after the renormalization still contain collinear divergent pieces, which

are discussed in the next section.



Chapter 7

Regularization of the Collinear
Divergences via Splitting

Functions

7.1 Switching the Regularization Scheme

At this last step of the calculation, our intermediate results still contain poles in the
dimensional regularization parameter e. These poles arise from the regions of phase
space where the photon is collinear to the light quarks and are an artifact of the
latter being treated massless. Treating them as massive would avoid these collinear
divergences for the price of making the integrals more involved. At the current
state of the art, the calculation of the analytical results with only the b quark being
massive was a considerable challenge already, so we want to avoid additional masses.
Given this, we now want to trade this artificial regulator for a more natural one, i.e.
a physical cut-off that is related to the light meson masses.

For this, we make use of the fact that the amplitudes factorize in the quasi-collinear
limit [10]. This means that the amplitudes with a photon being emitted from the
quark leg g, (b = ¢1359377(g)) can be expressed as the amplitude without the photon
multiplied by a splitting function f,, that describes the emission of a quasi-collinear
photon from the quark ¢, (b = ¢175q3(9) @ fn).

These splitting functions then contain the collinear divergent parts, which can

125
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NN
=N

c)

Figure 7.1: The three types of diagrams that are calculated to regularize the collinear
logarithms:

Diagrams a) show the three-body one-loop contributions and diagrams b) the four-body
contributions with a real gluon emission. In these two, only the leading order contribu-
tion of the splitting function needs to be considered. These correspond to the four-body
one-loop and the five-body real emission diagrams, respectively, the photon emission sub-
stituted by the convolution with a splitting function.

In diagram c), we see that we also encounter the case of three-body tree-level diagrams
that are convoluted with the NLO contributions to the splitting function.

either be regulated in dimensional regularization or via quark masses. Comparing
these leads to a relation between the schemes that makes it possible to switch from
one to the other [10]:

dFm . dre + drshift '

dz  dz dz (7.1)

7.2 The Leading Order Splitting Functions

The first elements in the switching of the regularization schemes are the diagrams
in the first row of Fig.7.1, where we substitute the photon in NLO diagrams by
a leading order splitting function. This splitting function is given to O(e’) in e.g.
Ref. [10]. This does not suffice for our case, as we encounter a more complicated
pole structure at our order of calculation. To illustrate the process, the following
section is an overview over the calculation of an all orders expression for the leading

order splitting function, which we will call Af©.
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o o

Figure 7.2: In light-cone gauge, we only encounter one diagram in the calculation of
the leading order splitting function, which is the tree level emission of a photon from the
quark line.

In the collinear limit, the process of the emission of a photon from the quark leg

factorizes, which can be written as [118]:
M(p, ) = 05(2) MG, ) (7.2)

Diagrammatically, this is depicted in Fig.7.1.
Here, x is the momentum fraction, while p and &k are the momenta of the quark and
the photon, respectively. We define p via its relation to the quark momentum in the

collinear limit, i.e. p — p/Z.

In the following, as we are calculating splitting amplitudes in the collinear limit
[119,120], we employ methods of the soft-collinear effective theory (SCET). As a

first step, we introduce the two light-like vectors n and n:

1 1
0 0
n= , n= (7.3)
0 0
1 —1

Further, we can relate our matrix element to the imaginary part of the collinear

wfim]|

where M is constructed from the propagator diagram in Fig. 7.2.

propagator [121,122]:

1
os(z) = %Im
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Working in light-cone gauge n - A = 0, which sets the Wilson lines to unity in
the calculation, the diagram from Fig. 7.2 translates into the following intermediate

expression:

T4@@<ﬂﬁiﬁﬂﬂwww%%?%%@wwwﬁﬁiﬁﬂﬁjﬁ]x

4 4 \ (k+p)?—m? (k+p2—m2) 4
1 kY + nvk*
— —gp+—, 4
where the so-called collinear projection operator @ is introduced [121].

We now use Cutkosky rules to apply the optical theorem, which amounts to the
replacements 75 — 2mid(k*)0(k°) and —=— — 2mid(p* —m?)0(p"). The factor (2r)

P2—m2

is absorbed in the phase space prefactor:

. 221 1 nrk” + v k!
02($): _<_guu+— X

((k+ p)? — m?)* 64 nek

Tr

Wi(k+p+m)v“<p+m)v”(k+p+m)7m]- (7.5)

We additionally, along the lines of the classical Sudakov parametrization, intro-
duce k, the transverse momentum of the photon. The vectors of the two particles

then take the following form:

nt k2 a#

o=l gy - L 7.6
x2+ LT (7.6)
nt k> —m?nH

pogll g, T 7.7

pr=try T 2 (7.7)

Overall, our vectors satisfy the following relations:
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With these relations, Eq. (7.5) simplifies to

oS(z) = % [ (s —m?) (1 +2_ ex) — 2m2] . (7.9)

(s —m? x

To arrive at the final splitting functions we now have to integrate o§(z) over s in
the cases of the quark being massive on the one hand and it being massless on the
other. The two-particle quasi-collinear phase space 13\-8/2, generalized to the massive
case, can be written as [123]:

N 00 m2 —e
PS; = S[‘/2 ds (3 - ?> dx (zx)"° (7.10)

m

7.2.1 The Massless Case

For the massless case, the calculation turns out to be very simple. As we take the

mass of the quark to zero, we only encounter scale-less integrals:

O = Sp/ ds s “dx (zZ)”  o5(x) =0 (7.11)
0

m2=0

7.2.2 The Massive Case

For a massive quark, the integration over s looks as follows:

2

™ = Sp /: ds (s — mT> e (xx) " o5(x)

T
(1 + 72 ) (mzx) e
—ex | mwese(me) | ——
x T
m

— 2m?me csc(e) <ﬁ) 16] : (7.12)

T

= 2e*i* Sr dw (v7) ¢

T
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7.2.3 Result for the Leading Order Splitting Function

Adding and simplifying the two contributions leads to the final result:

_ e 2mee(1— ) (1+72) cse(me) (ma)
- (4m)? 2I'(1—¢) ( P ) : (7.13)

We then use the relation between the momentum fraction 2z and the cut on the

photon energy z:

(7.14)

Tr = s
]-_Sij

where i and j are the momentum labels of the two final-state quarks that are not
involved in the collinear splitting. Transforming this variable and denoting the
photon momentum by ps and the momentum of quark ¢; by p; brings us to the final

shift-relation:

drshift 1 1 / Qe 2
— AP S5 KCa(557)—-
dz  2m, 2N, 3Kalsij)g 2 @

X [7?(1 — €) esc(me) (%) g

(Z — 823)2

1+
(1 — 823)2

O(z — s93) + (cyclic)} . (7.15)

Expanding this result up to O(€®) yields the result from Ref. [10].

The cyclic in Eq. (7.15) means that we have to sum over the splitting functions
being attached to every of the three quark lines with the respective charges, masses
and momenta adjusted.

ICs(si;) in Eq. (7.15) denotes the spin-summed squared matrix element of the b de-
caying into the three light quarks at one-loop order. To simplify the occurring
expressions, we first carried out a Passarino-Veltman reduction, after which we only
had to solve about half a dozen of one-loop integrals. After this, the integration over
the three-body phase space is done. The corresponding parametrization we used,
which made an automatic handling of this contribution possible, was already given

in Sect. 3.3. An example for a corresponding diagram can be found in Fig. 7.1 a).

For the regularization of the five-body real radiation diagrams, we find a similar



7.2. The Leading Order Splitting Functions 131

relation:
Al snie 1 1 / Qe 9 (2 — Sa35)?
= dPS, Ky(s;:)—— 14—
dz 2my, 2N, (s j>27r2 @il+ (1 — s935)2

mlh(l B Z)
M(l - 8235)

X [ﬂ'(l — €) csc(me) ( )_ E] O(z — s935) + (cyclic)} . (7.16)

The Cy(s;;) are tree-level diagrams with an additional gluon (with momentum ps)
in the final state and we sum over the emission from the three quarks again. These

diagrams are shown in Fig. 7.1 b).

In contrast to the three-body case, the case of the four-body phase space in Eq. (7.16)
is not as straightforward. There are multiple arrangements of momenta to consider,
but in the end we also found a factorizing phase space for each of them. The im-
portant point to make this achievable was to realize that in the secluded part of
this calculation, the restrictions on the renaming of the photon momentum are not
as prevalent as in the case of the bare integrals. The parametrization we use is a
modification of the one given in Ref. [71], where the phase space takes the following

form:
2’3D7r1’3/2D(m§)3/2D’4

F(Dgl)F(DQQ)F(DQB)

dx dz dt dv dy,34 (Xf() 3 (21th1_)) h (%341713421) o

(7.17)

dPS, =

and the momentum invariants transform as:

524 = S124 — S14 — S12, 513 = 5134 — S14 — S34,,

S12 = Y134 21 5 S93 = VY134 21,

s14 = X (S14p — S14,0) + S14,a S34 = 121 Y134 5
814@:@134(5’1_}4—751)21—2\/tf1)’l_121), S134 = Y134,
81471, = @134(E@ + tUZl + 2\/ t%UT)Zl) s S124 = 1-— 21 (t @134 — y134) .

With this parametrization it is possible for us to rename the invariants in each mo-
mentum configuration in such a way that having the square root expressions in the

denominator can be avoided, while at the same time the argument of ©(z — s;j;) in
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N G

I

a) b)

Figure 7.3: Types of diagrams needed to renormalize the UV divergences of the diagrams
involving the splitting functions. Note that the crossed circles in the diagrams denote the
insertion of counterterms while the ones between the diagrams denote the convolution of
the diagrams with the leading order splitting functions.

a): Renormalization of the wave functions of the participating quarks. This is the only
Standard Model parameter that needs to be renormalized for these diagrams.

b): Renormalization of the operator insertions.

Eq. (7.16) is kept simple.

The argument of this © function leads to the triple invariant being the last integra-
tion that is done. Here, we expand our results in e first before the last integration
over yy34 from 0 to z, because we are not able to get a full analytic expression to all
orders. We checked that this last integration does not introduce new divergences,

otherwise this interchange of expansion and integration would be forbidden.

7.3 Renormalization of the Regularization Dia-

grams

The renormalization procedure for the splitting function kernels is carried out very
similar to Chapter 6, but needs substantially fewer pieces than the one for the bare
diagrams.

As the diagrams do not contain photons, we do not have to concern ourselves with
vertex, propagator or mass renormalization, as neither of these occur in the ampli-
tudes. The only parts that are relevant are shown in Fig. 7.3, indicating that we

only need to renormalize the quark wave-functions and the operator insertions.

Note that in the following, the convolution with the leading order splitting func-

tion is taken as implicit to avoid cluttering the equations.
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For the renormalization of the wave function, we compute the following pieces:

| _ %> Lo ﬁ
ﬁ (47r 2" ~ ’

and for the operator insertions, the diagrammatic representation of the counterterms

takes the following form:

N @) 5 et N

‘ dme/ | ‘
P, j=1u,2u,3,4,5,6 P;

+ (0ZpE)ij ! ‘ & ] )

i=1,2,3,4 , !
J E

where the coefficients (6Zpp) and (0Zpg) are the entries of the matrix defined in
Sect. 6.2.1.

As we mentioned before, these insertions are constructed similarly to the ones done
in the first renormalization step, only now we encounter the additional splitting
functions in the integrals.

The integration kernels that we obtain from these diagrams are then plugged into

Eq. (7.15), only with the KC3(s;;) not being one-loop but tree-level expressions.

7.4 The Splitting Functions at Next-To-Leading
Order

To get a fully consistent picture at O(«s) in the end, we not only need the leading
order splitting functions combined with the NLO diagrams, but also the NLO split-
ting functions combined with the leading order diagrams. The latter case is shown
in Fig. 7.1 ¢).

To calculate the NLO part of %, one has to consider the O(«) corrections to the
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Figure 7.4: The three diagrams that contribute to the real-virtual part of the splitting
function at next-to-leading order in light-cone gauge.

collinear emission. As in the calculation of the bare diagrams, we have to add the
real-virtual and the real-real parts up for the cancellation of unregulated infrared
divergences. These contributions are shown in Fig. 7.4 for the real-virtual and in
Fig. 7.5 for the real-real case. Parallel to the LO case, these need to be computed
with a mass and a dimensional regulator, respectively, and then subtracted. We
have seen, in the course of calculating tree-level contributions, that the non-massive
part of the calculation vanishes due to scaleless integrals, which also holds true for
the next-to-leading order part. Thus only the massive contribution has to be cal-
culated for the final result. There is an active effort going on in the calculation of
these missing pieces [124] and, for completeness, we will outline the methods that

are used despite not giving a final result in this work.

The Real-Virtual Contributions

For the real-virtual contributions, we again utilize the expression from Eq. (7.10).
As a first step, we carry out the loop integrals and then integrate the result over the
quasi-collinear phase space. For the most part, especially for the contributions from
more complicated loop-integrals, this is done as an expansion in € via Mellin-Barnes

representations.
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Figure 7.5: At next-to-leading order, in light-cone gauge, we encounter four different
diagrams that contribute to the real-real part of the splitting function.

The Real-Real Contributions

For the real-real contributions, we trade the loop integration for a more complicated
phase space. Calling the photon momentum p;, the gluon momentum p,, and the
quark momentum psz, we can define the momentum invariants as s;; = 2p; - p; and
S1923 = S12+ S13+ So3. Their respective momentum fractions are denoted by z;. With

these, we can express the three-particle quasi-collinear phase space as [124]:

dlg_s/g = / le dZQ ng d312 dglg d§23 d§123 5(1 — 21— %9 — 2’3)5(3123 — 313 — 323 — 812)

4 C
X G =g O A (FAw (7.18)

where the tilde-notation 5, = s, — m? is introduced for some of the invariants and

the Gram determinant A,, is defined by:

~ ~ 2 ~ o~ 2
Am = [(23812 — 21823 — 22813) — 42122813823 + 4m S1221%2 . (719)
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The momentum invariants in Eq. (7.18) have the following lower bounds:

- 21
512 >0, 513 > —m?,
z3
- 22 o9 ~ Z3 9
S93 > —m”, S123 = —m”,
z3 z3

while the momentum fractions z; are decoupled and integrate from 0 to 1.
As in the two-body phase space, we want to stay differential in the momentum
fraction of the photon, here z;. After the other integrations are carried out, we use

the relation from Eq. (7.14): -
Z

(7.20)

21 =
1_31']"

where ¢ and j are the indices of the two quark legs that the photon is not emitted

from.

Cross-Checks of the Intermediate Results

As a cross-check, giving us a robust confirmation that the remaining divergences
only stem from the missing next-to-leading order splitting function, we can check
the operator insertions that mix a color singlet and a color octet operator, e.g.
(P3 x Py). Looking at diagrams such as Fig. 7.1 ¢), we can see that the tree-level di-
agrams b — ¢1¢oq3 vanish after performing the color algebra (as they are oc Tr(7?)),
meaning that the expressions containing the NLO splitting functions become zero.
Explicitly, this can be checked in Gg) in Chapter 8, where these color-mixing entries
vanish and the results are thus finite.

Additionally, the remaining poles are only proportional to Q% or Q2 and not Q, Q.
As we have seen in Eq. (7.16), splitting functions could not account for the latter,
as they are always oc Q2.

Furthermore, we can draw conclusions from the preliminary results for the real-
virtual part of the splitting function at NLO. What we noted is that, although the
diagrams in themselves generate poles at €2, these highest poles cancel. At e 2, we
encounter functions up to weight one, going up to weight three for the finite piece.

As we will see in Chapter 8, this is exactly the form of the remaining pieces.
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Observing all of the aforementioned behaviour, we can be sufficiently sure that the
rest of the calculation is self-consistent, and despite still seeing some poles, our treat-

ment gets rid of all divergent pieces from other sources.

With this, we conclude the discussion of all the different pieces of the calculation.
Adding these all up, we are able to construct our contribution to the differential
rate. The only step left is now the integration of the differential rate over z to
express everything in terms of §, which is related to the actual energy cut-off in the
experiment.

The next section will give a brief overview over these integrations and finally show

the results for the matrix Gj;.
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Chapter 8

Results

The combination of all the aforementioned parts of the calculation is used to con-
struct G;, our correction to the multi-parton contribution matrix CA?S) defined in
Eq. (2.21). Except for the missing NLO splitting function pieces, which were dis-
cussed in Sect. 7.4, this formally completes the partonic multi-body corrections at
O(ay).

We split our resulting matrix in two parts, namely Gg),

tions that contain two dirac traces are collected and ngm for insertions that contain

where the operator inser-

a single dirac trace.
All results are also published in digital form on GitHub, the link to which can be
found in Ref. [113]. The matrix can be constructed after downloading all the files

and executing the notebook ConstructGij.m.

8.1 Building Blocks

We now want to present the 30 building blocks T; of the final matrix. We only
give the first 25 blocks in explicit written form for the sake of brevity. The last five
building blocks contain up to over a thousand integrated GPL functions and are
too lengthy to write down here. However, to make this work self-consistent, we put
forward to a conceptual description in Sects. 8.1.2 and 8.1.3. With this, the building
blocks can be constructed from pieces that are already given in this thesis.

All the building blocks are additionally given in electronic form in the notebook



140 Chapter 8. Results

ConstructGij.m, downloadable at Ref. [113]. There they are given in differential

form as DB[i] and in their integrated form IB[i].

8.1.1 Building Blocks 1-25

The integration of the first 25 building blocks is pretty straightforward. In Chapter 5,
we saw that the variable 2 is a more natural choice for our problem than z. Switching
the variable also calls for the change of integration limits. Denoting the differential

building blocks by D;(Z), the final integration formula is given by:

Ti:/(_5 dz D;(z) . (8.1)

The results of these integrations are shown here:

T = _ﬁ(s —1)(80° — 45% + 295 — 45) — 35(33 — 46" + 35 — 5) Ho (9)

1 - =3 =2 = = 2 = 7'(‘2
—5(5—1)(5 — 36 +35—7)H1(5)—§HQ(5)+3,

Ty = —5%(8 —1)(165° — 85 + 346 — 45) — %5(833 — 248” + 155 — 22) Hy (9)

2
(6 1) (45— 85+ 75— 1) (5) — S Ha(5) + o
Ty = 32—4( — 686° + 126”4 8250 — 769) + %8(3283 — 966° + 456 — 66) Ho (9)
+ 5(454 —128° + 158 — 226 + 15) Hy 0(6) + %5(1683 — 485" + 455 — 66) Hy(0)

b (=45 4 125"~ 158 4 225 — 15) Hua(8) + 5 Hao(5) — 5 Hoa 9)

8 . 4 53 1, P -
+ 5 H3(0) + 5603) + 15gm + 7pg0 (— 360" +1605° — 936 + 216) Ho(9)
+ %( — 360" +1285° — 1778" + 5760 — 491) H, (9) ,
T, = %5(453 —166° + 95 — 15) Hoo(6) + 3(54 —48° 466" — 100 +7) Hy (9
2

1 _ . _ _ _ 9 _ _
+5(- 0" +45° — 66" + 106 — T)Hy,(5) + SHa20(0) = SHx,1(0)
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1

648( 346° — 36° + 7860 — 749) + R(S( —96° +526° — 360 + 96) Ho(9)
+ %.8( 90" 4 440° — 720° + 2640 — 227) H, (6) + §5(25 — 85”4+ 95 — 15) Hy(9)
4.5 260)
+ §H3 (6) + — Tt
Ts = 648( 8126" 4 14445° — 6455 — 10666 + 1079) — %Hg (9)
+ ﬁw (—320" +965° — 1056” + 1546 — 47)

2

- (%( — 145" 4 1056° — 1175” 4 885 + 90) — 8%)}10(5)

+ L( —1528" + 5480° — 8370” 4 10346 — 593) H, (3) ,

108
Ty = L( —2988" + 5428” — 2135” — 8900 + 859) ~ O m,6)
7 1296 1877
1 <4 <3 <2 <
+ 105" 2(— 86" +320° —426° + 700 — 17)

2
+ <216( 0" 4 2485° — 3600° + 3200 + 360) — 4%) Hy(0)

216( 495" + 3126° — 6300° + 9400 — 573) H, () ,

T; = 288 (616 —2328° + 3300” — 7600 + 601) + 7H0(5)
7T2

+E(5 — 48° 1 657 —105+7)H1(5)+§H2(5)_ﬁ,

Ts =

(706" — 1860° + 1896 — 3585 + 285) + 36 Hq(6)

2

45" 125" 4 156" — 225 + 15) H () + 2Ha(5) ~ %

A@

_|_

o
|

—3)5 Hoo (5) + 11_8(454 128° 4 158° — 225 + 15) Hy (9)
45" 195" — 155° 4225 — 19)Hy, (8) + 2 Hoo(5) — 5 Hoa (5)

(—27726" + 74326° — 121115° + 182880 — 10837)

_l_
Ol — ol CDI»—c,o

—~ —
Sl

+
2l

RSN =
(070]

_|_
—_
S
oo

—72(85" — 246° — 158" — 645 — 26) + %(3)
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+ ﬁ(mis“ —1408° + 1530” — 1620 — 1386) Hy (9)

+ 514(54 545 — 845° + 358 + 102) H, (5)
+ 11_8( 88" 1 245° 1 156% + 643 + 26) Hy (5) .

Tyo = —%(8 — 4)6° Hy o (5) + %( — 6" +48° — 65"+ 100 — 7) Hy (9)
b5 (5~ 48 4+ 65° — 105+ 7) Hy (5) — 5 Hog ()

> 1 _ _ i _
+ = Hy i (8) + —( —14850" + 79765° — 36665% + 95040 — 12329)

3 2592
n ﬁﬁ( — 45" +160° + 396 + 1100 + 52) — Zéé(i%)
. ﬁ( — 45"+ 165° — 216 + 1560 — 693) Hy (5)

+ ﬁ( — 225" 1 1805° + 3156° + 520 — 525) H, (9)
+ %(454 —166° — 395" — 1108 — 52) Hy(6) ,

Ty = %5(1053 — 308" + 158 — 22) Hy 0 (8) + 3(454 —126° + 156° — 226 + 15) Hy o (9)

— (48" 125" 4 158" — 225+ 15) i (5) + 5 Hao(5) + 5 H(9)
- ? 21(0) + 3;—4( — 5245" + 4165° + 40176° + 48560 — 8765)

b (85— 248 4 608° 543 +354) + c(3)

i (514( —2928" +10965° — 10416 + 7986 + 486) + %)Ho ()
+ 2%( —2268" + 7120° — 7620° 4 18198 — 1543) H, (0)

T 5(1654 — 485° + 2156° — 1868 — 264) H, (3) ,

Ty — 35(353 — 1262 + 65 — 10) Ho o (5) + 3(54 — 40" +65" — 100+ 7) H1,0(9)

(6 45 6 105+ 1) Huu(5) + 5 Hao(5) — 5 Fia (9)

1 _ _ _ _
4 @( — 418" — 7948° + 2165” + 44720 — 3853)
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L 72(38" — 128° + 66° — 250 + 66) + 4¢(3)

54"
- (%( 56" +326° — 378" + 220 + 27) + %)H0 (5)
+ 1; 8( 850" +3208° — 7295° + 15828 — 1088) H, (3)

46 56 4
(5 =5 —9)H:(0) +3Hs(9)

_ _ 5 _ _ _ _
Tis = 5m%(35° + 60 +2) — (530" — 2880" + 304" — 7920 + 633)

—30(30° + 60 + 2) Hy(6) + 5(66" — 206° + 276" — 111) Hy(9)
(9

+5(40° 4 275° — 31) H,

)

) o 446 _
Tyy = 8? — 88 +108° — 5 T 8H(6) +10.

T15_§(5 —48° 66" — 106 +7) + 4H, (9)
1 _ _
T16_§(1—53)+H0(5),
20 20
T17_——(6(5 — 206 + 27)0° Hoo(d)—g(% — 36 + 260 — 28) Hy 0(9)

+ %(45 +276° — 31) Hy 1 (6) + 480H,0(5) — 80(35” + 65 + 2) Hay (9)
n %( —120975" 4 652048° — 790208” + 2443006 — 218867)

4 _ _ _ _ _ _
+ 57 (— 308" + 1105 — 908" + 2700 + 363) + 40(3) (30" + 126 + 28)
13156° — 54956 + 90706° — 107705 — 257048 + 31704

+1206° Hs (5) + <

9(6 — 1)
+ %H) Ho(5) + é( — 9476" + 68086° — 40626° + 141808 — 15979) H, (3)
%(305 —14058° — 456° — 1908 — 886) H2(9) ,

Tis = 1—18( — 695" +925° — 2015” — 246 + 202) + %HO(S) :
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1 _ _ _ _
Tho = ——=(— 298445" — 122508° — 2363318" — 7743548 + 1052779)

15552
1 _ _ _ _ 9 .
+ 306" 2(—23808" + 82245 — 98195 + 134885 — 14567) — §7r2H_2(5)
1 _ _ _ _ _
(= 0" —60° — 156° — 226 — 12) H_, (3)

1 _ _ _ _
+ (ﬁ 2(1526" — 4085” + 2555" — 3748 — 1200)

+ 5(91335 — 33120° — 119766° + 421808 + 36360) — —C( >> (%)

1
+<%ﬂ (— 85" 4205 — 155° + 225 — 19)

+ L(67095 — 115285 — 563948° — 409365 + 102149))}11(5)

2502
" (216 (4965" — 16835° + 30870° + 2600 + 4419) — 5%)Hz (9)

36( 400" 4 1206° — 695° + 1548 + 132) Hy (8) — §H4 (9)
L 5( 5+ 65% 4 22) H 20(5) + 5i4 (415" + 245° + 3843% + 3565 — 45) H_, 4(5)
L (216( 83" — 14800° — 50767 — 18843 — 720) + 8%)Hoo(f;)
I 5_4(7054 —1938° + 2640” — 4570 + 316) H, ¢ (9)
+ L (o625" — 7385° 1 515° — 23775 + 2802) Hy, (5)

108
+ E(454 —128° + 158" — 226 + 15) Hy 5 (8) + 1—18( — 158" + 220 + 33) Ha(0)

- gHQ 11(8) 4+ 2Hy,10(6) + 3—16(11152 + 4583 + 602) Ha,y (3)
4

+ 51L1?,71(5) §(5 +60° 4+ 156” + 226 + 12) H_y_1,4(9)

+ gﬁm (6) + g(é +66° + 156" + 226 + 12) H_1 0,0(9)

+ gﬂ_m (5) + 3165( — 965° 1 2408” — 755 + 110) Ho 00 (5)
 SH s 1p(0) o (5~ 65" + 155" — 225 + 12) Hy0(3)
- %‘ Hyo(5) + é(@‘* ~128° 1 158° — 225 + 15) Hy10(5)

— —Hy0(0) + %8( — 46" +126° — 156° + 226 — 15) H, 1, (0)



8.1. Building Blocks 145

L,z <3 <2 = 16
— (160 + 126~ — 210" — 1300 — 295)((3) + —
100+ )+ 15T

1 § § 1 B "
Ty = %w4(1353 — 8507 +12) + (= 138° +156° + 2) H 5 (9)

1 _ _ _ _
e 441558" 4 108208° — 235080” + 285808 — 29974)

_1 < < s —
* 31102 (1860215" — 10818766° + 11767625" — 22164300 + 1935523)

(55" 4 1005" 4 1145% 4+ 285 + 19) H_, (5)

1 ~ ~ B ~
+ (4557 (1905" — 4805° — 3038 — 3745 — 1072)

1 : § : _ 14 _
+ 577 (35600° + 137786" + 626495 + 61986 + 125856) — §<(3)) Hy (5)

1 _ _ B _
+ (557 ( — 415" + 4685° - 5528° + 3923 — 267)

_|_

1 _ _ _ _ _
+ gy (172640 — 552300° + 530316" — 1374026 + 121437))H1 (5)

+ é( —135° + 155” — 8) H, (5) + (%H( — 135° — 155” — 16)
+ % (6316" + 44645° + 72065" — 60285 + 12212) ) Hy (9)
+ L (705" 14925 + 18357 + 1785 + 132) Hy (5)

_ _ 1. - _ _ _ _
+ (5 =50 = 5) Hoa(8) + 55(50" — 108" — 145" — 285 — 19) H_ ()
- (7‘(2 1 §_2) + @(121954 — 85808° + 90606° — 53885 — 1440)>H070 (3)

11715" — 69640° + 70626 — 33285 + 2047) H, (3)
9676" + 52645° — 48725° — 124600 + 11101) H, 4 (9)

4

45" —126° + 156° — 226 + 15) H15(9)

(
(86" + 2765” — 155° + 1065 — 8) Ha(3)
(550" — 4208° — 2495 + 905 + 568) Ho,1 (5) + %HM(ZS)

2
(— 130" — 2) Hyo(9) + é(1353 — 158" + 4) H, (3)
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+ g Hyy11(0) + i( — 58" +1008° + 1145” + 285 4 19) H_1 00 ()

T iES( —560° + 1685” — 750 + 110) Ho () + é( —136° + 158”4+ 2) H_50,0(9)
+ %(454 — 126”4 155” — 225 + 15) Hy 0(5) + é( ~ 130" — 158" +4) H10(9)
4 5(1354 +765° — 846° — 160 + 11) Hy 1 (5) + %Hz,o,o (9)

+ %(454 126" + 158% — 225 + 15) Hy 11 (0)

. i( — 206" + 606" — 1776° + 1745 — 546)¢(3),

Ty, = ?Hgo(d)é + 3(505+ 57) Ha10(0)d”

+ 811(83753 — 81445° — 81548 — 2808) H3(6)d

8 /1o . - 56° 32357 61
— (188" + 1330” — 855) Hy00(6)0 + 7' ( — 5 oo 108

81
+ o000~ 17746295 + 1026567886° — 994290125” — 153106925 + 13831625)
+ o160 (- 33485° — 1530450 4 9244005 4 4649406° — 2764808 + 122725)

1 i _ ) i . _ )
+ 7 (893" — 98457 — 783" + 200 = 75) H-1 (3) + 7 (500" — 570" — 4) H(9)
. (1116955 — 7863670" — 58989145° + T5376086° — 14103368 + 549000

14580(0 — 1)

1 5 53 <2 < 16 -

+ g™ (— 7650 — 1965 + 84245” + 12606 — 72) + Eg(g)) Hy(5)
1 N N — _

+ (—48 (- 29735" + 69181656° — 10745860 + 1283086 + 257435)

+ 2i7w2( — 465" — 4985” + 5195” — 265 + 51)>H1 (5)

+ ( 5 413 5 (16745” + 835655" — 7082208° — 918000” 4 2194208 — 14265)

7 (508° + 576" + 4))H2(5) + 3(15053 —17156° — 82) Hy(3) — ?H_g o (9)
+ (88" +400% — 60% + 765 — 11) H_00(8) — 2(5053 — 578" — 2) H_55(3)

1
54

+
@lwmlw

+ —(1036" — 806° + 5400” + 8086 + 85) H_1,0(3)

ot
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- 3(9354 — 9645" — 9360” + 848 — 37) H_15(8) + (%H(m? +28)

§( — 8378° — 415988" + 2777958° — 5812758° + 2377358 + 109620) _
+ _ ) Hoo (9)

1215(6 — 1)
- &( — 5580”7 — 267458 + 1647808° — 2218500 + 746100 + 8833) H1(0)
316° 619"  743620°  29395° _ . 51961 -
T T e T o 0 g ) fal0)
<3

— 2(0645" — 843 — 98) Hyo (3) + (— 2o 768" + 200) Hy . (5)

T22

+ 8%( — 8375" + 84105 + 84243 + 6305 + 9) Hy 1 (5) — %H—%—LO ©)
3

+ %(5053 — 578"+ 2)H _50,(0) 5 (26" +106° + 216" + 326 + 19) H_y _1 ()
S Hyg0(5) + 5 (1015 — 9245 — 8525 + 2125 +89) H_1.00(9)

3

+ ?Ho,o,o,o (6) + %( — 456" + 885" — 2346” + 4085 + 39) Hy 0,0 (0)

- 3(5054 +4780° — 4T76° — 386 — 13) Hy 10(0) + % (1808" + 5945” + 2057)¢(3)

= 1399680 680( — 6519698" + 46691680° + 97705985 — 1150044125 + 101618375)

+ w2 (— 8648° — 498606" + 2268808° — 3682808” + 4618308 — 404785)

116640

+ (%H(m?(‘s“ — 88458” + 71157 4 2430 — 3258) — 8((3)

—796146° + 284925 + 4070995° — 43981836> + 27712266 + 1304460) o 3)
116640(5 — 1) "

_1 < N s —
+ ( saaay (196120" +895660° + 239105° — 9988823 + 867785)

— (6 1) (45 125" 4 95— 28) ) H )

26" 316" 20835° 38957 170 o« 1723, -
+(—+ - + — — = =+ — ) H2(9)

45 36 486 22T 2 432
+ 1(15—2( — 996" +4726° — 5850” — 11976 + 324) Hy (8) — %H4(6)
+ ﬁ( — 130" — 880° — 1446° — 400 + 29) H_14(3)




148 Chapter 8. Results

. (—21656 +12518° — 26650" + 11356° — 1111056 + 1042205 + 8100

4860(6 — 1)

40 4 N D _
+ 527 Hoo(8) = 5Ho5,0(3) + 5 (= 68" = 165 = 7) H_50(9)
+ ﬁ( — 2888° + 18756 — 12406° — 76500” + 162000 — 11357) Hy 0(9)

19 0 ——(8646° + 184055" — 503208 + 1298705” — 3900606 + 291241) H, , (3)

+ 5 L6 45+ 68 — 105 + 7)1 (5) + 3—(884 — 320" — 126° + 200 — 49) Ha(3)
+ 3%(1805 — 7965° + 6126° — 1620 + 1791) Ha 1 (8) + %HQ,Q(S)
— gHg,O(a) + 596H3 1(6) + ﬁ5( 366° — 85 + 5498 + 2961) Ho 0,0 (9)

514 (35" — 205" 4 365" + 45) Hy00(5) + 5 (5" — 45" + 95" — 135+ 7) Hi10(0)

_ _ _ 4 _ 1 _ _
—((5 - 453 + 6(52 - 10(5 + 7) Hl,l,l (5) + §H270’0 (5) + gHQ»LO (5) + 5H271,1 (5)
152 . 5t 5 196 1256 5509 37,
Ty = 72;60 Hy0(8)8° + ? (22550 + 2568) Ha,1,0(8) 4

1088 - 9026°  291045° 8296
— 8—1(185 + 1338 — 855) Ho00(0)0 + (- st I )
- ﬁ(momsga — 11491674585° + 11163155676° + 1376771225 — 125338400)
- ﬁw (787865 + 36426156 — 205019008° — 96778800° + 47811600 — 1719125)

+ 19—67r2 (22550° — 25685” — 136) H_5 ()

+ B 12 (20085" — 217085° — 210815” + 16005 — 1125) H_, (3)

27"

2(2453585° — 176872945 — 1313586735° + 1636574315" — 244190523 + 9647550)
+( _

3645(6 — 1)

16 2176

35" 2(91358" + 16660° — 922595° — 107100 + 1152) + —5 (3 )) 0(0)
4

+ ( — T 2(21495" + 219125° — 221015” — 3765 — 1584)

_2 —
D 15(757865 — 153965120 + 242847775" — 44090065 — 4555045))}11 ()
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4
+ <1215 (393935 + 19410308 — 157414405° — 18015755

+ 45300150 — 152055) + Swz (22550° + 25685” + 136)>H2 (6)

+ ;—f(974754 —916345” — 899645° — 190088 + 135) Hy (3) — gﬂ—w(@
+ 5 (67655° — TT045" — 2788) 1, (5) — 3 (22550" — 25685° — 68) H_3,()
+ 292(854 +400° — 66° + 760 — 11) H_5,0(3)

gi (1035 — 808° + 5408” + 8083 + 85) H_1 0(9)

16

— 3(21665 — 213685° — 203675° + 26885 — 479) H_, 5(9)

12 < 5 5 0
N ( 2_787TQ (9635% + 119) — 393936° + 19197726 — 123414556

1215(6 — 1) (

, . 4
+258167500° — 117158400 — 3767580)) Hoo(0) — 105 (131315 + 6267908

_ _ _ 4
— 37003606° + 49979255° — 17665205 — 156506) H10(0) + 131 (393935

+ 1941030254 — 166483400° + 178093350 — 39564455 + 815027) Hy, (9)

19 (213685° — 26885 — 1615) Hy(5) + ? (22555° — 25685” + 68) H_5,0(0)
(194945" — 1877906° — 1820885” — 9900 + 1197) Hy 1 (9)

(= 67655° + 77045° + 1700) Hy 1 (5) — %EH_Q ~1.0(0)

10388 Hy00(5) — %(25 +105° + 218" + 325 + 19) H_;_10(0)

©|5ﬁ|oo©|®

] _ _ _ _ _
+3 (23025" — 206880” — 189395° + 48648 + 813) H_10(0)

- %(455 — 880" + 2348” — 4085 — 39) H1,0,(9)

- 2(228564 +212325° — 206736 — 25526 — 292) Hy 4 0(6)

82688 16, _
Hoo00(6) + 7 (30600" + 113130° + 35509)¢(3)

9
%(975 F111) Hyy 0(8)8° + i( 4050° 4 39475” + 38976 + 972) Hy (8)6

Toy = —
24 162
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- 9371&13 0(6)8° + %2(54253 +4946° + 1718 — 2736) Ho 00 (5)d

+

<4 =3 -9 _
2 — 201351 1943610120~ + 21 95 — 1820151
1399680 (37623696" — 2013515685" + 1943610125° + 215333820 — 18201515)

+ 72 (65880° + 3040208 — 17974608° — 8453708” + 4638608 — 223585)

233280

L 5 52 L, =3 <2 -
+ 57607 4(2910” — 18875 — 61) + =" (=975 +1116" + 6) H_»(9)

+ ﬁw (— 878" +9465° + 9185° — 660 + 49) H_, (4)

N (—5662865 131413748 + 227511138° — 283850015° + 46947428 — 2162880
233280(6 — 1)

+ %w (7565" + 1825° — 80375" — 10085 — 81) ~ ((3) ) Ho (9)

1
+ (432 2(1816" + 19085° — 19265” — 286 — 135)

N TAT6S" — 26924426° + 41248375° — 6686660 — 771205> 1,(5)
77760
+ (W;&)( — 65880” — 3246756" + 27417206 + 3461408” — 7785000 + 47430)
+ %ﬁ( — 978" — 1116° — 6)>H2 (3) + é( — 978" +1118” + 41) Hy (5) + H_3,(9)
36( — 126" = 560° + 65° — 808 + 15) H_50(5) + (% — 376" — 1) H_5(9)
+ é( —1370" + 1206° — 4565” — 9445 — 231)H_y ¢(9)
+ <7r2( - %752 - g) + W(%Sg? + 3183576 — 21408850 + 44440304
— 19107900 — 727380))1{0,0 (8) + (56" 46353 — 9925 + 60 — %)H_1 2(6)
+ 1Q;W(Ql%‘(s +1042055" — 6385008° + 8691308° — 2935808 — 40871) H, ¢ (d)
- @ (65888° + 3246756" — 28766008° + 31020308° — 6982200 + 141527) H, 4 (9)
- %(162054 —162825° — 157056 — 3600 + 63) Hy,1 (9)
n (4635 ) o (5) + (078"~ 1115" — 25) Hy, (3) + 2H_a 1)

H
) +

— 2(976° —1116” + 3) H 500 (5 (35 +146° + 270% + 420 + 26)H_1 1 0(0)

@“_.
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Tos =

+ %HQ 00(0) + 316( 960" + 9046° + 8376° — 1926 — 29) H_ 0,0(9)

— ?HOO 00(0) + 2—16(755 —1008° + 2885° — 4920 — 219) Hy 0 (3)
1 ) } _ o 56 6505
+ 5(19354 +18525° — 18185° — 1960 — 31) Hy10(0) — (= ; +35° + wig )3

(- 11165 + 1636912125° — 2064217236> 47341226
1399680( 585011160" + 16369 064217235° + 85473

_ 753450655) +

2 <5 —4 3 .
21 — 652 12
253350" <76685 +21095555" — 65235800° + 83851200

_ 1 _ _ _ _ _
— 110633400 + 11586760) ~ g™ (530" 43128 + 6780" + 7285 + 309) H_, (5)

. (—94455955 +2196475" + 37311648° — 167666585 — 81207540 + 21876840
116640(6 — 1)

1 _ _ _ _ _
+ 2eea™ (— 119165" + 390165° — 96395” + 252548 + 87264) + 39§(3)>H0 (5)

—1 < BN - —
+ <77760 ( — 20861948 + 36380785 — 14885030° -+ 163255945 — 16388975)

1 <4 =3 <2 < < 1 <5
" ?(1876" — 5966° + 8060 — 11040 + 707))}11 (0) + (M( — 76680
2
~ 6023255" + 14983605 — 245511057 + 14468405 — 4565160) + oo )H2 (5)
+ %(43475 — 192445° + 45636 — 90185 — 10692) H3 (8) + %HLL (9)
- %H_g,o(?s) + %( — 100" — 526° + 66° — 1200 + 11) H_5,(3) + 133 H_55(9)

+ (365" 4 145" — 2315 — 2915 — 10) H_1(5) — 57°H »(5)

. (38345 —522096° 4+ 6714956" — 8053706° + 16866905° — 12185108 — 291600
19440(6 — 1)
136 76t 915° 409

— = Hoo(8) + (- + —5— + 220" +250 + =) H1,0(9)

1
+ 6150 (12785 — 206850 + 856705° + 301958° + 7458058 — 168278) Hy,0(0)

—1 S < < - —
+ 33380 ( — T6685° — 7T072656" + 12698806° — 16837208° + 56991600

— 4570387) Hi1(0) + }1( — 46" +120° — 156° + 226 — 15) Hy 5(9)

— 3H,(8) + %( —1245" — 3448° + 2700” — 21965 — 337) Ha0(9)
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+6H30(8) + %( — 22235 + 124485° + 7295” — 84788 — 45018) Hy1 (9)

0 HL (8) — 22 H _s00(5) + 5 (55" + 265" 4 575" + 863 + 50) H_y,1.0(9)
+ E—OH_Q,_LO(S) + 7—12( — 836" — 4685° — 10205” — 12445 — 609) H_10,0(9)
— 13_2 0,000(0) + 67185(516653 — 121285” + 60758 — 22590) Ho 00 (0)

- % 200(8) + ﬁ( — 428" +1645° — 458° + 125 — 345) Hy 00 ()

- % Hy10(5) + 7—12( —13958" + 2680° — 5407 + 3040 — 379) Hy 1,0(3)

- %HZM((—S) + 3—16( —2126" +6600° — 849" + 12746 — 873) Hy 1, (d)

+ 3%(99054 — 44280° 4 117186° — 132665 + 37781)((3) — %n‘*.

8.1.2 Building Block 26

Building block 26 is a special case. It occurs in the differential G;; matrix as

40
Dag(2) = STERT) (54H1,0(2) — 27H,1(2) + 5TH,,1(2) + 228 Hy0,0(2)
+ 36H,0,0(2) + 1472 Ho(2) — 9Hy(2) — 114H,(2) — 47r2> . (8.2)

We see that here the HPLs with the alphabet of {0,1, —1} are mixed with a denom-
inator of Z—4. In principle we could just integrate it, resulting in GPLs of argument
z with alphabet {0,1,—1,4}. We introduced the variable transformation

422

2 —1

z =

in the five-body integrals before and thus we want to express all occuring GPLs in
terms of this variable x for uniformity.

The price we pay for this uniform alphabet is a quadratic occurence of x in the
arguments of the HPLs in Eq. (8.2). We will show here on an example function how

this can be simplified to only include linear arguments of z again:
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For simplicity, we take a function of weight one, H; <x4+_21> We can now derivate
the term with respect to z, simplify the occuring terms and then integrate it over

x again while fixing the boundary conditions with the help of the initial expression.

Defining f(x) as
4 2
ro) = ()

we can carry out the differentiation by z. Simplification of the result leads to:

8x
G- DE+ D@2+

d
%f(x) =

We can now integrate this again, which yields:

8

o) = | e e T o os(3et + 1) gt — ),

which can be linearized by using the properties of logarithms:
f(x) = ¢ +log(1 4 iv3z) 4 log(1 — iv/3x) — log(1 + x) — log(1 — z).

Here ¢ = 0 can be determined by comparing the original function at e.g. z = 1/7.
We then use
log(1 —z) = Gi(x)

and the global scaling for GPLs
G (az) = Guyalx)
to arrive at
f(@) = Gi(x) + Ga(x) = Gy (1) — Gy (),
where we again see the letters ‘
?
ﬁ )

that we encountered in the five-body integrals Figsg and Fsgs;.

(8.3)

rs =

For functions of higher weight, this procedure can be applied multiple times itera-

tively, which allows us to express all the occurring HPLs in terms of GPLs with the
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alphabet {0, 1, —1,r3, —r3}.

We can plug this now back in the original expression in Eq. (8.2) for integration.
Afterwards, we can carry out the integration algorithmically with the help of
PolyLogTools [92].

Note that the integration variable and limits have to be changed, since we traded
the old variable z for z. We have to introduce new limits to the integration and

multiply by the jacobian determinant %:

/51 dz D;(2) z/: da (%) Dy(x) = /x: dx (_(3328%1)» D).

Here, we defined the lower bound of the integration

B

s — (84)

o—4°
The final result for this becomes very lengthy as the linearization of the argument
takes more and more terms for higher weights. For this reason we only give the rule
for construction here, the result can be found in electronic form as IB[26] in the

notebook on the aforementioned GitHub page.

8.1.3 Building Blocks 27-30

Building blocks 27 to 30 are constructed from the finite parts of the integrals Fi5p3g
and Fsps; given in Appendix B, which we denote in the following by Fj ©) B30 and £, 551%31
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In differential form they look as follows:

228 + 2% — 512* 4+ 1922 — 3 (0)

Doz(z) = — ;
27(7) 16222 (22 — 1)2 5B31
528 + 79 + 54x* — 2972 +3 (0)
Dog(x) = — ,
28(7) 8122 (22 — 1>2 5B31
Do) 5% + 2282° + 318z* — 10822 +5 (o)
x) = ,
29 9 (22 — 1>3 5B30
28 + 1525 — 9924 + 2122 — 2 (0)
Dsg(x) = — .
50(2) 9 (2% — 1)3 5B30

We integrate these expressions using the same transformation of the integration pa-
rameters as in the last section, again using PolyLogTools [92].

As these expressions contain complex GPLs with high weights and are already very
lengthy in differential form, we made them available in electronical form as IB[27]-
IB[30] on GitHub.

Having all the building blocks for the final result at hand, we can now construct
Gi;. In the next sections, we will give the different entries of the matrix and the

relations between them.

8.2 g
ij

First, let us write down the entries of GZ(]I-), which is populated by the contributions
from all the diagrams with two dirac traces. Note that all entries of the 6 x 6 matrix,
which are not given here, vanish.

In the following, logarithms containing the renormalization scale p are abbreviated

by )
L

L,=1 — 8.5

w08 (mz) ’ (8:5)
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and the collinear logarithms by
m2
L, = log < b> : (8.6)
mg

Furthermore, ng denotes the number of light flavors , i.e. ng = 3 for up, down and

strange in our case.

8.2.1 Current-Current Insertions

1

1 1
G{l = _02 [— Q?j T, + 1 Qi Tz}

1 1 1
%[Qd( Ty(2L,+ Ly — 2)+§T2+ZT4+ZT6>
1 1
+Q2< (2L, + L, — 1)+T1+1—1T3+1—1T5>}
1
+CF[ ( TU(SLE—16L,+8 Ly Lo+ L2 =8L,+6) = Tio Ly + 5 To L,
1 1
Ty(8 L, +4 Ly —3) + — T15(432 L, Ly — 504 Ly — 95) — — T3 L,
+4 (8 Ly + )+864 15 ) 120"
1 4 1
+ Ty(L, —1)+@T14(72Lq—19)+Tﬁ(LM—l)—4—5T7(45Lu—89)+§T3
1 19 397 1 1 2 14 1
T.— 2T, 22T Tir 4+ =Tig — = Tyg — — Thy + =T
+2 5 g 187 108 16+120 17+8 18~ 3119 3 20+3 21
1 2 1
+2T22+2T24—§T25—ET26+ T27+2T30>
1 5 1 17
. Tw(65 —144L,) — — Ty — — Tys + — Tis — — T
+ Q@ (108 16 ) 61714 T gea B T g s T gp i
1 11 1
+§OTZ3 2T24+2_OT26_§T27+T28+2T29_T30>
2 1 2 2
+ Q2 ( (8L +4L,—3) + 7 Ta(8LE —8L,+8L, L+ L —4L,+3)
1 1 1 13
+ZT14(2LH—7)Lq—2Tqu—3T10Lq+1T11Lq+EOT13Lq—ETlg)Lq

1 1 1 1
+§T3(2L“_1) +§T5(2Lu_1) +§T8(5_6Lu) + Ty + T6+§T19

1
— 1875 — 5 Tn —2T25)]

1 3L, 1
CC[2<——T 3L, —8) Ly+ To Ly + Tio"nl — — T3 L
+ CrCy4|Qy 1 14( ) + Lo Lg+ 1o 7 540 L 18~
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I
CTY12

13 1
+ —Ti5L,+ TSLM+9T20+ZT21+ T25>

24
2L, 11 1 1 1
T2t 4 Ty — T STy — ~Ths— T —T)

+ QaQ ( 1673 + Aoy — 2640+4 27— 5t 29+2 30
1 1
T 432 L, L.+ 144 L, + 95) 4+ = Ty L Tys L,
+Qd<1728 15( o q+ q+ )+2 10 q+240 13
1 1 19 397 1
— T, (19— 72L,) + —T+(90 L, — 103) + — Ty + ——Tjs — — T
* 1728 1 o) 45 t )+18 51916 240 7
1 1 7 1 1 1 1 1
_1_6T18+3T19+3T20_6T21_T24+3T25+ET26_ZTQ7_§T30>]’
1 4
_CF[Q (216T14(54L Ly =126 L, = 1) + 5 T = Ty L, — T L,
1 5 1 1 1
+ 355 T Ly — 216T15(18Lq+1)+§Tg(5—9LM)—2—7T16+§T19
20 1 9
- ——T)
3 20 6 21 3 25
1 5 1 1
Tie (12 oL,) 4+ —T Tis — —Tig— =T
+Qd@”(ms (127 =72 L) + 864 1T gea 1 T gy s T gty
3 1 1
—2T5 + ET% 5 =Ty + §T28 + Th9 — T30>
1
+Qd<—T15(216L L,=144L, = 35) = T Ly — 5= Tis L,
2 16 7 409 1 1
— ST (450, —34) = —Ty— — Ty — — T+ = Tyr + = T
45 gt ) 9 18 g M T qog 8Tyt T ghs
2 14 T 2 1 1
—§T19—§T2o+%+2T24—§T25—%T26+2T27+ T30>}>
:G{27
1 1 1
= G_QCFOA [5 QAT + 3 Q> Ty

1 1 1
+ ;CFCA[Qi(Tl 2L, + Ly—2)+ T + §T4+ 5Tﬁ)

1 1
+Q3(Tg(2Lu+ Lq—1)+2T1—|—§T3—I—§T5>]

1

+CrCy @2 (2:/’2 (8L2 — 8L, +8L, Ly+ L2—A4L,+3) — 2Ty L,
1 1 1

+ T (8Lu+4Lq—3)+§T11Lq+ﬁTquJraTM(l—&Lq)

1
+ 57T (5-27Ly) + T3 (2L, — 1) + T5 (2L, — 1) + 2T + 2T
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16 10 4 1 28 1 4
—— T+ —Tg+ — — = — — Ty — =T ——T)
g 17t 8+27 16— 3419 3t gla =g
1 5 7 Tis 2 1
(=T 2T = LT+ =8 = 2T+ = Ty + 4T
+QdQ< e T Tt Ty 16 + 1 5 21+120 23 + 410y
1
T+ T 2T>
10 26 T 197 + 2130

1 1
+Q3(§T1 (8L, —16L,+8L, L,+ L —8L,+06) +5 8Ly +4L,=3)

1 1 1
+2Tw0 Ly + Tia Ly = 15 Tia Ly + 555 Tua (72 Ly = 5) — 155 T (216 L, + 25)

180 432
88 26 421 T
+ 2Ty (L, — 1) 42T (L, — 1) + Ts + T5+§T7+§T8+5—4T16—f
4 28 2 4
+§T19+§T20—§T21+ T22—4T24+§T25>]-

8.2.2 Penguin-Penguin Insertions

1 1 1
1 1 1
+-C} [Q?i no (T1 @Lu+ L)+ 5T+ T6>

11
+Q§(T2 (2L, + Lq)+§T3+§T5)]

1
+O%[Q§no(§T1 (8L2+8L,Ly+ L)+ TioLy+2Ty L, +2T5 L,

T
+ T22—1—206+ T27+2T30)

8
+Qd@q< - ngGLu‘*‘ Ty + T + 2753 +4T29>

1 1
+ (5T (L 8L Lyt 1) 4 5 T Ly 2Ty L4 2Ty Ly T

1 1
4 CRCy [Qfl o (— Tis (35— 108 L, Ly) + Tio Ly + 7= T (45 L, + 61)

864
16 7 409 1 1 2 14
et T S T — — Ty — ~Tig+ = Thg + — T
+ 9 8+864 14+108 T 18+3 19+ 3 120
1 2 Tos  Tor
Ty — 2T+ =T ————T)
3 iz 24+3 25 1 50 5 30

3 3 3 3
+ Qqu <T16 Lu - g T21 - g T26 - Z T28 — 5 T29>



8.2. G\ 159

1 1 1
+Q< T14LL+2T9L +2T8L —2T19+T20>}7

Gi:s:CF[QZno(TlSLq —4T7> +Q ( Ty L, _2T8>

4 1 1
+ Qd@q( TlGL + 2T21 + 2T26 + Thg + 2T29>} ;

I _ I
G34 - G437

Gy = elQCFCA [Q?x no Ty + Q) Tz}
+ %CFCA [Qg 1o <2T1 (2L, + L)+ Ty + TG)
+Q§(2T2 2L, + Ly) + Ts + T5>]
+ OpCy [Q§n0<T1 (8L2+8L, Ly+ L2) +2Tis Ly —2Tis L,
AT L, +4Ts Ly + 16 T; + 2Ty, — éT26+2T27+4T30>
+Q§(T2 (8L2 4+ 8Ly Ly+ L2) + Ty Ly— 2T Ly + ATy L,

+4T5LM+8TS+2T19)] ,

Gl = Elgc% [5 QinoTy+5Q T2}
+ %C’%[Qﬁno(ﬂ (20L, + 10 L, — 3) +5T4+5T6)
+Q§(T2 (20L, + 10 L, — 3) +5T3+5T5>}
+ C3|Qano(Ty (4012 =12 L, +40 Ly Ly + 5 L2 = 6 L) + 6 Ty L, L,y
10T Ly — %Tqu—i— T)(20L, —3) + Ty (20 L, — 3)
- %6T7(15L —23) + 1—10T17+ 10 Ty — T26+10T27+20T30>
80 16

1
+ Qqu( T16 L + — 5 T21 + % T23 + 10 T26 + 20 ng + 40 T29>
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1
Gis

+Q2(T5 (40 L2 =12 L, +40 Ly Ly + 5 L2 = 6 Ly) — 24Ty L, — 48Ty L,

2 2 10
5 T (27 Ly Ly = 90 Ly = 1)+ 5Ty Ly 12 Tis Ly — 5 Tis (18 Ly + 1)

8 64, 16
+ T3 (0L, = 3)+ T3 (0L, = 3) = 5 Ts (0L +2) + 5 Tr — 5 Tis +2Thg

— 9272 Ty — 8Thy — 32 T25>]

7 1
+ CFCA |:Q(21 n0< — E T15 (216 L‘u Lq — 25) + 10 T10 Lq + % T13 Lq

4 160 35 2045 7 5
+ — Ty (315 L, — 158) + —Ts + —=T14 +

iy L, WU

45 9 432 54 10T g9 T 48

20 140 10 20 T
+—T19+—T20——T21—20T24+—T25+ﬁ—5T27—10T30)

3 3 3 3 2
+QQ(1T (721, — 95) — = Thy — > Ty + 5 Tyg — 2Ty + 127

d\<q 6 16 “w 48 14 48 15 4 18 2 21 24

24
—ET26+3T27—9T28—18T29+6T30>

1 1

+QZ<ET14(—42Lqu+90Lq+1)—8T7+14T9Lq+18T10Lq—%Tlqu

2T

5
b Ty (18Ly+ 1) +2T5 (TL, 4+ 1) +

B —2T19+112T20+3T21+12T25>] )

- CF[Q?an(T15 (3L, +5) Ly — 11—5T13Lq - §T7(15LM+2) + %T@

+QuQq( - t—OTw (L 1) + 5 Ty1 + 5Ty + 10 Ts + 20T

+QZ<%T14 (27L, Ly —45L, — 1) — 12Ty Ly — 24 Tio Ly + 1—15 5Ly + %ﬂ

- %Tg (9L, +17) — ng5 (18 L, +1) — gTw 4Ty — 136 Toy — 4T — 16T25)} ,
:GiE)v

~ éCFcA 10Q3no T3 +10Q2 T

1

+=CpC,y [Qg no (2 Ty (20 L, +10 Ly — 3) + 10T + 10 Tﬁ)
€

+Q§<2T2 (20L, +10 Ly — 3) + 10T} + 1OT5>]

+ CpCa @m0 (2T (0 L2 — 12 L, + 40 L, Ly + 5 L2 = 6 L) +20 Tio Ly + 20 Ty
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—20Tys Ly + 2Ty (20 L, — 3) +2T5 (20 L, — 3) +160T7—2T26+20T27+4OT30>
160 68 1
‘+(2ﬂgq<_§_716_'E;jgl+'T6133)

+Q§(2TQ (4012 —12L, +40 L, Ly +5L2 — 6 Ly) + 10Ty Ly — 20 Tuy L,

+2T5(20L, —3) +2T5 (20 L, —3)+80Tg+2OT19>} ,

GiG = Gé4,
Gg4 = GAILS )
6%3226%67
GEI)S = GéS )

Gl = 6%0% [68 Q%o Ty + 68 Q> TQ}
+ %q% [Qg 1o <2T1 (136 L, + 68 L, — 69) + 24 Ty + 68 T} + 68 T6>
+Q3<2T2 (136 L, + 68 L, — 57) + 48 T} + 68 T +68T5>}
+C} [Q?i n0<2 Ty (272 L% — 276 L, + 272 L, Ly + 34 L? — 138 Ly + 63)
FASTy (2L, + Ly— 1)+ 24Ti5 (5L, + 1) Ly + 136 Thy L, — ngqu
+ 2T, (136 L, — 69) + 2 T5 (136 L, — 69) — 320 Ty (3L, — 4) + 24Ty + 24T

68
+ 2T + 136 Ty — — Tog + 136 Tor + 272 T30>

1088
+ Qqu< - T 16 L,u + T23 + 136 T26 + 272 T28 + 544 T29>

+ Q7 (2 T (272 L% — 228 L, + 272 L, Ly + 34 L? — 114 L, + 39)

8
+96T) (2L, + Ly — 1) + 5 Tua (135 Ly Ly — 423 Ly — 5) — 480 Ty L,
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— 960 Tho Ly + 68 Thy Ly + §T13Lq - 2%0T15 (18 L, +1) + 23 (136 L, — 57)
4275 (136 L, — 57) — 3—32T8 (45 L, +19) + 48T, + 48 Ty + @ﬂ

_ 3209T16 24Ty — 5440 Thy — 160 Ty — 640 ng,)]

+CpCy [Q§ n0<1(1) < Tis (595 — 6696 Ly, L) + 136 Tho L, + Tis L,

+ g Ty (1395 L, — 1034) + 21976 Ty + 1(1)2 Tia+ @ Ty

- % Ti7 — 17T + ? Tig + 19304 Ty — % Ty — 27215

+ ? Ty + 3—; Ths — 68 Tor — 136 Tgo)

+ Qqu< T (264 L, — 475) — % Ths— % Tis + 15 Tig — 6 Toy + 240 Ty

— 72T + 60 Tyr — 132 Thg — 264 T + 120 Tgo)

+Q( Ty (—186 L, Ly + 450 Ly + 5) + 248 Ty L, + 360 Tyo Ly — T3 L,

25 40
+ ET15(18Lq+ 1)+875(31L,+5) — 16077 + §T16 — 8Ty

4 2176 Ty + 60 Ty + 240 TQS)] ,
4
Gy = Cr| Qi (4715 (15 L, +23) L, - S Tia Ly — 48072 L, + Ti7)
32
+ Qqu< 2% Ty (17 L, + 25) + 68 Thy + 68 Tog + 136 Ths + 272 T29>
4
+ Q2< Ti (135 L, L, — 243 L, — 5) = 240 Ty L, — 480 Tho L, + 5 Tis L,
100 16 640 160

— —T 18L 1) — —T; 45L 79 — T, — —T
915( +)38( +)+37916

— 80Ty — 2720 Tyy — 80 Ty — 320 T25>} ,
Géfs = G(Is5 )

1
Gls = 5CrCa [136 Q%o Ty + 136 Q2 TQ}

1
20ROy [Qg 1o (4 Ty (136 L, + 68 L, — 69) + 48 Ty + 136 Ty + 136 T6>
€
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+Q? (4T2 (136 L,, + 68 L, — 57) + 96 T4 + 136 T; + 136 T5>}
+ CpCa [Qfl no (4 Ty (272 L, — 276 L, + 272 L, Ly + 34 L? — 138 L, + 63)
+ 96Ty (2L, + Ly — 1) 4+ 272 Ty L, — 320 Ty5 Ly + 48 T3 + 4Ty (136 L, — 69)

136
+4T5 (136 Ly, — 69) + 48T + 2560 T7 + 272 Ty — = T + 272 Ty + 544 T30)

3200
+ QaQq <T Tig — 27215 + 2 T23)

+ Q2(4T5 (272 L — 228 L, + 272 Ly, Ly + 34 L2 — 114 L, + 39)
+192T1 (2L, + Ly — 1) + 136 Tyy Ly — 320 Tyy Ly + 4T3 (136 L, — 57)
4Ty (136 L, — 57) + 96 Ty + 96 Ty + 1280 Ty + 272 Tlgﬂ .

8.3 gl
. y

Writing down the second type of insertions, we noted that we can relate almost all
the insertions back to the first block of current-penguin insertions. This stems from
the fact that we only encounter a single dirac trace in these, which means that the
degrees of freedom for the algebra are much more narrow. Defining three additional
relational functions and giving the first block explicitly, we are able to express the

rest of the elements without introducing new expressions.

8.3.1 Auxiliary Functions

1 1
fi = §Q§<(5T1 —27Ty) (E +4L,+2L, — 1) +T — 2T+ 57T, —2T5+5T6)

1 1
+ 5Q3<(3T2 _4T1> (Z +4LM+2Lq - 1) +T2 +3T3 —4T4+3T5 —4T6> s
1, 8 )
f2 = E Qd(8T7 — Tgqu) + Qd@u gTQQ + Qu(4T8 — TgoLq) s

f3= Q?l(Tl +T2> :
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8.3.2 Current-Penguin Insertions

1 1 1
G = SCE; @ n+ 5 Q)

11
+ C%[Qd< T(Lu+2L,—1)+5Ti+3 T6>

2
,/1 1 1
+Qu<§Tg(4L#+2Lq—1)+§T3+§T5)]
1 1
+O§[Q§(§Tl (8L =4Ly+8LyLy+ L2 =2Ly) +5Tis (L — 1) Ly
1 1 1
+ TioLy— oo T Ly+5 T (AL, = 1) + 5 Ty (4L, — 1)
4 1 1
— 35 T (15 L, = 38) 4 o= Th o+ Too — 7 g + T27+2T30>
4 19 1 1
+QdQu<— — T (3L, —5) —%Tm-f— 120 T23+§T26+ T28+2T29>

+Q2< Ty(8L> — 4L, +8L, Lo+ L2 —2L,) — 2Ty L, — ATy L,

1 1 1
5y T (27 Ly Ly = 1T Ly = 1)+ 5 T Ly + 55 T Ly

2 90
5 1 1 9
~ o T (8L + )+ 5Ty (4 L, = )+ 5 T (4L, = 1) = S T (9L, = 7)
16 4 1 68 9 8
+ o Tr = = Tio+ 5 Ty — = T — 5 T — = Tis )|
1
+CrCy Q2 (216 Tya (=54 L, Ly + 135 Ly +2) + Ty Ly + 2 Tho L,
Ly Lo+ — o T (18 L, + 1) + 1T(18L +19) S lr
180 1 108 1 e 18 °° # g "7 10
1 34 1 4
ST T T T)
-|—3 19+3 20+3 21+3 25
1 1 1
+QdQu( Ti6 (6 L, +5)_ZT21_ZT26_§T28_T29>
1 1 1 1
+Qd< 57 Tis (6L, +5) L, +@T13LQ+ET7(10LM—7)—an)],

GUD — é(z o CA02> [1 Q2T + }1 Q> Tz}
1(20%—@0,%)[@( T1<4L +2L, —1>+£T4+2T6>

11
+Q2< T2<4L 2L, —1)+ZT3+ZT5)]



165

(ect e’

1 | 1
+—T15<LH—1) Lo+ =TiLy— — Tis L +—T4<4Lu—1)
2

RS

8L% — 4L, +81L,L,+ Lg—qu)

180 14
1 1

2
1
T, (15L —38> Tt = Ty — — Thg

—T<4L —1)—
Tyt 1 240 2 20

4

1

19 1 1 1
+QdQu(— _T16<3L 5) — @Tm + — 510 T23+ZT26+§T28+ T29>

+Q2( To(8L2 4L, +8L, Lo+ L2—2L,) — Ty Ly —2Tho L,

1 1 1
T (27L L,—117L, —1> ST L Ty L,
T Tyttt ggte

5 1 1
—ﬁTw(wL +1>+ZT3<4LM—1>+ZT5<4LM—1>
1 8 2 1 34 1 4
—T<7—9L> T STt ~Tio— Ty — =Ty — =T )]
+9 8 M +9 T o7 16+6 19~ 5l = glan = oy
| 3
+Cr|Q2 <144T14<36L L, 90Lq—1>—Tqu—§Tqu
1 5 1 2 1
+ 550 T Lo — 144T15<18Lq+1)+6T8(—6Lu—1>+3T7—ET16
1
— 9T — 1 Ty — T25>
+QQ(1T(95 48L>+1T+5T L re— 1
d<du 72 16 nw 576 14 576 15 ]_6 18 24
1 | 1 1
+ET26_ZT27+§T28+ T29—§T30>
1 1 1
+Qd<1728T15(432L L, =35) = 5T Ly — 55 Tis Ly
1 8 7 409 1 1
—T( . L)——T——T Pt Tt — T
T T3 =0 L) =g 1s = gmog Tha = o T + o5 Tar 9 s
1 7 | 1 1 1 |
STy — STy 4 2Ty 4 Ty — = Tos — — T T T )]
3l 3 20+6 21 + 124 312~ 5 26+4 27+2 30

= lCF [1 QZTl + %QiTZ]
+ (JF[Qd< T1<4L +2L, —1>+%T4+%T6>

11
+Q2( T2<4L 2L, —1)+§T3+§T5>}

1
+OF[Qd< T(SL2~4Ly+8L, Lo+ L2 =2L,) + 5 Tis(Lu—1) L,
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1
Gy

1 1 1 4
4 TiLy— — Ty Ly + §T4<4LM— 1) + §T6<4LM— 1) - ET7<15LH—38>

90
1 1
+ETN+ T22—1—0T26+T27+2T30)
+QQ< A (3L 5) B o+ e Tyt ST+ T +2T>
aQu o Tie L 50 121+ 50 23 + 5 1o 28 29

1
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54 2 90 !
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16 4 1 68 2 8
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1 1 1
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1 1 1 1
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24Ty
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1 1
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1 | 1
+ Tl — o 13Lq+§T4(4LH—1>+§T6<4LH—1>
4 Ty T
——T(15L —38) St LA Wl U 2T>
1577 " Toog T AT g T et
+QQ( 1 (3L 5) O+ Lol +2T>
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1 1 1
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2 16 4 1 68 2 8
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1 5 1
=T <24L —115)
+Qd@< 16 288 283 g 1
3 1 1
+ 275 — —Tos + = T27——T28—T29+T30>
1
T15<—216L L +180Lq+35)+T10Lq+%T13Lq
1
—T(90L 83) Pt Tis— — Ty — =T
Tl R T TRt CRE YT e
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1
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+ Qd<864
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G =il

G =il

oy =ail,

G = il

G\ =16 GD — 16 C2 f1 + 16 CpCy fa
aie =166 +8 (CRCa - CF) A1,
G =16GY) —16Cp £,

GED =16 GD — 16 C2 f1 — 16 CpCy fs,
G = Gl

Gy =G

11 II
GéQ ) = G;5 ) )
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I II
Gé2 )= Gg(s .

8.3.3 Penguin-Penguin Insertions

In the penguin-penguin operator part of insertion (I7), we only encounter Q3. The

notation GEJU)(QU — (q) denotes that we take the expression and simply change all

occurring @, to Qq.

GU = G (Qu — Qa),
G = G (Qu = Qa)
GED = GSP(Qu — Qu),

G8D = (Q. — QJ),

GE = G (Qu — Qa)
GA = a5 (Qu — Qa)
G = GE(Qu = Qa),

G = G (Qu — Qa),

II II
Gés )= G§5 ) ;
II II
Gy = Gy
II II
Gézl ) = G§15 ) )

11 II
G((34 ) - G4(16 ) )
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Gun — [256 D o (896 £ — 40 fg)} (Qu — Qu),
G = [256 G — C2(896 £ — 40 £3) | (Qu = Qu)
Gl =Gy,

Gun — [256 Gun 4 (O%CA ~9 c}i) (448 fi—20 fg)] (Qu — Qu).

8.4 Next Steps

In this last section, we want to discuss the steps that immediately follow from
our result. The goal of this effort is to finalize the calculation of the perturbative

contributions to the inclusive decay rate of the process B — X v at O(a).

Completion of the Regularization

As we have mentioned before in Sect. 7.4, there is one piece left to calculate to
regularize the last divergent pieces that are still present in G;;. This is an ongoing
effort and we hope to be able to supplement these terms in the near future. This

will render our result finite and we can go to the next step.

Combination of the Results

In this step, we construct the complete matrix éij (ip, 0) by adding up all known
results and with this the decay rate I'(b — XP**"y)p . g, from Eq. (2.18).
To get the full contributions at O(as), we also need the Wilson coefficients to this

order. They can be found in the literature [61] and after writing them as

i = €0 + e, (1)) + 0(a2),

we can construct the expression for the decay rate up to O(«;) in the following way:

Db — X2 p,>m, = FOZ w)© () Gy, 6)©
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+ o <(Cz‘ (1) €0+ € 1) €510 ) i1, 6)

+C (1) € (1) Gy 5)(”> +0(ay),

where the last line, together with all the contributions that were calculated previ-

ously, contains the results from this thesis.

We claim that this then completes the perturbative contributions to this order and
it can be checked that the result is renormalization group invariant. After combining
all these terms, the dependece of the physical quantity I'(b — XP**"y)p - g, on the
renormalization scale p should vanish up to O(ay). All in all, this should lower the

dependece of the complete result on the choice of u:

d
T = XP"9) sy = O(02). (8.7)



Chapter 9
Conclusion

The inclusive rare decay B — X,v is one of the most precise observables in flavor
physics and is commonly used as a standard candle to compare experimental results
to theory. The efforts of computing the branching fraction of this process have been
going on for multiple decades and there is a large amount of contributions up to
NNLO in QCD [10-38]. Despite these efforts, the perturbative part of the decay
width, T'(b — XP*"y)p o, is not yet know completely at O(ay). Missing up
until now were some of the contributions from four-particle decays, where due to
the computational complexity of occurring integrals, only estimates were available
previously.

One of the tools that have proven to be the most useful for theoretical predictions
in the flavor sector is the effective weak theory. Thus, we used this framework to
compute a large part of the contributions that were missing for the completion of
the perturbative part at O(qy), where we calculated the four-body one-loop con-
tributions of b — svy¢q using integration-by-parts (IBP) reduction and differential
equation methods.

We supplemented these with their real-emission counterparts, b — svqqg, for the
cancellation of infrared divergences caused by the gluon. We also used IBP re-
ductions on these five-body integrals, but the computation of the resulting master
integrals via differential equations took a different form. Especially the calculation
of the boundary conditions via integration over (partially) divergent kernels, which

was used successfully for the bremsstrahlung contributions in this work, is a very
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interesting (and also comparatively young) technique in this field.

For the complete calculation, we adopted the (slightly modified) KKS scheme for
the treatment of v5. After implementing this, it was possible to carry out the cal-
culation of the affected current-current block of the matrix G;; parallel to the other
combinations of operators.

Following the calculation of the bare expressions, we went over the processes of
renormalization and regularization. As part of the regularization chapter, we also
discussed the last missing piece in this calculation, which is related to the con-
tribution of the next-to-leading order splitting function convoluted with tree-level
three-body diagrams. We also supplemented cross-checks to substantiate the claim
that this is the last missing piece.

In the final chapter, we gave the matrix G;; that is needed in the construction of
the decay width I'(b — XP*'"v)p . p,. Besides writing them down here, we also
made the matrix and all our master integrals public online in electronic form.
Lastly, we discussed the next steps in the ongoing calculational effort that are needed
for a final, numerical update on the decay width. These include the finalization of the
computation of the NLO splitting function and the combination of our novel results
with the already available theoretical predictions, where the renormalization-scale-
dependence will be shifted from O(a) to O(a?).

Summing up the aforementioned parts, this thesis represents a large step in the
direction of completing the O(a;) contributions to I'(b — XP**"y) g - 5 making a

final result possible in the near future.
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Master Integrals in the Four-Body

Case

no(e€)i

Gupi = 1+ e<3HU(z) ~2H,(2) —im — 12)

+e (3mHO(z> 4 36H(2) — 2imHy (2) — 24H, (2) + 6Hy(2) — 9Hyo(2)
52 .
+ 6Hy0(2) = 4H1. (=) + T — 12im = 88)

10
+ 63( — 5% Hy(z) + 36im Ho(z) + 264 Hy(z) + §7r2H1(z) — 24im Hy(2)

— 176H1(Z) + 6Z’/TH2(Z) + 72H2(Z) — 18H3(Z) — 92"/TH070(Z) — 108[‘[070(2)
+ 62-7TH170(Z> + 72[‘[170(2) — 42-7TH171(Z> — 48[‘[171(2) + 12[‘[172(2) — 18H270(Z)
+ 12H271(Z) + 27H070,0(Z> - 18H1,070<Z) + 12H1’1’0<Z) - 8H1’1’1(Z) + 24C(3)

4
+ in® + 20m" — 88im — 512) + O

Y

4 8 8 4 8 8
G4Bg = nl(e) — g + E<§H0(Z) — ng(Z) — glﬂ') + 62 <§Z7TH0(Z) — §Z7TH1(Z)
20 16 16 16
+ §H2(Z) — ?Ho’o(Z) + §H1,0(Z> — §H1’1(2’) + 27T2>
2 4 1
&~ arHy(z) + 45 Hy(2) + Eoing(z) - EOHg(z) - 362'7}10,0(2)
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16 . 16 . 40 40 56
+ §Z7TH170(Z) - El?‘(‘Hl,l(Z) + gHLQ(Z) - gHQVO(Z) + §H2,1(Z)
32 32 32 32 80 14
+ E 0,07()(2) — EHLO»O(’Z> + EHLLO(’Z) — ?HLlyl(Z) -+ ?C(?)) -+ g'l'ﬂ'g)
8 160 28 . 160 28 .
+ e4< - 552,2(2) - TC(?))HO(Z) — 32%3[{0(2) + TC(?})HNZ) + 327T3H1(Z)
40 80
— 107T2H2(Z) — ?Z.’]TH:;(Z) + §H4(Z> -+ 87T2H0,0(Z) — 87'('2H1,0(Z) + 87T2H1,1(Z)
40 . 80 40 56 . 100
+ EZWHlﬁ(Z) — ?HLg(Z) — ?ZWHQ,()(Z) + ?ZWHZl(Z) — ? 272(2’)
80 104 32, 32 . 32 .
=+ 3H370(Z> — ? 371(2) + ?Z’YTHO’(L()(Z) — E“THLO’O(Z) + ?ZWHLLO(Z)
32 . 80 80 112 80
— EWHLM(Z) + §H1,1,2(2) - §H1,2,0(2) + 7[{1,2,1(2) + §H270,0(2)
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64 64 80 49
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8 9(8. 16
Guss = mi(€) | 5eHa(2) + (SimHi(2) = 5 Huo(2) + 16H1,(2) )
16 . . 40 32
+ €3< — 4 H\(2) — ?”THLO(Z) + 16imH; 1(2) — 31‘11,2(2) + EHLO,O(Z)
224
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— El'ﬁHLQ(Z) + §H1,3(Z) + 3 3,1(2) + E’”THLO,O(Z) - 32@7TH1,1,0(Z)
224 . 80 112 64
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448 5
+ 64H1717070(Z) — ?HLLLO(Z) + 320H1,17171(Z)> + O(E ) 5
4 8 4. 9(8. .
Gups = ni(e) | — 3 + €(§Ho(2) —4H(z) — §z7r> +e (glﬂ'H{)(Z) — 4dimHy(z)

16 20
+8Hy(2) — - Hoo(2) + 8Hio(2) — 12H1,(2) + 579)
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40 20 16
+ e3< — §7T2H0(Z) + §W2H1(z) + 8imHy(2) — 16H3(2) — EMHO,O(Z)
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+ O(e%] :



176

Appendiz A. Master Integrals in the Four-Body Case

Gupr
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1 o1 1 1,
= — ZC(3)H, ZC3)HL(2) — —72H
+15C3) + € (= ZCBH(=) + CBH(=) — 2 Ha(2)
2 1 1 1 2
-+ 1—5H4(Z) + E?TZHQ’()(Z) — 4—57T2H170(Z) + EWQHIJ(Z) — EHI’?)(Z)
2 2 2 2 2
— 1—5H2,2(Z) + 1—5H3,0(Z) T 31(2) + 1—5H1,1,2(Z) — BHLz,o(Z)
2 Hya(2) + 2 Haoo(2) — —Hao(2) + — Hoa(2) — — Hoopo(2)
— — - — 2)+ — z)— — z
15 1,2,1\% 15 2,0,0(% 15 2,1,0 15 2,1,1 15 0,0,0,0
b Hrg00(2) = = Hin0o(2) + = Huano(z) = = Hinaa(2) + 1o )
— - — — z)— — z
15 1,0,0,0\ % 15 1,1,0,0\ % 15 1,1,1,0 15 1,1,1,1 1800
1 1 2 2
+ (= goom Hol2) + goom Hi(2) = SC(3)Ha(2) + -2 Hy(2)
4 2 2 2 2
- 1—5H5(2) + 5((3)H0,0(Z) - gC(3)H1,0(2) + 5((3)H1,1(Z) — EWQHM(Z)
4 2 2 4 4

-+ 1—5H174(Z) -+ ETF2HQ70(ZJ) — E?TZHQJ(Z) + E 273(,2) + 1—5H372<Z)
4 4 2 2 2
— 1—5H470(Z) + 1—5H471<Z) — 4—57T2H07070(Z> =+ 4—571'2H17070(Z) — ETFQHLLO(Z)

+ 4—2572H1,1,1(2) - 14—5H1,1,3(Z) - 14—5H1,2,2(2) + %HLS,O(Z) - %Hl,i’),l(z)

— % 212(2) + % 220(2) — %HQ,Q,I(Z) — %H&o,o(z) + 1% 31.0(2)

- %Hs,m(z) + %Hl,l,lz('z) - 14_5H1,1,2,0(Z) + 14_5H1,1,2,1(Z) + %HLz,o,o(Z)
— %Hl,Z,l,O(Z) + %H1,2,1,1(2’) — 14_5H2,0,0,0(Z) + % 21.00(%) — % 21.1,0(2)

4 4 4 4
+ —Hs111(2) + —Ho0000(2) — —=Hi10000(2) + —=H11000(2)

15 15 15 15
4 4 4 1 1
— 1—5H1,1,1,0,0(2) + 1_5H1,1,1,1,0(Z) - 1—5H1,1,1,1,1(2) + 5@(5) - 1—572C(3)>
+O(% |
[ 11 11 11
= TLQ(G) % + €<EHI(2) — %HQ(Z))
11 11 11 11 77
2 (2) — — g —H ———ﬁ
te ( 180 112(2) = 15 floo(2) = geHio(2) + 5o Hia(2) = oy
77 11 11 11
3 —m?Hy(2) — —m2H,(2) — —H3(2) — —H
te (10807r o(2) = g™ Hi(2) = o Hs(2) = 1o o (2)
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+ %Hz,o(z) - %Hz;(z) + %pr(z) + %HI,OQ(Z) — %HLLO(Z)
+ i_;Hl,l,1<Z) - %C(EB))
+e(- %52»2(@ + %OC (3)Ho(2) — %C (3)Hy(2) + Q%HHQ(Z)
+ %HAL(Z) - %WQHO,O(Z) + %7121‘[1,0(2) — %WZHLl(z) + %HL3(Z)
+ %HQ,Z(Z) %Hs,o(z) + %Hm(z) — %HLLg(Z) + %HLZO(Z)
_ %Hl,z,l(Z) — %HQ,O,O(Z) + %Hz,l,o(z) - %HQJJ(Z) — %507 0.000(2)
_ %HL0,0,0<2) + %Hl,l,(m(z) — %Hl,m,o(z) + %HLLM(Z) _ %47007#)
+0(e)],

Clapro = nale) [6%1%(2) +e (%H2(Z) - % 00(2) — % 10(2) — %wz)
+ €3<21T1672H0(z) + %ﬁfh(z) - %Hg(z) - ;—éHLz(z) - ;_é 20(2)
+ %HZI(Z) + %HO,O,O(Z) + %HLo,o(z) — %HLLO(z) + %g(g))
Fe (= 50 Salz) — SR H(2) — 5 CBVHL(2) — onHa2)
* %HZL(Z) N %WQHQO(Z) - %WQHLO(Z) + %WQHM(Z) + %Hm(z)
- %HM(Z) + %H&O(’Z) - ;—(1)}[3,1(,2) - %ng(z) + %Hm,o(fz)
_ %Hl,z,l(z) + % 2,00(2) — %HQ,LO(Z) + %Hm,l(z) — % 0.0,0.0(2)
_ %HLO,O,O(Z) + %HLLO’O(Z) — Z—EHLLLO(Z) + %#1)
+ 55( - %52,3(2) - %53,2(2) + %SZQ(Z)H()(Z) - %410774}[0(@
_ %Sg,g(z)]-]l(z) — %W‘lhﬁ(@ — %C(S)HQ(Z) + %W2H3(Z)
- %fﬂ(z) + %6(3)%,0(2) + %C(S)Hl,o(z) - %§(3)H171(2)
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G4B11

+ 110—281()7T2H1’2<Z) — %Hm(z) + %TQHQVO(Z) — %WQHQJ(Z) + %H2,3(z)
~ 5 Hya(2) — o2 Haole) — 2ot Haa (=) + 577 Hooo(2) + 55nHioo(2)
— 21—7107T2H1,1,0(Z) + 21—7107T2H1,1,1(2) + %Hl,ls(z) + %HLZ?(Z) - %Hlv?’vo(z)
+ %Hl,?),l(Z) - %Hz,m(z) + %HZZ,O(Z) - %HZ?J(Z) - %H&&O(z)
— %HB,LO(Z) - %H?),l,l(Z) - j—gHLl,m(Z) + i—gHle,D(z) - %HLLQJ(Z)
— %HLZO,O(Z) + %HLQ,LO(Z) - %HIQ,LI(?«') - % 2,000(2) + %HZLO,O(Z)
- %H2,1,1,0(2> + %H2,1,1,1(2> + 15&1}]0,0,0,0,0(2) + %HLO,O,O,U(@
— %(?H171707070(z) + %HLLLQO(Z) — 19—1]‘[1,1,1,1,0(2’) + %4(5) + %W2§(3>>
+0(9)]
=nay(e)| — E%HQ(Z) + 62< — %HQ(Z) + % 00(2) + %HLO(Z) + %W2>
+ 3( % Ho(z) — 10 *Hy(z) + %Hs,(z) + %Hw(?«’) + %HQO(Z)
- %H2,1<Z> %Hooo(z) - %Hl 00(2) + %Hl 10(2) — %C(?’))

e (fgn $22(2) + SO Ho(2) + T0CBIHA) + 1ogn Ha(e) — o Hal2)
b Hoo(2) + gonHo(z) — g Hia(2) — T Hu(2) + S Hy(2)
— %Hg,o(z) — %HBJ(Z) + %Hl,lz(z) - %Hm,o(z) + %HL?J(Z)
_ 421_?]{2’0’0(2) + %HQ’LO(,Z) — %HQ’“(Z) + % 0,0,0,0(2)
+ %Hl,o,op(z) — %Hl,l,o,o(z) + %Hl,l,l,o(z) - %Wg
+ e5< — ;L—;LSQ,S(Z) + 3—55372(3) - %52,2@)}]0(2) + %W4H0(3)
+ 2802 H(2) + oo m H(2) + S C(3) Halz) — st H()
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+ 2 H(2) — SO Hoolz) — B Hrgl) + o C3) ()
_ %F2H1,2(2) + %;HLZL(,Z) — %WZHQ,()(Z) + %7{2HQ71(2> — % 23(2)
+ %Hg,z(z) + % 470(2) + % 4,1(2) - %WZHO,O,O(Z) - %WZHLO,O(Z)
+ %W2H1,1,0(2) - %W2H1,1,1(2) - I—EHLL?)(Z) - %Hl,Q,Q(Z) + %Hl,i’),o(z)
- %Hl,&l(z) + %HQ,1,2<2) - % 220(2) — % 2.21(2) + I—;Hz&,o,e(z)
+ %H&I,O(z) + 421_?]{3’1’1(2) + %Hl,l,lz(z) - %Hl,l,m('z) + %Hl,l,zl('z)
+ %HLZO,O(Z) — %HLZ,LO(Z) + %HLZIJ(Z) + i—;leo,o,o(Z) - %HZ,LO,O(Z)
+ i—iﬂz,1,1,0(2) — %HQ,LLI(Z) — 11231 Ho0,000(2) — %HLO,O,O,O(?«')
+ %O?)Hm,o,o,o(z) - %HLLLO,O(Z') + %Hl,m,l,o(z) - %C@) - %WQC(Z)’))
+ 0(66)] :
Gu12 = na(€) L + €(lH1(2) - iHO(Z)>
20 5 10
+&(5 Hale) + £ Huolz) — 2 Higle) + Hia(e) - g—;)
+ € (1—157T2H0(2) — %WZHl(Z) + %Hz),(z) + %HLz(Z) - %Hz,o(z) +2H5,1(2)
~ 2 Hono(z) + 5 i00(2) — 2Hia0(2) + 5 Hiaa() - 20(3))
e (= 2800(2) + 2 CBH() — 2CBVH(:) — 1= Ha(2) — S H(2)
5 5 5 15 2
— %WQHO,O(Z) + %WzHl,o(Z) - gWQHl,l(Z) + %HLS(Z) + Ha(2)
— H3o(2) + 3—; 31(2) + §H1,1,2(2) — %Hm,o(z) + 3_52]—-]1,2,1(3)
+ §H2,0,0(2) —4H510(2) + % 21.1(2) + %Ho,o,o,o(z) - ng,o,o,o(Z)
+4H, 00(2) - 55—6H1,1,1,0(Z) + %Hl 1,1 1(2) - g)
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—5273(2) - —Sg 2(2) -+ %5272(2:)]{0(2) + %’ﬂAHo(Z) - ?SZQ(Z)Hl(Z)
— T HL () — SCB)H(2) — 3 Hs(2) + 10 Hs(z) — L C(3)Hool2)
11 2

+ —C(3)H170(z) — 12{(3)[’]171(2’) — 13571'2[{172(2) — EHlA(Z) + 1—57T2H270(Z)
13 o7

— - Hyq(2) + €H2,3(Z) 5 32(2) + Hyo(z) —30H1(2) + %WZHO,(LO(Z)

_ %ﬂHl,o,o(Z) + ngHl,l,o(z) - ?—(;7(2[—[1,1,1(2’) + %HLL?,(z) + 25_2}[172’2(24)

_ 2_52]-]1,3,0(2) + %HLM(:&) +2Hs19(2) — 2H20(2) + 1—;6 22.1(2) 4+ 2Hs0,0(2)
a % 310(2) +54Hs1.1(2) + Zngl,Ll,z(Z) - Z—1H1,1,2,0(Z) + @HLLZJ(Z)

+ §H1,2,0,0(Z) — %HLz,Lo(Z) + %41[11,2,1,1(2) - gHg,o,o,o(z) + 8Hy1,00(2)

_ %8 21,1,0(2) + %Hzl,l,l(z) — ;Ho,o,o,o,o(z) + ?HLO,O,O,O(Z) — 8Hy1000(2)
+ %HLLLO,O(Z) - ?HLLLLO(Z') + 9—?5}[171’1,171(2) —3¢(5) + 27r25§(3)>

Gyp13 = n2(e) [ — 6_1() + 6(%1{0(,2) — %]‘h(z))

1 1 1 3 2
+ €2< — gHQ(Z) — 1—5H070(2) —+ gHL()(Z) — 5H1?1(2> + %>

1 1 Hj(z 2 2
+ 63( - 4—5772H0(Z> + 1—571'2H1(Z> — 35( ) 5
6 18 1

2 2
— 2H271(Z) + B 07070(2) — SHLO’O(Z) + ng’Lo(ZJ) — —HLLl(Z) + _C(3)>

i (452’2(2) _ %g(S)HO(z) + g@(?))Hl(z) + %WQHQ(Z) + 371'2HO,O<Z)

2 6 2 2

— —m’Hyo(2) + =n*Hy(2) — ng,s(Z) - 5H2,2(Z) + - Hz(2)
24 4 4 28 4

- —H371(Z) ——-Hy; 2(2’) + —H1,2,0(2) - EHLQ,I(Z) - —H2,0,0(Z)




182

Appendiz A. Master Integrals in the Four-Body Case

G4Bl4

5!
4 4 16 128
+ 3H1’4(Z) — _WZHQ’O(Z) + §7T2H2’1(Z) — FHQ’g(Z) + 8H3’2(Z) —+ —H4,1<Z)

15

4 4 4 12
— EWQH(),Q()(Z) + EW2HLO’O<2) — 37T2H17170(Z) + €7T2H17171(Z) — €H17173(Z’)

12 12 112 4 4
— €H1,2,2(Z) + EHLS,O(Z) — ?Hl,&l(z) 5 212(2) + 5H2,2,0(Z)

128 4 48 172 8
- —H2,2,1(Z) -z 3,0,0(2) + —H3,1,0(Z) - —H3,1,1(2) - _Hl,l,l,Q(Z)

5 5 5 5 5

8 104 8 56
+ 5H1,1,2,0(2) - ?HI,I,Q,I(Z) - ng,Q,0,0(z) + EHI,Q,LO(Z)

8 136 424

—40H,211(2) + 5H2,0,0,0<Z) — 8H1,00(2) + ?HQ,LLO(Z) — ?Hzl,l,l(z)

8 8 24 72

°H ~°H “u ey
+15 0,0,0,00(2) 5 1,0,0,00(2) + 5 1.1,0,00(2) 5 11,1,00(2)

216 648

+ ?H1,1,1,1,0(2) — ?H1,1,1,1,1(2) +¢(5) — %WQC(E}')) + O(%

270 135 90 270 135

1. Hs(z 2 1 1 2
— %ZWHl(Z) + % — EHO,O(Z) + 4—5H1,0(2) - %Hl,l(@ + _>
1 1 1. 2Hs(z 2 .
+ €3< — g’iﬁHa(Z’) + 5—47T2H1(Z) + 4_5@7TH2(Z) - 435( ) 135 H, ) (Z)

. 1 1
+ —Z7TH1’0<Z) — %ZWHLl(Z) + _HLQ(Z) — —H270(Z) + —ngl(Z)

— na(e) [ — o e Holz) — g (2) — i) + & TainHol2)

2 1 4 2 .
+ _H070’0(Z) — EHI’O’O(Z) + —HLL[)(Z) — _Hl 1 1(2) + EC(?)) + m@ﬂ'g>

1 2 4H,(z 2 1
4( ) + —7T2H0,0(2> — ﬁﬂ'QHLQ(Z)
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1 1. 2 2 . 1.

+ 1—872H171(z) + 1—517TH172(Z) — EHLg(z) — EZT(HQ,O(Z) + 1—527TH271(Z)
2 4 2 4 2

— — S— ——imH, — —imH
15 22(2) + 15 30(2) 15 31(2) + 13527 0,0,0(2) 45” 1,00(2)
1. 1. 1 2 1

+ 1—527TH1,1,0(2’) - EWHLM(Z) + ng,l,Q(Z) - EHLQ,O(Z) + ng,z,l(Z)

2 Ha0(2) — = Hao() + T Haa(2) — —o Ho00(2) + = Higoo(2)
— z) — — z - z) — — z — z
145 12,00 1511210 5211 135 10000 145 11,000
2 1 3 4 4

- 1—5H1,1,0,0(Z) + gH1,1,1,0<Z) - EH1,1,1,1(2> + EWC(?)) - MW4>

8 8 4 4

+ €5< — 4—5171'((3)]‘.]0(2) + MW4H0(Z> + 1—5271'((3)]‘[1(2) — %77'4]‘!1(2)
8 4 2 4 8

— —((3)H. — —imH —1?H —irH — —H
15(( )Ho(z) 135z7r 2(2) + 277T 3(2) + 4527r 4(2) 45 5(2)
16 8 8 4
—((3)H, —im3H, — —((3)H — —imH

+ 45C( JHoo(2) + 105 0.0(2) 15@( JH10(2) 3507 1,0(2)
4 2. 1 2. 4

+ 3C(3)HL1<Z) + E’lﬂ-sHl,l(Z) — §7T2H1,2(Z) — 1—5Z7TH1’3<Z) + EHL;;(Z)

b 2R () — S Hy(2) — —imHy (=) + = Hag(2) + —mimHy(2)
o7 2,0 97T 2,1(% 15Z7T 2,2(% 15 2,3(% 45Z7T 3,0(%
2. 4 8 4 4

— 1—57,7TH3’1<Z) + EH&Q(Z) — EHLLO(Z) =+ E 471(2) — 8_17T2H0’0’0<Z)
2 1 1 1. 2

-+ 2—77T2H170,0(Z) — §7T2H17170<Z) + 6W2H1’1’1(2> + EZWHLLQ(Z) — 5H17173(Z)
2 imHy0(2) + SimHian(2) — 2 Hya(2) + = Higol2) — 2 Hyga(2)
15Z7T 1,2,0{% 527T 1,2,1\% 5 1,2,2{% 15 1,3,0(% 5 1,3,1(%

b inHyg0(2) — —imHaio() + SitHa1(2) — 2 Hoa(2) + = Hazo(2)
—T z) — —im z —iT z)— = z — z
15 2,0,0 5 2,1,0 5 2,1,1 iz 15 H2.20
2 8 4 2 )

— 5H2,2,1(Z) — 4—5H3,o,0(2) + R 310(2) — 5H3,1,1(2) — EZWHO,O,O,O(Z)
4 2 1

+ 4—5?:7TH170’0’0<Z) — 1—5?:7TH171,0,0<Z) + 57;7TH1,1,1,0<Z> - 1_0i7TH1,1,1,1<Z>
3 2 3 4 2

+ 3H1,1,1,2(2’) - 5H1,1,2,0(Z) + 5H1,1,2,1(Z) + 1—5H1,270,0(Z) — 5H1,2,1,0(Z)
3 8 4 2 3

+ —Hi211(2) — —H2000(2) + —Hz100(2) — =H2110(2) + —H2111(2)

5 45 15 5 5
16 8 4 2
+ 135 0.0,0,00(2) — 4_5H1,O,0,0,0(Z) + 1—5H1,1,0,0,0(Z) - ng,l,l,O,O(Z)

3 9 4 4 in®

+ 3H1,1,1,1,0(2) — 1—OH1,1,1,1,1(Z) + 56(5) — —7(3) — 2430> + 0(66)] ;
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Gans = na(e) [ — SeHi(2) + eQ(Hi—éz) () — = Hia()
+ (= L) + Hi? ¥ S H10(2) — = Holz) + 1 o (2)
— %Hwo(z) + %Hl,l,[)( ) — %Hm 1( ))
+ 64(;—352,2(2) + %C(S)Hl(z) - %WQHQ(z) + 115&(2) + %ﬂﬂm@
+ %HHM(Z) - %HL?,(Z) + %sz(z) - 135 30(2) — % 31(2) + %HLL?(Z)
- ;%Hl,z,o(z) + %Hl,2,1(2> + %H2,0,0(2> - % 2,1,0(2) + %Hz,m(z)

121 41 11 16
+ %Hlvo,o,O(z) - %Hl,l,o,t)(z) + EHLLLO(Z) - §H1,171,1(2)>
11 821 143 16
6 (T5a(2) + 55 Shal2) = S aa(2)Ho(2) + = Saal2) Ha(2)

2 1 127
+ —7T4H1(Z) — =C(3)Ha(2) — 4_57T2H3(Z) + 1—5H5(Z) - %C@)Hl,o(z)
1 122 4
+ _<<3)H1 1(2’) — —7T2H1’2(Z) + EHlA(Z) + ETIJHQ’()(Z) — E?TQHQJ(Z)
14 437 2 83 7

+ 1—5H2,3(2) + WHS’Z(Z) 15 10(2) + 0 41(2) — %W2H1,0,0(2’)

- %WQHLLO(Z) + %WQHl,l,l(Z) — %HLL:;(Z) — %HLQ,Q(Z) + 16—9H1,3,0(Z)
— %HI,?),I(Z) + % 21,2(%) — %Hm,o(z) — % 221(2) + %H3,0,0(2)

+ %H&LO(Z) - % 3,1,1(2’) + %Hl,lﬂ,z(z) - %Hl,lz,o(z) - %Hl,l,z,l(z)

+ %HLZO,O(Z) — %HI,Q,I,O(Z) + %Hm,m(z) — %Hzo,o,o(z)

+ %HQ,I,O,O(Z) - % 2,1,1,0(2) + %HZ,LLl(Z) - %Hl,O,O,O,O(Z>

+ 56_701H1’1’0’0’0(Z) - %HI,I,I,O,O(Z) + %Hl,l,l,l,o(z) - %Hl,l,l,l,l(z)>
+0()] .

60 15 30 15

GiB1s = no(€) [ — eiHl(z) + 62<iH2(Z) + iHl,o(z) — 3H1,1(2)>
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G4B17 =

n E3(%”2}[ (2) - 4[1;35(2) 135 1a(2) — %Hzo(z) + %Hg 1(2)
— %5 100(2) + 14—5H1,1,0<Z) - %Hl 1 1(2)>
b (=12 8a(2) 4 FCBI () — e Ha(z) + () — g (2)
+ Ve Hi(2) — %Hl 3(2) — %ng(z) + EH&O(Z) - %H3 1(2)
4 4 16

4
+ —Hi12(2) — —=Hi20(2) + cHi21(2) + 1_5H2,0,0(Z> — 1—5H2,1,0(Z)

52 2 8 26 16
+ 1—5H2,1,1(Z) + 1_5H1,O,0,O(Z) — 1_5H1,1,0,0(Z) + 1_5H1,1,1,O(Z) — ?H1,1,1,1(Z)>
16 2 32 4
+ 65( — 1—552,3(2) + 1—553’2(2) -+ BSQQ(Z)HQ(Z) + ESQ}Q(Z)Hl(Z)
1, 4 8 4Hs(z) 2
—a'H — —((3)H. —7a°H — < — —((3)H
+ 500" 1(2) 5(( JHa(z) + 5" 3(2) 15 5C( JH10(2)
2B () — e Hya(2) + < Hya(2) + m? Hogl2) — ~on?H (2)
— S — — z —7 z) — —m
5 1,1{% 457T 1,2{% 3 1,4 45 2,0 45 2,1
14 2 2
+ 1—5H2’3<Z) — 2H3,2(Z) — 1_5H4’0(Z) — 6H471(Z) —+ 4—57T2H1,070(Z)
8 26 8 22 22
— 4—57T2H1,1,0(2’) + £W2H1,1,1(Z) - §H1,1,3(Z) - 1_5H1,2,2(Z) + 1—5H1,3,0(2)
16 16 16 44 16
- §H1,3,1(2) - 1—5H2,1,2(Z) + 1—5 2,2,0(2) - E 2,2,1(2’) - 1—5 3,0,0(2)
32 68 8 8 16

+ IG 310(2) — —Hs11(2) + —Hi112(2) — —Hi120(2) — —Hi1121(2)

8 4 o6 8 32

—H ——H —H - — =
+ 15 1200(2) 3 12,1,0(2) + IE 1211(2) IE 2000(2) + 15 2.1,00(2)
104 64 4 16
_ = —H - —H —H
15 21,10(2) + 3 2.1,1,1(2) 15 10000(2) + 15 1,1,000(2)
H2 32 484
= s aa00(2) + S Hiaa0(2) = 1—5H1,1,1,1,1(2)> +0(e) |
1 1 1 7 11
ns(€) [ — 1€ Mo(x) + 63< EWZHMZ) — g Hi2(2) + 7H100(2) — 55 M 10(Z)>
47 53 1 1 7
+ 64( — 5po22(2) = 3¢V Hi(2) + %WZHLO(Z) ~ 5 Hi1(2) + £ His(2)



186 Appendiz A. Master Integrals in the Four-Body Case

77 9
+ 2_0H1,1,0,0(Z> — 3H1,1,1,0(2)>
57 171 299 28
+ 65 <ESQ’3(Z) — 2—083’2(2) + 2—052,2(Z>H0(Z) — ESQ,2<Z)H1(Z)
217, 17 109 9 ,
———7H —((3)H — —((3)H —a°H
5200 1(2) + 5 C(3)H10(2) 10 C(3)Hya(2) + mi 12(2)
39 299 363 1 1
- —H - —H - —H — —m?H —7’H
5 14(2) 20 32(2) 10 11(2) 107T 100(2) + lOW 11.0(2)
1 77 3 37 42
- 1_O7r2H1,1,1(Z) + EHl’l’?’(Z) + §H1,2,2(Z) — 1—OH1,3,0(Z) + €H1,3,1(Z)
28 299 27 18 18
+ €H2,2,1(2) ~ 90 3,1,0(2') + 5 3,1,1(2) — €H1,1,1,2(2) + €H1,1,2,0(Z)
11 13 19 4
- —H - —H —H ——H
5 1,1,2,1(2) 1 1,2,0,0(2) + 20 1,2,1,0(2) 5 1,2,1,1(2)
203 429 63
+ —Hi0000(2) — =—H11000(2) + —=H111,00(2) — 5H171,1,1,0(Z)>
10 20 5
+0(€)],
Gams = maf0)|( — SsimH(2) — S Ho(2) — - Hia(2))
4B18 = MN2(€) | € 6()m 1 60 2 60 1,1
Sy (—7T2H1(Z> — —Hj(2) + iinl 0(z) — —=imrHy1(2) — iHl 2(2)
0 60 30 6 30
1 2 1 3
~H “H ~H _°H )
+30 2.0(2) 15 21(2)+30 11.0(2) 20 11.1(2)
2 1 1 1
+ e (592(2) + ZCOMHR) + im* (=) + oo Ha(z) — = Hal2)
1 23 1. 2 1
— %WQHLO(Z) + ﬁﬂjHI,l(Z) + 1—0Z7TH1’2(Z) — 1—5H1’3<Z> — %H2’2<Z>
1 4 1. 7. 37 .
+ %ng(Z) — E 371(2) — 1—5Z7TH1,070(Z) + %Z’/THLL()(Z) — @Zﬂ'Hlyl,l(Z’)
b H () = Hynol2) — S Hya(2) — = Hag(2) + = Haol2)
— z — z) — — z) — — z)+ — z
301112 151120 30112 15 12,00 151210
13 1 3 11
- BHZ’M(Z) - 1—5H1,1,0,0(Z) + EHLLLO(Z) - EHLI,Ll(Z)) + 0(65)] )

GiB1o = no(€) [e4 (C(?))Hl(z) + ém?’Hl(z) + Hy3(2) + H1,1,2(z)>
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G4B2O

G4B21

+ €5<125273(Z) - 105372(2) + 45272(Z)H1 (Z) + 927Tg(3)H1 (Z) - %71'4]']1 (Z)

1. 7.
— 2@(3)H1,0(2) — §Z7T3H170(Z) + 7((3)H1’1(Z) + EZW?’HLI(Z) — H174(Z)
+ 1OH4,1(Z) + 8H1,173(Z) — 2H1,3’0(Z> + 4H173,1 (Z) — 4H272,1 (Z)

)

— 24H3,171(Z) + 9H171’172<Z) — 2H1,172’0(Z) + 8H1’1,271(Z)> + 0(66)

5 25 5 i
= 2 he(-2H s —>
n2(6) | 7 +E< T Hho(2) + 5 Hiz) + 75
5 . 1. 11Hs(z 125
+ 62( — 1—8sz0(2) + §Z7TH1(Z) — 1;( ) + = Hoo(z)
7 1 2
= g5thole) + ggHa() - )
5) 7 2. 99 25 .
+ 63(aw2ﬂo<z> — 5= Hi(2) — SimHa(2) + 22 Ho(2) + TimHoo(2)
2 1 5 7 13
— §Z.7TH17Q(Z) + §2.7TH171(Z) — 6H1’2(z) + Z 270(2) — EH2’1(Z)
625 1 1 16 7 i3
_ 22y, —_H —H Sy} L 3——)
= _0,0,0(2’) 36 100(2) + 13 1,1,0(2) 9 1,1,1(2) 3<( ) 51
+0(")]
1 1 1 in
= ()| — 5+ 6<§H0(z) — SH(2) - 3)
2 2 2 2 2 4
+ @ (ZimHo(2) — SimH (2) + 2Ha(2) — S Hoo(2) + 5 Hio(2) + S Hia(2) + 57°)
3 3 3 3 3 9
8 8 4 4
+ 63( - §7T2H0(Z) + §7T2H1 (Z) + 2Z7TH2(Z) — giﬂH&o(Z) + gZ'ﬂ'HLo(Z)
2. 4 4
— §Z7TH171(Z) + 8H172(Z) — 4H270<Z) + 1OH271(Z) + §H07070(Z) — §H170,0(Z)
4 38 Tim3
— §H17170(2) -+ §H17171(Z’) + 8{(3) + T)

20 14 14
+ 64( - 352,2(2) —16¢(3)Hy(2) — giwg’Ho(z) +16¢(3)Hy(2) + gzﬁr?’Hl(z)
. 16 16 2

— E’/TQH2<Z) — 4Z7TH3<Z) -+ 4H4(Z) + EWQHO’O(Z) — EWQHL[)(Z) -+ §7T2H171(Z)
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. . 56
+ 4’L.7TH172(Z) + 4H173(Z) — 417TH270(2) + 6Z7TH271(Z) — 8H272(Z) + EH{;J(Z’)

8. 8. 4. 10 .
+ —Zﬂ'HO’O’O(Z) — —Z7TH1’070(Z) + —ZT('HLL()(Z) + ?ZWHLLl(Z) + 24H171,2<Z)

3 3 3
— 16H1’2’0(Z) + 52H172,1 (Z) -+ SHQ’O’O(Z) — 20H271’0(Z) + 50H2,171(Z)
8 8 8 76 302
- gHo,o,o,o(Z) + ng,o,o,o(Z) + §H1,1,0,0(Z) - §H1,1,1,0(Z) + ?Hl,1,1,1<2>

4
+ 26im((3) — 233 ) +0()

’

5 25 5 s 5. 1.
Gz = na(e) [ ~ 54 + €<ﬂH0(Z) — EHI(Z) — g) + 62(67,77']‘]0(2) — gmHl(z)
11 125 25 1 2
+ —Ha(=) = 52 Hoo(2) + T Hiol2) = SHia(2) + 35 )
5 1 55 25
—+ €3< — E’/T2HO(Z) + §7T2H1(Z) + 27/7TH2(Z) — ZH‘Q,(Z) — Ei’/THO’O(Z)
5. 1. 11 21 13
—|— §Z7TH170(Z) — gZﬂ'HLl(Z) —|— ?HLQ(Z) — ZHZO(Z) + ? 271(Z>
625 125 17 16 i3
+ QHO,O,O(Z> - EHLO,O(Z) + €H1,1,0(2’) + €H1,1,1(Z) + 7((3) + 1_8>
+O(|,
Gapas = na(6) | 10 + (o Ha(2) — o Hof2)
4B23 = N3\€ 10 620 14 20 1%
1 1 1 1 2
2( = = —_H ~Hyi(2) — —)
te < 10 72(2) + g Hoo(2) = 75 H0(2) + 5 H1a(2) = &5
1 1 1
+ € (5 Ho(2) = 5o Hi(2) + £ Ha(2) = £ Hial2) + £ Hyl2)
o (2) — £ Hooo(2) + $ Huoo(z) = £Hino(2) + EHiua(2) = ((3))
21 5 Hooo 5100 FHL10 s 0
3 3 1 2 1
+ ¢ (EC(S)HO(Z) — gC(3)H1(2) + 1—57T2H2(Z) — 5H4(z) — 1—57r Hoo(2)
1 2 2 2
+ EWZHl 0(2) — 1—57T2H171(Z) + gHLg(Z) + 5]‘[272(2) — gHg 0(2)
2 2 2 2 2

+ 5H3,1(Z) — 5H1,1,2(Z) + ng,Q,O(Z) — 5H1,2,1(Z) — —Hs0(2)
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2 2 2 2 2
+ —Hs10(2) — =H211(2) + =Hop,00(2) — =H1000(2) + =H11,00(%)
5 5 5 5 5
2 2 d
By ‘n - —)
5 11,10(2) + 5 1,1,1,1(2) 600
4 (oiontHy(z) — 2wt (2) + LUV Ha(z) — e Hy2) + = Hyl2)
e — - —T - — —T -
3000 ° 3000 ! 5 2 15" 7° 570
6 6 6 2 4
— SC(3)H0,0(Z) + gC(3)H1,0(2) - gC(3)H1,1(2) + 1—57T2H1,2(Z) - 5H1,4(Z)
2 2 4 4 4
- 1—57T2H2,0(Z) + EW2H2,1(Z) - g 2,3<Z) - SH&?(Z) + 3H4,0(Z)
S His(2) + 2 Hooo(2) — e Hy(2) + —m*Hyo(2)
5 41(% 157T 0,0,0\% 157T 1,0,0% 157T 1,1,0%
2 4 4 4 4
— 1—57T2H1,1,1(Z) +pHia(2) + w Hipa(2) = s Hisol2) + 2 Higa()
4 4 4 4 4
+ EHQ,LQ(Z) 5 220(2) + 5 22.1(2) + gHs,o,o(Z) - 5H3,1,0(2)
4 4 4 4 4
+ 5H3,1,1(2) — 5H1,1,1,2(Z) + 5H1,1,2,0(2) — SHLI’Q’I(Z) — 5H1,2,0,0(2)
4 4 4 4 4
+ 3H1,2,1,0(2) — 5H1,2,1,1(Z) + 5H2,0,0,0(2) — 5H2,1,0,0<Z) + 5H2,1,1,0(2)
4 4 4 4
- —H2,1,1,1(Z) - —Ho,o,o,o,o(z) + —Hl,o,o,o,o(z) - —Hl,l,o,o,o(z)
5 5 5 5
4 4 4 3 1
+ 3H1,1,1,0,o(2) - 5H1,1,1,170(2) + 5H1,1,1,1,1(2) — 5((5) + SWQC(3)> + 0(66) )
11 11 11
Gapas — _ (—H —H )
824 = 13(c) [ 120 g 0(2) ~ g (2)
11H5(z 11 11 11 77
(T JgHan(e) + T3 Ha2) - () + 7o)
77 11 11 11
3 — —m*H —H —H. —H
te ( 360" Hol2) + g™ H(2) + 55 Hs(2) + - Hia(2)
11 11 341 55 55
- ﬁHz 0(2) + %Hz 1(2) - mHOOO(Z> - EHLO,O(Z) ﬁHl 1 0(2)
11 187
— 1—5H1 11(2) + m(@)) + 0(64) )

G4B25 = 713(6) [ — E—Ho(Z) + 62< — —Hg(Z) + _HO,O(Z) + —Hl’o(Z) + —7
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+ €3< - %7?21{0(2) — %WQHl(Z) + %H:%(Z) + %Hlﬂ(z) + % 2.0(2)
- % 21(2) — %63 0,00(2) — %Hl,w(fz) + ;_(1)}[1,1,0(2) - %Q(:—;))
+g<%?&2@y+%k@ﬂ%@y+;%@ﬂ%@}+é%ﬁﬂxa

U H0(2) + ShnHig () + St o(2) = ety (2) — )
+ %HQ,Q(z) — % 30(2) + 2—3 51(2) + %Hl,l,z(z) - %Hl,z,o(z)

+ %HLZI(Z) - % 2,00(2) + %HZLO(Z) - %1 21,1(2) + %HO’&O’O(Z)
+ %(f 1000(2) — ;—gﬂl,l,o,o(z’) + %HLI,LO(Z) - %”4) + O(€5>] )

11 11 77 11 11
G41326 = ng(e) [E—Ho(Z) + €2<—H2(2) — —ng(Z) — —HL()(Z) — —7T2>

60 30 60 30 180
(S Ho(2) + 1o ()~ ) () ()
b 35 Haa(2) + S Hogo(2) + T Hioo(2) — THu0(2) + 5 C(3))
Fé (= 2 62(2) — TR H(2) ~ SoCB)H(2) — 3 Hal2) + =0 Hil2)
— T Hoo(2) — g Hio(z) + i n?Hia(2) + T Hug(2) — o2 Hoa(2)
+ % 30(2) + % 31(2) — 1—51H1,1,2(Z) + 16—1H1,2,0(Z) — %Hl,zl(?«’)
+ %HQ,O,O(Z) — % 21,0(2) + %HZI,I(Z) — % 0,000(2) — %HI,O,O,O(Z)
+ I_SHI,I,O,O(Z> — %Hl,l,l,o(z) + %ﬁl) +0() |,

1 1 1
Gypar = ns(e) 350 + E<®Hl(z) — 1—75H0(z)>

37 2 1 2 m’
2 H. _
—_— — e I __>
te ( To50 122) + 775 Hoo(2) = goeHio(2) = o Hia(2) — o5
—+e3<—g—w2bh(z)—-————wzﬂltﬂ-+-}9—fiKZ)—-jﬂlfhz(Z)
525 1575 1050 525 "
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37 16

4 2 4
+ %HQ,O(Z) — %HQ,I(Z) — 1—75H0,0,0(2) + %HLO,O(Z) + %Hl,l,o(z)

_ %HLM(Z) — %C(?’))

46 (5522() + (B Hol2) — =BV (2) + e ()

_ 1(% Hi(z) — %wzHo,o(Z) + %WQHMZ) + %”2HI*1(Z)

_ %Hm(z) + % 22(2) — % 30(2) — % 31(2) — %Hl’w(z)

N % Hisol(z) — i_ié Hyoa(2) — % 200(2) + %Hz,l,o(z)

_ % 21.1(2) 1—E7§5H0,0,0,0(Z) - % 1ooo(2) = %Hl,1,0,0(2’)
%Hmlﬁo(z) - % tiaa(z) = 57;;0)

40 10 68 1
+ €5< — ﬁSQB(Z) — 53372(2) — ﬁSé’Q(Z)HO(z) —|— MTFZLH()(Z)
4 1 74 19
-5 Hi(z) — ——7*H —((3)Hy(z) — ——2H.
+3522(2)H(2) = gemenm Hiz) + 3mpC3) Ha(z) — e Ha(2)
+ L Hy () — Z2C(3) Hoo(2) + —=C(3) Huol2) + = C(3)Haa (2)
—H:(2) — — z) + — z) 4+ — z
150 ° 175 00 175 10 25 b
4, 43 4 32 ,
—n°H ——H — ——7°H. —n°H.
T 1™ 12(2) — gopHialz) = gz Hao(2) + ooem Hoa (2)
223 89 73 374 8
~2’H 7 H 2 o ° 2H,
5o5 1128(2) + 7 Haa(2) + 252 Hao(2) + o Haa(2) + 252 Hooo(2)
1, 8 236 202
-~ H O PH e o ~ZCH
1575 H100(2) = oo™ Huo(2) + fomem Hiaa(2) = 5oc Hioas(2)
22 22 116 38 38
- % 1,2,2(2) %ng,e(z) - %Hl,&l(z) + 575}[2,1,2(2) - %HZ,Z,O(Z')
992 38 332 394 148
~CH el 5 il ~27H ~°H
595 2,2,1(2) + 595 3,0,0(2’) + 595 3,1,0(2’) 175 3,1,1(2) 595 1,1,1,2(2)
148 928 148 568
=2 i = 2%
+ 595 11.20(2) 595 11.21(2) 595 1200(2) + 595 12.10(2)
1828 ( )+ 148 ( ) 64 ( )-l— 1348 (Z)
595 1,2,1,1\% 595 2,0,0,0{% 75 2,1,0,0% 595 2,1,1,0
4048 16 8 16
~ F95 2111(2) — 1—75H0,0,0,0,0(Z) + %HLO,O,O,O(Z) + 7—5H1,1,0,0,0(Z)
472 1552 4792 6 4
- % 1,1,1,0,0(Z) % 1,1,1,1,0(2) - %Hl,l,l,l,l(z) - £C(5) + EWQC@))
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+ O(€%)

Y

G4]328 = ng(E) [% —+ 6(%[‘[1(2) — %H0(2)>+

(= Ho(2) + e Hop(z) — <o Hio2) + £ Hia(2) — o)

12 15 10 6 90
(S Ho(2) — nHy(2) + o Hy(2) — = Huo(2) + S Hagl2)
€ 457r o(z 307r 1 5018 5 e G120
7 2 1 1 3 1
L H () - = “H —oH °H — (3 )
30 21(2) 5 0,00(2) + 5 1,00(2) 3 110(2) + 5 111(2) 5C( )
1 2 3 1 17
e (= 55S2a(2) + ZC3)Ho(=) — SC3)H(2) + T5n Ha(z) — 5 Hi(2)
2 1 1 7 2
— E?TQHO70(Z) + 1—57T2H170(2) — §7T2H171(Z) —I— 1—5H173(2) + 5 272(2’)
3 2 14 8 4 1
- —H —-H - —H —H —— ——
10 30(2) + 5 31(2) 5 112(2) + 15 120(2) 5 12.1(2) 3 2.00(2)
7 11 4 2 2
+ 15 121 o(2) — 1 211(2) + 1—5H0,070,0(Z) — ng 0.00(2) + §H1 1,0,0(%)
6 34 v
- ng 11,0(2) + 1 1111(2) — @) + 0(65) ;
3 3 3 21 33
Gapay = n3(€) [621_0H170(Z) +é (EWQHl(Z) T BHL?(Z) - 1_0H170’0(Z) T %HLLO(Z»
141 159 3 3
+ 64 <%5'272(Z) + %C(?))Hl(z) — %ﬂ‘ngyg(Z’) + 2_0W2H1’1<Z)
21 141 33 9 6
T H(r) - o i ~°H a4
5 13(2) 20 31(2) + 10 112(2) 1 120(2) + 5 12.1(2)
117 231 27
— ——H —H ) o],
+ 10 1,0,0,0(2) 50 11,00(2) + 5 1110(2) ) + O(e )]
¢ (©) | g0 + e~ T Hol2) — 1= H(2))
= ——— 4+ €| — ——Hy(2) — —H{(z
4830 = ML) 3750 1575 ° 1050
4 2 1 2 2
of % e s e B
te ( 525 12(2) + Tps Hoo(2) + 5opHio(z) = =2 Hha(2) 4725>
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+ 6%&%2[{0(2) + %WQHKZ) + 10150H3(Z) - %HI,Z(Z)

+%HQ70(2)—74—5 21(2) — 1575 Ho0(2) — %HlOO( 2)

+é (5l >+%c< ) Ho(2 >+1—75<( JHy (2 >+ﬁﬂzﬂz( 2)

- 1—§5H4(z) — %WQHO,D(Z) - %W Hio(z) + %” Hy,(2)

- 1—?;51{173(2) + %Hzg(z) - 5—;51‘]3,0( ) — %Hi% 1(2) - %Hl 12(2)

T % 120(2) — % 12,1(2) — %Hz,w(z) + %HZLO(Z)

_ %Hm 1(2) + %HO,O,O,O( )+ %HLQ&O(Z) a %HLLO’O(Z)

+ 245H1 110(2) — 18785H1117171(2) B 477;450>

te (_ 2 52a(2) = %53,2(@ - i522(z)Ho(z) + 23é25W4H0(2)

S0 () H (2) + ot HL (2) + e ((3) Ha(2) — e Hy(2)
1g5 : 15750 175 1575

¥ 2 Hy(2) — 2 C(3) Hoo(2) — 12=C(3)Hi0(2) + o C(3)H(2)

¥ i Hia(2) = oo Hya(2) = oo Hao2) + goem o (2)

- %Hm( )+ %Hw( )+%H40( )+%H41( )+%W Hop0(2)

+ %WZHLO,O(Z) - %W Hiq0(2) + %W Hiqq1(2) — %Hn:s( )

— %Hlm( )+ 1—(755H1,3,0(Z) - %Hl,ii,l( )+ %HQIQ( ) — 5§5H220( )

- %HZ,Q,I( )+ 5§5H300(Z> + 13—765 3,1,0(2) - ;l%i 3,1,1(2) - % 1,1,1,2(2)

+ %HLLZO(Z) - % 112,1(2) — %Hl,Z,O,O(z) + %le,l,o(z)

- % 12,1,1(2) + % 2,0,00(2) — ;§H2 100(2) + %Hz,m,o(z)

- %HQJJJ(Z) - %Ho,o,o,o,o(z) - %Hl 0000( ) + 11—765[{1 1 000(2)
_%HIIIOO( )—i—%ﬂnuo( )—%Hlnll(z’)—ﬁg( )"‘%W q¢ ))
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+ 0(66) ,
¢ (€) | eap Hi(2) € (= £Ha(2) = <o Hio(2) + 2 (7))
= — - = - — - z
4B31 nale 620 1(% € 5 %4 10 1,0{% 5 1,1
1 4 2 2 8
+ €3< — %7'('2[‘[1(21) + gH3<Z) — ng’Q(Z’) + 5H270(Z) — g 271<Z)
1 4 13
+ ng,o,o(Z) — EHLLO(Z) + EH1’1’1(2)>
16 3 2 1 1
+ 64 <ESQ’2(Z) — EC(B)HI(Z) + 1—57T2H2(Z) — 3H4<Z) + ETFQHLO(Z)
4 11 8 8 16
_ E?TQHLl(Z) + EHL?,(Z) —|— EHQ’Q(Z) — g 370(2) + g 3,1(2)
4 4 4 16
3 112(2) + ng,z,o(Z) —2H,54(2) — 5 200(2) + 5 21,0(2)
52 2 8 26
— €H2,1,1(2) — ng,o,o,o(Z) + 5H1,1,070(Z) — ng,l,l,O(z) + 16H1,1,1,1(Z)>
+0()|,
1 1
Gapsz = ns(e) [€< - EHO(Z) - ng(Z))
8 7 2 8 7
—+ €2< — gHQ(Z) + g 0,0(2) + ng,Q(Z’) — gHLl(Z) + @7’(2>
7 7 13 12 29
+ €3< — %7?2]{0(2) + %71'2]‘]1(2) + gHg(Z) — EHLQ(Z) + EHQ’O(Z)
52 39 4 39 52 7
- EHQJ(Z) - g 0,0,0(2) - ng,o,o(Z) + 1_0H1,1,O(Z> - ng,l,l(Z) + EC<3)>
211 19 11 89
e (SgSa(2) + 5C(3)Ho(2) + —C(3) Ha(z) + 57 Halz) — = Hi(2)
7 7 3 14 3
+ EWZHo,o(Z) - 1—07T2H1,0(Z) + §7T2H1,1(Z) - gHL:%(Z) + 5 22(%)
171 17 7
- 5H370(2) - ﬁ 3,1(2) - EHLLQ(Z) + §H1,2,0(Z) - 24H1,2,1(Z)
43 191 203 8
- EHQ,O,O(Z) + 10 21,0(2) —64H311(2) + 5 0,0,00(2) + 5H1,0,0,0(2>
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G4B33

G’41334

G4B35

113 118 31
— 1_OH1’1’O’0(Z) —+ THLLL(](Z) — 64H1,17171(2) — —7T4> + 0(65)

— ng(e) [3( ~ Hy(z) — HLo(z)) + 63(%#1{1@) ~ Hy(2)
— AHy5(2) + 2Hao(2) — $Haa(2) + THig0(2) — 2Hi0(2))

(= 285(2) ~ A (:) + §7T2H2(z) CHy(2) — ;

2
+ gﬁHl,l(z) +12H, 3(2) — 2Ha9(2) + 2H30(2) — 6Hz1(2) — 8Hy 1 5(2)

+ 8H17270(Z) — 20H172,1 (Z) — 4H27070(Z) + 16H2,170(Z) — 52H27171<Z)

7T2H1,0(Z)

Y

— 39H1,07070(2> + 14[‘[17170’0(2) — 4H1’1’170(Z)> + 0(65)

= nz(e) [€2<2—10H2(2) — 17T—20> +é (6—107T2H0(z) — %71’2]‘]1(2) — %Hg,(,?f)

1 1 3 3
+ 15 H12(2) = 75 Ha0(2) + 15 Haa(2) = 25C(3))

e (= 8ha(2) + S CBHO(z) — B () + o Hil)
1

3 3
307T2H1’1(Z) — —Hl’g(Z) - = 2,2(2)
3 4 1 1 3

1
— —7T2H0 0(2) + %’TFQHL()(Z) 10 5

+ —Hjo(2) — 5 31(2) + ng,l,Z(Z) — 5H1,2,o(2) + 5H1,271(Z)

1 3 7 7
+ —Ha0(2) — 5 210(2) + R 21.1(2) + @> + O(€%)

I

= ny(e) [5’ (3Hs(2) + 38H12(2)) + € (6822(2) + 15Hy (=) + 3Haa(2)

- 6H3’0(Z> + 18H3,1 (Z) + 18HL172(2) - 6H172’0(Z) + 24H1,271(Z))
+ €5< - 78523(2) - 1145’372(2) - 1232’2(2)]']0(2) + 125272(2)]‘.[1(2)
— 27T2H3(Z) + 3H5(Z) — 27T2H172(Z) + 3H174(Z) — 9H273(Z) + 15H372(Z)
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C7Y4B36

Gupsr =

+ 15OH471(Z) + 66H171,3<2) + 18H172’2(2) — 30H1’370(Z) -+ 1O8H17371(Z)
— 6H271’2(Z> — 6H272,0(Z> + 12H2,2’1(Z> + 12H3,070(Z) — 36H371’0(Z)
+ 198H371,1 (Z) + 84H1’171,2(Z> — 36]‘[1,1,2,0(2) + 144H1,1,2,1(Z)

-+ 12H1727070(Z> — 48H1727170(Z> + 156H1’27171(2)> + 0(66)

)

3 1 21
= TL5<€) [€2§Hl70<2) + €3< — §7T2H1 (Z) + 3H172(Z) — 7H170’0(2) -+ 6H1,170<Z))

+ et (245’2’2(2) +9¢(3)Hy(z) + 7T2H1,0(Z) — 272[{1,1(2) —33H,3(2)

117
— 24H3,1 (Z) + 6H171,2(Z) — 9H1,270<Z) + THl’O’O’O(z) — 42H1717070(Z)

+ 18H1717170(Z)> + 0(65)

Y

+ e~ 198,(2) — 20(3) Ho(2) + 5C(3) i (2) gw%(z)

161 1 19 43 103

+ TH4(Z) - 5772[{1,0(2) - 7[{1,3(2) -3 22(2) + THS,O(Z)
17 29 99

) 31(2) +19H112(2) — ?HL?,O(Z’) +29H, 21 (2) + vy 2,00(2)
33 625 47

- 7H2,1,0(2) +21Hy11(2) — ?Ho,o,o,o(z) + ZHLo,o,o(Z)

11 13
+ 7H1,1,0,0(Z) —25H1110(2) +98H1111(2) + EOW4> + 0(65)] ;
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Gapas = na(e) % + e( - %Ho(z) + 372121(1)88 N %>
+ 62( - g—lomHO(z) + %z’le(z) - %Hz(z) + %5]‘]0,0(2) - %HLO(Z)
+ %H1,1(2> - %W2> + 63(%72[{0(2) - %72[{1(2)
+ 9—70z'7rH2(z) + 21—790H3(Z) + 4—15i7THo,o(Z) — %iWH170(2) + %iﬂHl,l(z)
L H(2) 2 Ha(2) — 1o Ho(2) — o Hpol2) + e Hip(2)
— % 11,0(2) + %HLLl(Z) - %25«3) - 2—;02'%3)
(= o= Saalz) + ooz CBIHo(2) + ozim® Holz) — o C(3)Ha2)
— T HL(2) — R H(z) — i Hy(2) — s Ha(2) — e Hgl2)
+ %712]‘.’1,0(2) - %72]{1,1(2) - %WHLQ(Z) + %Hl,S(@ - %mszZ)
+ %iﬂ'HQJ(Z) + %Hz,z(z) - %H&O(z) + %H&l(z) - Z12_5”7[1’070,0<Z>
+ 2—52'7TH1,0,0(Z) - %WHLLO(Z) + %WHMJ(Z) - %HLL?(Z)
+ 2—75H1,2,0(Z) - %Hl,m(z’) - %HZO,O(Z) + 27795 2.1.0(2)
- 18—5?0}]2,1,1(2) + 21—265H0,0,0,0(Z) - %HLO,O,O(Z) + %HLLO,O@)
_ %Hl,l,m(z) T %HLLM(Z) - %mg(?)) + 13951007r4> +0()] .
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Appendix B

Master Integrals in the Five-Body

Case

Here we list the result for all the five-body master integrals that we encountered in

the calculation:

L e H() + T G) + )+ (G H (=) — oo Ho2)

Fip1 = no(e)z2z

12 4 6 72 36 24

1 3 1 1

— §HQ(Z) + ZHO’()(Z) — §H1’0(2) + gHLl(Z) + @ (4111 - 6071'2) >
1 2 1 ) 83

+e (144( 4111+ 607%) Ho(2) + 3= (4111 = 607%) Hy(2) — 5 Hal2)

3H. 83 83 83 3
+ ;( 2) + gHo,o(Z) — EHI’ o(2) + 18H1 1(2) — Hi2(2) + §H2,0(2’)

9 3 2
— Hy1(2) — ZLHO,O,O(Z) + §H1,0,0(2’) — Hyi10(2) + §H1,1,1(2)+
_ 5 (—31747 + 99672 + 1296((3)))
2592
5 9 4111 572

+ € (864( 31747 + 9967 + 1296¢(3)) Hg(z)+< >t )HQ( )

5( 31747 + 99672 + 1296¢(3)) H(2) N 83H3(z) B 9H,(2)

1296 4 2

4111 572 4111 5w

- — — | H, H
—i—( ) 00() ( 72+6) 10()

4111  bw 83 83 83
+(W__> 1,1()—EHM()+3H13()+4H20()—EH21()

199
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9 249 83 83
+3H35(2) — §H3,0(2) +3H341(2) — ?HO,O,O(Z) + ZHLO,O(Z) — FHI,I,O(Z)
83 9
+ §H1,1,1(2) —2H,19(2) +3H120(2) —2H121(%) — §H2,0,0(2) +3Hs10(2)
27 9
—2H511(2) + ZHO,O,O,O(Z) — §H1,0,o,0(2) +3H1100(2) —2H1110(2)
4 26456435 — 123330072 + 28087* — 2689200((3)
‘H ) O] |
3z + 77760 +0(€)
1 z 3 15z 3 5
Faps = no(€)z | = Hi(2) — 2 + e(—Ho(z)z =222 (6 — 2)Hi(2) — SHyo(2) + —HLl(z))
2 2 2 2 2 2
, /45 9 1 ,
te (EHO(@Z +3Hy(2)2 — SHoo(2)z + 5 (=399 +57%) 2+ 3(2 — 6)Hi0(2)
52 9
+ —152’ — ? + 44 H1<Z) + (30 — 22)H171(Z) — 3H172(Z) —+ EHLO,O(Z)
15 19
— 7]‘11,1,0(2) + 7H1,1,1(Z)>

+ é”(% (2 (—911 4 257 + 30¢(3)) — 952,2(2)) + % (399 — 57%) zHo(2)

+ (gﬂz(z —6) — 1332 — 15¢(3) + 256) Hi(z) +45zHy(2) — 92H3(2)

135 2 2

5 25
— = #Hoo(2) + (45z + % - 132) Hio(2) + (—302 ]

+ 220) Hl,l (Z)

9
+6(z —6)Hy2(2) + 9H, 3(2) — 92Ho(2) + 62Ho1(2) + §H371(z)

27
-+ ?ZHO’()Q(Z) — 9(2 — 6)H1’0’0(Z) + 6(2 — 15)]‘]1,170(2) + (1]_4 — 4Z)HL171(Z)
27 45
- 15H1,1,2(Z) + 9H1,2,0(Z) - 6H1,2,1(Z) - ?Hl,O,O,O(Z) + ?Hl,l,o,o(?«’)
57 65
- ?Hm,l,o(z) + 5H1,1,1,1(Z)> + 0(64) ;

Fsps = no(€) [— %7‘(22 + 2zHy(2) + (2 — 1)Hy1(2)

+ e(—WQHO(z)z S 11Hy(2)2 — 3Hy(2)2 — 3Hao(2)2 + AHy (2)2
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11722 1

—7¢(3)z — 5 §7r2(z —1)Hy(2) +11(z — 1)H; 1(2)

+2(2 = DHia(2) + (3 = 32)H10(2) + 9(z = 1)Hi14(2))

4 3
€2< <83 — §7r2> Hy(2)z —33H3(z)z + 9Hy(2)z — §7T2H0,0(z)z
- 33H270(Z)Z + 44H271(Z)Z — 8H2 Q(Z)Z + 9H3 O(Z)Z —+ 9H2 00(2)2

1
—12Hy 1 0(2)z + 10H 1 1(2)2 — = (2497 + 7* + 1386((3)) =

+ (21— 172)S0s(2) + (21(( )2+ %w z) Hol2)

(z — 1) (117 + 42¢(3)) H1(2) + 7°(z — 1) H10(2)

83+ 31%) (z — 1)Hy1(2) + 22(z — 1) H12(2) + (6 — 62) Hy 5(2)
+ (5z —21)H31(2) —33(2 — 1)Hy10(2) +99(z — 1) Hy 11(2)
+2(z—1)Hy12(2) + (6 — 62)Hy20(2) + 8(2 — 1)Hy91(2)

1
3
- (-

+ 9(2 — 1)H171’070(Z) — 27(2 — 1)H171’170(Z> + 55(2 — ].>H17171,1(Z)) + 0(63) s

! + e( — %Ho(z) + ;Hl(z) + (13) +e€ (- ;HO(Z) + ;Hl(z)

Hs(z 3 8 1
- 23( ) + §H070(Z) — 2H170(Z) + ng,l(Z) + 1_8 (9 — 77T2) >
3

+ e3<é (=9 + 7n%) Ho(z) + ( = ) Hy(2) — $Ho(2) + Hyl2) + 5 Hoo2)

9 3 2

8 10 2 9
—2H,0(2) + ng,l( z) — 3, 2(2) + Hapo(z) + §H2,1(2) - §Ho,o,0(2’)
32 1
+ 6H1,0,0(Z) - 8H1,1,0(Z) + EHl’l 1( ) + 1_8 (15 - 771’ — 174C( )) )

(- %522(2) + (—g + 7%2 +20¢(3 )) Ho(2) + (—1 + %2) Hal(2)

% (9 — 77T2) H(M)(Z)

1
9
1172 4472 10
+( 6+ )Hm )+( 5 )H171()—?H12()+10Hl,3(z)

(30 — 117% — 222¢(3)) Hi(2) + Hs(2) — 3Ha(2) +
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F5B5

2 2 16 9
+ H270(2) + §H2’1<Z) + gHQ 2(2) — 3H3 Q(Z) + §H3 1( ) — —H()’O’[)(Z)

2
32 40
+6H100(2) —8Hi110(2) + — 3 —Hi11(2) — §H1 12(2) + 10H; 20(2)
16 8 27
— §H121( 2) —3Hs00(2) —2H210(2) + §H21 1(2) + 5 —Hp0,00(2)
128
— 18H1,000(%) +24H1100(2) —32H1110(2) + —H111,1(2)

3
19 , 7, 1
__C() 540" _6W+6>+O< )]

_ ”:4(? [— % +e<1OHO( ) — ?Hl( ) + 130) te (— 10Hy(2) + 23OH1( )

40 10
+ 20Hy(=) — 30Hoo(2) + 20Hy0(2) — -Hia () + 5 (<21 + 5 ))

&( ( 50”2> Ho(2) + % (—21 4+ 57%) Hy () — 20Hy(z) — 60Hs(=)

3
40
-+ 30[‘[070(2) — QOHL()(Z) + Elel(Z) + 40H1 2(2’) — 60H270(Z) + 4OH271 (Z)

+ 90H0,0’0(Z) — 60H1’070(Z) + 4OH17170( ) — ?Hl 1 1( )

— g (—195 + 2572 — 438¢(3)) ) +O(e")

(7* —9¢(3)) 2

C.«DI>—t

= no(E) [%TFQH()(Z)Z + 2H_270( )Z + 2H0 0( )Z — 2H000(7)

3 11 1
23+ 1) H_1o(3) + e< - SPH(2)5 + S Ho(3)7 + 57 Ha(2)2
+6H3( )Z—6H4( )2—16H_30( )Z+28H_20( )Z+6H_22( )

o
+ (34 — —> HQ@(?)Z’ — 6H_27_1 0( )Z — 6H_200( )Z — 38H()00( )

3
3, 1T
— 2H200( )Z+26H0000( )Z+ 18C(3)Z — —O7T Z — ?T( z
1
+ %ﬂ(z +1)H_1(z) — 5#(2 — 1)H,(2) — 34(z + 1) H_1 9(2)

—6(Z+ 1)H_15(2) +6(Z+1)H_1_10(2) + 6(Z + 1) H_1,00(2)
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nole) | 1 1 1 2 1
Fspr = Z(Q ) lgﬂo,o(z) + 6( - %W2H0(5) + §H3(5) + gH—Q,o(E) + gHo,o(E)
11 1 of 1, 2 _
— FHOOO(Z) + 5((3)) +¢€ < — 571' H_2<Z) + (—E - <(3>> Hg(Z)
11 4
+ Hy(2) — 5 Ha(2) — 4H_30(2) + ngz,o(z) +2H_5(2)
1 3
+35 (24 4+ 7%) Hoo(2) — H3o(Z) + 2H31( z) —2H 5 _10(2)
11 27 i
— 2H 200(2) = 5 Hopo(2) + 5 Hoo00(2) +¢(3) — %> +0()],
1 o, 1 1 N
F5Bg = no(E) 5H7270(Z)Z —+ E(B — QZ)HO 0( )Z — §H000(Z)Z
1 1
+35 (m°2" =3 (=1+7°—9¢(3))z—3)z+ 5 ((=2+7%*) z+1) Ho(2)z
1
+ 33 (22° —32° — 62 — 1) H_1,0(2)
3 1 3 )
+e< SntH_y(2)2 4+ (3 — 22) Hy(2)3 — SHA(3)2" — 4H 50(2)2
1, 3 , 3 , 3 N
_§<Z 12)H_9(z )22+ 2H_22( Z)z —§H_2 —10(2)Z —§H—2oo( Z)Z
1 1 13
E<16Z — 81)H000( )ZQ — §H200( )22 + ?H0707070(2)22
1
+ =55 (—277"z + 207 (112 — 452 — 3) + 30 (30¢(3)z* + (29 + 90¢(3))z — 29)) =
1 1
+ 57 (=52 +237%) 2+ 29) Hy ()2 + 5 (=4 +7°)z+2) Ho(2)z
1
— 57 (442% + (=157 +107°) 2 + 4) Hyo(2)2
1 1
T 2(22° =32 -6z — 1) H.1(2) + zE-D (12z + 7% (22° — 7z — 1)) H1(2)
1

447° — 1292° — 1982 — 25) H_;o(2) + = (22° — 322 — 62 — 1) H_,»(2)

1 =

o
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1
+ - (=22 +322 4+ 62+ 1) Hoy_10(2) + 1 (—22° +32% + 62 + 1) H_190(2)

A~ =

+— (22 +9z — 62— 1) H1,070(2)> + O(€?)

J

—_
[\3|’_‘

Fioo = no()2 |1 — 2+ Hy(2) + Hoo(z) +¢( —3(5+ C(8)7 + é7r2(4z _3)

+ (2(2 +5) — én2(22 + 3)) Ho(Z) + (3 = 32)H,(2) + 3Ho(2) + 3H3(2)

(2= 22)H 30(2) + 4(2 + 1)H 1,0(2) + (5 — 42) Hoo(2) + (22 — 9) Hooo(2) + 15)
+ € ( ((133 4+ 9¢(3))z) + %7? (6z+5) + ;772(402 —23) + gn2(z —1)H_5(2)
—3r%(z+ 1)H ( —é2262+31)—6§()+58)H0()

+ (=45 +7%) (z — 1) Hi(2) + <6(2+5)—%7T2(2+1)> Hy(z)

+ (15 — 122)Hs(2) + (62 — 27
+ (6 — 62)]‘!_2 2( ) + 70(2’ + 1

Hy(2) + (162 — 8)H_3(2) + (20 — 382) H_2,0(2)
H_ 10(z)+12(z+ 1)H_12(2)

_ —

+ (—74z + éﬁ(mz +11) + 8) Hyo(Z) +6(z — 1)H10(2) + (9 — 92)H11(2)

—6Hs0(2) +9H31(2) —6Hs0(2) +9H31(2) +6(2 — 1)H_2_10(2)
+6(z2—1)H 200(2) —12(Z2+1)H 1 10(2) = 12(z2 + 1) H_10,0(2)
+(58z — T1)Hy00(2) + (4 —42)H100(2) + 2(Z + 1) Ha00(2)

+ (55 — 262) Ho00(2) — 6(3) +133) + O(e")|

16 16 472 32 _ 4 _
Fspip = z£2> 3 —H 10(2) - gHo o(2) + o + E( - EWQH—l(Z) + §7T2Ho(z)

16 16
- 16H3(2) — ]_6H_270( ) — EH_I 0( ) + 16H_1 2( ) + — 3 Hgo( )

_ %H_l o(3) — 5—36H_100( )+ 12—61{000( ) — g (v~ 39(3)) ) + O()
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Py = "4 [( ~ SH(z) — cH1a(2)) + e — SH(e) + S Hy(2) — S Hi ()
— SH1a(z) + 5 Hag(2) = Haa(2) + 5 Hiao() = G Hi () + 0(3)]
Fspi2 = ngi? - ; + 6<2H0(2) - %Hﬂz) + ;) + 62< —2Hy(z) + Z%Hl(z)

20 2
+ 3]‘[2(2) — 6H070(Z) + 4H170(Z) + § <—21 + 571'2) >

v <14 - 1OW2> Ho(2) + & (—21 1 50%) Hy(2) — D Hy(2) — 2 Hy(z)

3 9 3 3

64
+ 6H0’0(Z> — 4H170(Z) + 16H1’2(Z) — 20H2,0(2> -+ ?HZl(’Z)

64 2
+ 18H070’0(Z) — 12H1’070(2) + EHLlyl(Z> — § (—39 + 577'2 - 966(3)) ) + 0(64)

Y

Hy(z) 25 1 7 2
_ 2| 210\~) g - _ ! _
Fspi3 = no(e)z [ 1T 6( 3 Ho(z) + 2H2(Z) 4H0,0(Z) 12>

1

+ (15 (1149 — dn?) Ho(=) + T Ha(2) -
3 37

— 5 270(2) + HQJ(Z) + ZHQQQ(Z) —

+ e3<52,2(1 —2)+ % (13983 — 1007* — 528((3)) Ho(z) + ¢(3)Hi(2)

383  Hm? 175 37 1
(? — T) HQ(Z) — THS(Z) + ?H4(Z> + 4_8 (—8043 + 767'('2) HO,O(Z)

75 25 21 925
— —ng()(Z) + —H271(2) — 3H272(Z) + 7H370<Z) — 7H3,1(Z> + — 07070(2’)

8
9 175
+ =Hs00(2) —3Ha10(2) +2H211(2) — THO,O,O,O<Z> — Hi100(2)
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F5B14 =

no(e)

— 2+ 2zHo(z) — Hio(2) + e<14H0(z)z +2H5(2)z — THo (%)%

1 1
—3 (42 + 7T2) z+ 3 (7r2 — 62) Hi(z) — TH10(2) — 2H;2(2)

1
+THy00(2) — 2H1,1,0(z)) + 62( — 5 (=357 + %) Ho(2)2 + 28Hy(2)>
— 14H;5(2)z — 86Ho0(2)z — 6Hao(2)z + 4H21(2)z + 37THg00(2)2

— (119 + 2¢(3))z — 27%2 + 2855(1 — 2) + <4(§(3) —72) + §W2> H,(2)

2
2
+ (62’ + % — 33) HL()(Z) —+ g (772 _ 62) Hl’l(z) — 14H172(Z) + 14H1,3(Z)
+ 49H1,070(Z) — 14H17170(2) — 4H17172(Z) + 6H17270(Z) — 4H1,271(Z)

o
- 37H1,0,0,0(Z) + 12H1,1,0,0(2) - 4H1,1,1,0(Z) - —>

180
2 2
+ e3< — 3 (= 1194+ 137° + 33((3)) Ho(2)2 + 3 (357 — 57°) Hy(2)z
1
— 172H3(2)z + T4Hy(2)z + 39 (=105 + 7%) Hop(2)z — 84Ha ()2

)
+ 56H2’1<Z)Z - 12H2,2(Z>Z + 42H3’0<Z)Z - 28H3’1<Z>Z + 434H070,0(Z>Z
+ 18H2’0’0(Z Z — ].2H271,0(Z>Z + 8H2’1’1<Z)Z - 175H070,070(Z)Z + 8@(3)2

7
+ 7T z — 37T2Z — 796z + 2(22 + 7)82 2(1 — Z) — 7452 3(1 — Z) — 2853 2(1 — Z)

1 41
4C Z — 238z +m <?OZ + 11> —+ 452,2(1 — Z) + 28C(3) — %7{4) H1<Z)

7 14
+ (84z +22¢(3) + §7r2 — 131) Hio(2) + <—562 +40¢(3) + 37#) Hi(z)
(122’ + —7T — 66) Hip(2) +98H, 3(2) — T4H 4(2)

19 2
—18z — 371'2 -+ 231) Hl,()’()(Z) + g (182’ + 7'('2 _ 99) HLL()(Z)

+ % (7% = 62) Hi1,1(2) — 28Hy12(2) + 24H115(2) + 42H150(2) — 28H1 21()
+ 12H129(2) — 42H, 30(2) + 28H131(2) — 259H1000(2) + (84 — 42)H1100(2)
- 28H1,1,1,0(Z) - 8H1,1,1,2(2) + 8H1,1,270(Z) - 8H1,1,271(Z) - 18H1,2,0,0(Z)
+12Hy91,0(2) = 8H121,1(2) + 175H; 00,0,0(2) — 148H1100,0(2)
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7
— 12H17171’070(Z) - 8H1,1717170(Z) + 204C(5) — 177T2C(3) — —7T4> + (9<€4)

180
1 1 545 1 1
F5B15 = n0<€) [2H2(Z)Z — —Ho 0( )Z — E’ﬂ' VA §H0( ) 5(1 — Z)HI(Z)
b5 (1= ) Hi(2) + 5 (= 1) Hua(2)
+ €<%H2(2)22 — ;Hg(Z)ZQ + Hy1(2)2% + 6Hy0(2)2* + % (—=5m% +12¢(3)) 2
1 ) 29
+ 155 (77?2 — 87) Ho(z)z — 1(52 —2)Hyo(2)z — Z(z — 1)H,(2)
+ }1 (—252" + 62 +19) Hyo(2) + Z (52* — 22— 3) Hy1(z)
+ g <22 - 1) HLO,O(Z) - ; (ZQ - 1) HLLQ(Z) + g (2’2 - ].) H17171(Z)> + 0(62)
Fipig = ”i—(;) [ - Z ¢ GHO(Z)Z - % + i(—Qz - 1)H1(z))
+ 52<1_122 (7r2(z +2) — 192) + 132zHy(z) + (—gz — 3) H(z)
1 1 1, 3
_ 5(2 —6)zHs(2) + Z—lz(QZ —25)Hpo(2) + <§Z + 2+ Z) Hip(2)
1 2
+ 1 (—2z — 2z — 5) Hlyl(z)>
+ 63(1—122 (7*(122 4+ 17) — 6(5¢(3)z — 18¢(3) + 168))
+ (872 - %7‘(‘22(72 + 10)) Ho(z) + ( 252 + %7‘(‘ (2z+1) — 23) Hi(z)

(21 — 42)2Hy(2) + %z(?z — 30)Hy(2) + %z(lZz — 133) Hoo2)
31

19
622 + 7z + ?> Hyo(2) + (—622 —z— ?) Hi(2)

522 9
4 - 622) H070’0(Z) + <—T — 22 — Z) HL(LO(Z)

K
2
(

4 (Sz + §) Hya(2) — 1—25zH20( )= (= — 6)2Haa(2)
(
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1

(1422 = 22 +15) Hi0(2) + 7 (=182 + 102 = 19) Hya(2))
1 A1 A1 1

— 1952 + 166) — — 722 iz 4+ —nt

te (247T 2(1952 4+ 166) — om 2™ 4 T 4 o

(382" — 462 +9) Sp0(1 — 2) — gz(zog( )z — 61(3) + 264)

AN

+

H»bh—‘

-7 (—138¢(3)z + 7*(84z + 95) + 540¢(3) — 5757) Ho(2)
+ i (—62¢(3)2* 4 (=433 + 130¢(3))z + 107% (32 + 2) + 21¢(3) — 575) Hi(z)

1 3
+ 173 (107*(z — 6) — 585z + 2574) zHa(z) + 5z(28z —107)H3(2)

492> 1
+ (75;; - 22 ) Hy(z) + 3¢ (5852 + m°(332 + 50) — 5490) Ho(2)

(5852 4 210z — m* (162° + 14z 4 15) + 933) Hyo(2)

(57% (22° + 224 5) — 9 (652> — 382 +165)) Hy1(2) + 9(32 + 2) H 2(2)

9
2

+
5|HS|H

+
|
Ne)
N
|
|

) H1 3( ) — 78ZH2 0( ) + 3(21 — 4Z)ZH271(Z) + 3(2’ - 6)ZH272(Z)

(25 — 2z)zH30(2) + 2(72 — 30)Hs 1(2) + (337 — 722)2Hp 0,0(2)

59 97
3022 — 82 — ?) Hipo(2) + (4222 — 23z + 7) Hi0(2)

+

123 15
—542% + 482 — T) Hiq1(2) + (322 + 3z + ?) Hyq9(2)

3
(22° + 42 + 3) Hip0(2) + (62 + 3)Hi21(2) + 5z(2z +13)Hy0,0(2)

1
z(z + 4)H2 1 0( ) + 22(22 + 3)H27171(Z) + ZZ(194Z — 625)[‘[070,070(2’)

22 27
+ Tz + 1 ) H1707070(Z) + (—522 — 6z — 9) Hl,l,O,O(Z)

Z(
1

+

+
H;l*—‘ 7~ oo MI@/\/—\NIC@/—\

1
(862" — 62z + 57) Hy11,0(2) + 1 (—1102* 4 942 — 65) H171,171(2)> + O(€)

+ e(§H0(z) - %m(z) 1) +&(5Hy(z) — 2,(2)
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F5B18

Fspig

+ §H2( z) — ZHOO( 2)+ Hio(z) — Hia(2) + T 3
25

- 63< (15 - %TQ) Ho(2) + (=6 + ) Hy(2) + 10Hs(2) — —-H(z)

5 25 2 )

2
— 25[‘[0,0(2) + 4H1,0(Z) — 4H1’1(Z> + 2H172(Z) — 6[‘[2’0(2) + 5H2,1(Z)

125 21
THOOO( ) HLO,(](Z) + 2H1’1,0<Z) — 2H1,171(Z) + ?C(g) + 7T2 — 8) + 0(64)] s

19 , 1 L
_ Mo(e) [_7# — Sm?H 5(1 — 2) +2H _55(1 — 2) + EWQHl,l(Z)

€ 360 3
—H 500(1 —2) — Hy12(2) + Hi100(2) — Hi110(2) — 2¢(3)H1(2)

4 6(;#}13(5) + (-2% _7¢(3 )) L) - %w“Ho(z) —OHL(2) + 9Hs (%)

2 7
— 14H_372(2) —|— §7T2H_27_1(2) —|— 67T2H_2 0( ) —|— 4H_2 2( ) — 7H_2 3( )

2
+ (3 + 9§(3)> Hoo(z) —2H30(2) +2H31(2) + 9H,0(2) — 14H,1(Z)

3
+TH _500(2) —4H_9_12(2) —2H _500(2) + 10H_321(2) — §7TQH0,0,0(5)

+2Hs300(2) — TH310(2) + 12H311(2) +2H_ 2 _100(2) + 9H _20,0,0(%)

1
24

+ H3(2)2% 4+ Hy(2)2% — 2H _55(2)2° — 2H_15(2)7* + Hy0(2)2* — Hy,(2)2?

(32% — 32z + 30) Ha(2)Z?

1
+2—4(322—322 47T +30) Hoo( )2 +H30( )2 —Hgl(Z)z

1
+H_200( 2%+ H_100(2)2? +4—8( 62> 4 (61 — 87%) z + 2) Ho(2)z

144 (3m°z* —4 (9 +87%) 2* + (51 4 307” — 47*) z — 15) z

1
+ 5 (62° +532% — 74z + 15) Hy(z) + 5 (3z* —322% + 302" — 1) H1,0(2)
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Appendiz B. Master Integrals in the Five-Body Case

1
+ — (=324 +322° — 3022 + 1) H1,1(2)

24
1 1
+ e( — gw H_3(2)z* — 3 (m* — 21¢(3)) H_o(2)2* + 3 (47% +21¢(3)) H_1(2)2*
1 1
-3 (3212% — 3584z + 2052) Hy(2)2> + 5 (212* — 224z + 306) H;(2)z"
2 7
- 3H4<Z’)22 - 9H5( )Z + ].4H_3 2( )22 - g’ﬂ' H_2 1(2)22 - 67T2H_270(2)Z2
2 7

+ 2H_2,2( )Z +T7H_5 3( )22 — §7T H_1 _1(2)22 — 67T2H_1’0<2)22

1
— 8H _15(2)2* + TH_13(2)2* + 4Hq(2)7° —ﬂ(lf)z — 160z + 246) Ha1(2)z

—3H30( )Z +8H31( )Z —9H40< )Z +14H41( )Z —7H_300< )
+4H_2 12( )Z —H_QO()( )Z —10H_221( )5’ +4H_1,_172(2)2 +4H_170’0(2)22

3
_10H_172,1(2)22—}—8( 32’ +322—|—47T —30) H(]OO( )Z —2H200( )

+7H210< )Z —12H211( )Z —2H300( )Z +7H310( )Z —12H311( )22
—2H 5 _100(2)2° — 9H 9000(2)2° — 2H_1 _100(2)2* — 9H_1000(2)%*

- Eg(?,) (32 — 322+ 30) 2° — %z( (7%(684 — 672((3)) + 2519) z

2 (321z — 3584) z3 1 45
+ =7z
1728 36

( — 84m%2° + (—498 + 89677) 2° 4 (8119 — 12247 + 1127* — 5184¢(3)) 2

4 178872 + 731) +

L1
576

1
+ 350) Hy(2)z + T (321z° — 35122° + 24 (55 + 67> — 108((3)) z — 24) Ho(2)z

1
+ oo (2822 + 83872° — 107062 + 2037) Ha(2) + 5o (3212 _ 38363% + 324632

1
+ 5647 — 295) Hio(2) + @ (—321z* + 40162° — 16562 — 2784z + 745) H1(2)

1 7

1
+3 (—3z* 4 322° — 302" + 1) H1,1,1(2)> + 0(62)] :

6 3

Fspog = Er [ - %Hl(z) + €< - %Hl(z) + §Hl o(2) — 2H171(2)>
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F5B21 -

—§H2(5)+H0,0(5)—§H10( z) + 4H11( )_Z+1

+ 63@ (=4 +72) Ho(z) + (5 — §7r2> H,(z) — 5Hy(z) + 5H3(z) + 2Hoo(2)

25 25
—b5H19(2) + — 5 —H,1(2) — 6H12(2) + 5H20(%) — ?HQ 1(2) —2H00(2)

5 3 25 w2 )

+5H100(2 )—%Hlm( )+%H111( )+%(4—72+5C<3))> +O(€4) )

Fspas = no(E)z [i(z —2)z + %(1 —2)Hy(2) + e(g(z —2)z — %(2 —2)Hy(2)z

_I_

m A~ =

( 1(1@7+mw)@—mz—%@—zﬂM@z+—@—%Hw@ﬂ

1
( z—1+§Gﬁf—3%z+%ﬂ)Hﬂ@— (22° + 32 — 7) Ha(z)
1
_1 3
2

67z 63
T Ty ) Hy1(2)

(=~ ) Hag(z) + (3~ 3)Hoa(2) — 5 (2 — 1) Hool2)

3
4
2

— 2)Hj(z) — = (22° — 252 4+ 21) Hyo(2) + <

N ,,|>|

+(z—=1)Hi2(2) +

+9(2 = DHyio(2) = 14(2 = D Hi(2)) + O(E) |

F51323 = no(E) %(2 — 1)H1(2) — H22(2) — %H1’0(2> -+ 6( (§<Z’ — 1) + %) Hl(z)
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AT L )+ (—z - —) Hy0(2) + g(z — 1H1,(2)

4

3 7 1
= 5H12(2) + 2H20(2) — 5 Ho(2) + 3Hy00(2) + 5 H1,0(2 )>
1 175 ?
+ € <§ (—100z — 47* — 83) Hy0(2) + (T(Z -1)- %) Hy,(2)

39 119
+ (—32 - Z) Hi(2) + 9Hy5(2) + 1THy(2) — —=Ha1(2) + 6 Ha(2)

47 45
—4H;30(z) + TH31(2) + (22 + ?) Hio0(z) + (Z — 7z | Hi10(Z)

37 3 9
+—(z—-1)H1.1(2 )+§H1,1,2(5’)+H1,2,0( )—§H121( Z) — 8H0,0(Z)

2
37
+6Hs10(2) — —Hz 11(2) = 14H 000(2) —3H1100(2) — §H1,1,1,0(5)

+ Hy(2) (3832 LGz oy a3 - @>

8 6 8
N (12 _ @) Hy(2) + 17}23(2) - 2H4(2)>

+e ( (472(20% — 71) — 3(1532% + 16((3) + 65)) Hy0(2)

1
48
35z 2681z 2681
+(7r2(3— 6)—1— 3 —4¢(3) — g >H11()

1 141
+ 57 (79002 + 927° — 747) Hi5(2) + (62 + 7) Hy3(z)

1 1
— 42H, 4(Z) + 5 (549 — 4n?) Hoo(2) + 5 (527 — 1281) Hy:(Z)

119
+51H55(2) — 24H53(2) — 34H;50(2) + TH3 1(2) — 12H35(2) + 8H40(2)

7% 449 1
— 14H,,(2) + (252 +gt T) Hio0(2) + 3 (=7002 + 47° + 883) Hy10(2)

5 9
+ (6z + 5) Hi20(2) = (42 + 13) H121(2) + 3H122(2) = 10H150(2)

629
+27TH, 31(2) — 68Hs00(Z) + 51Hz1,0(Z )—TH211( zZ) + 18H3,12(2) — 8Ha20(2)

+ 18H521(2) + 16H300(Z) — 12H3 1 0(2) + 37H31.1(2) + (—4%Z — 115)H; 90,0(%)
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F5E>24

79 131 175
+ (142 - ?) HLLO:O(Z) + (T - 372) H1,17170(2> + T(z - 1)H171’171(2)

3 9
— §H1,1,1,2(5’) — Hy190(2) + §H1,1,2,1(5) +6H1200(2) +11H;210(2)
27 175

— ?H1,2,1,1(5) +32H5000(2) — 8H2100(2) +38H2110(2) — 7]{2,1,1,1(5)

1
+60H1,0000(2) + 14H11000(2) +3H111.00(2) + §H1,1,1,1,0(5)

v (= (B8 15c)) o (- 1227) a0 - T - 2000

16 12 45 16

. (7< e 1T @) Hy(3) + (@ _ 12) Hy(2) — 1TH,(2) + 485 (7))

12 16 4 3

+O(eh)

Y

2 2
_ nol®) [HL()(E) +z—-1+ % + 6(142 + (—22 - % + 2) Ho(2)
€

2 2
+ (35’ — % — 3> Hy(Z) + TH1 (%) + 3H12(Z) — 2H,0(2) — 6H1,0,0(2)

— Hy10(2) +9¢(3) + 7_7T2 - 14)

6
+e(n? <%3 - %”’) +7(172 4 9¢(3) — 17) + (—62 4 4%2 4 6) Hy(2)
+ (—28z —18¢(3) — %”2 + 28) Ho(z) + (422 —8¢(3) — 143”2 - 42) Hi(2)

2 272
+ 3 (62 + 7% — 6) Hoo(2) + (—6z + 7° + 39) Hy(2) + (92 + % — 9) Hi1(2)

+21H,5(2) — 18H13(2) — 14H50(2) — 6H22(2) +4H30(2) — 42H; 0 0(2)
- 7H1’170(2) - 3H1’172(2) - 2H1’270(2) + 9H172’1(5) + 12H27070(2) + 2H27170(Z’)

_ _ a 177%
+28H1000(2) +6H1100(2) + Hi110(2) + 50 )
70z 271 1
+ €3<(796 —30¢(3))z + 7 (—?Z —17¢(3) + 7) + (§w2(1oz — 43)

1774
30

— 14(17% + 9¢(3) — 17) — )Ho(z) + ( — 72(5% + 17) + 7(51%
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F5B25

1474
45

—8¢(3) —51) + )Hl(z) + (—842 +16¢(3) + 28;2 ) Hy(Z)

1472
) Hoo(2)

(—9z + 27> 4+ 9) Hs(2) + (56z +36¢(3) +

2

14
—847 + 2¢(3) + Tm* + 215) Hio(z) + (1262 +8¢(3) + SW — 126) Hi1(2)

2

+(—182 —

/\\Awlﬂk
N}
w
3

+ 117) Hiy2(2) — 126H, 5(2) + 84H, 4(2) + 36 Hy 3(2)
~ o, ~ _ Ar? ~
+28H30(z) — 2 (=62 + 7+ 39) Hap(z) + | —182 — - +18 Hy (%)
4
— 42H2 2( ) + 12H3 2( ) — 8H4’0(,§) — g (62 + 7T2 — 6) H07070(Z>
2
-3 (=182 + 7> 4 315) Hi0(z) + (—3(6z + 5) — 7°) Hy,1,0(2)

+ (27(2— 1) — 2§ >H111( ) —21H;12(2) + 18H; 1 3(2)

(2) + 63H121(2) —6H122(2) +20H, 30(2) — 54H131(Z)
+ 84Hs00(Z 14Hy10(2) + 6Hs12(2) +4H220(Z) — 18Hs51(Z)
— 24H300(2) — 4H310(2) + 196 H1000(2) + 42H1100(2) + TH1110(2)
+3H1,112(2) +2H1120(2) — 9H1,121(2) — 12H1200(2) — 22H1210(2)
+27H1911(2) — 56 H2,0,0,0(Z) — 12H21,0,0(2) — 2H21,1,0(2) — 120H1,0,0,0,0(Z)

1197*
60

— 14H172 0

)
)+
) =
)

—28H11,000(2) —6H111,00(2) — H111,10(2) +207¢(5) 4+ 327¢(3) +

- 796) + O

z

- [ —((z = 1)2Hs(2) = (2 = 2)(= = ) H1a(2)

+ e( C11(z — 1)2Ha(2) — (2 — 1)2Hy(2) — 11(2 — 2)(2 — 1) Hy 4 (2)
+ (—62> +82 — 2) Hya(2) + 3(2 — 1)2Ha(2) — 2(2 — 1) (42 — 3)Ha1(2)

+3(2 = 2)(2 = DHyo(2) — (= = 1)(132 = 22) Hy14(2) ) + O(€)
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Fspos

F5B27

Fspag

= nOG(E) [%Hm(z) + e<2H1,1(z) + Hyo(2) + 2Hy,1(2) — ;HLLO( )+ 13H1 1a(z ))
+ 0(62)] ,
= n(;(;) [_ Hs(z) — Hy2(2) + E( — 2H3(2) — 2H, 5(2) — 5H1 3(2) — Ho2(2)

+ 8Hy0(2) — 6 (2) = 6H115(2) + 3H15,0(2) — 6Hy (%) )

) )
—+ 62< (—4 + §7TZ> H3(Z> — H5(Z) —+ (—4 -+ §7T2) HLQ(Z) — 10H173(Z)
— H174(Z) — 2H2’2(Z> + 3H2?3(Z> + 6H3’0(Z) — 12H3’1(Z) + 3H3’2(Z)
— 12H171’2(Z) — 22H1’1,3<Z) + 6H1,270(Z) — 12H172,1(Z) — 2H172,2(Z> + 15H173’0(Z)
— 3OH1,3’1(Z) + 2H27172(Z> + 3H27270<Z) — 6H27271(2) — 9H37070(2) -+ 18H3’170(Z)
— 28H3,171(Z) — 28H171,172(Z) + 18H1717270(Z) — 36H1717271(Z) — 9H1727070(2)

+ 18H172,170<2) — 28H17271’1(2)> + O(ES)

= no(_e) [%HLO('Z> —+ 6( — 171'2]{1(2) + Hl,O(Z) -+ HLQ(Z) — gHLO,O(’Z) + 2H1’1,0<Z))

€3z 6
9 2 w2 2,
+ (5 =) ) Hi2) + (2= T ) Hiol) = e Hia(=) + 2Hia(2)
- 9H1 3(2) — 7H17070(Z> + 4H1’170(Z) + 2H17172(Z) — 3H172’0(Z) + 2H17271 (Z)
37
+ Hl 000(2) —14H1100(2) + 6H1,1,1,0(Z)>

+ 63( <—2% + 4118784 (3)) Hi(2)+ (4 - %2 ~ 11((3)) Hio(2)

5r

_ (ﬂ' + ?)C( )) Hl,l( ) (4 — T) H1,2(2> — 18H1,3(Z> + 37H174(Z)

4
3
1972 2m?
( ) HI,O,O(Z) + (8 — ?> HLL()(Z) — 27T2H171’1(Z) + 4H1’1’2<Z)
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Fspag

F5B3O

— 42H17173<Z) — 6H1,270(2’) + 4H172’1(2) — 8H172’2(2) + 27[‘[1’370(2) — 26H173’1<Z)

+ 37H1,0,0,0(Z) - 28H1,1,0,0(Z) + 12H1,1,1,0(Z) - 4H1,1,1,2( ) - 6H1,1,2,0(Z)
175

—4H11921(2) +9H1200(2) —6H1210(2) +4H1211(2) — THI 0.0,00(2)

+ 74[‘[171707070(2) — 42H171’170’0(2) —+ 16H17171’170(Z)> + (9(64)

_ mo(e) [_ e 02— 2 D + L (22— 1) Ha(2)2? — Hy(2)2?

1
+ Hyq(2)2* + 5 (2" —42° + 2 + 42 — 2) Hy1(2) + O(e)

1 1
5G-10.-n () (2 = 1)% + 5 G105 (@)(2 — 1)? +2G1, -1 (2) (2 — 1)

~ 3G 1p(@)@ — 1V + 261 4a(w)@ — 1) = 2611 () — 1)
@)@ = 1) 2610 (@)@ — 1) — 3G (a) (@ — 1)

F 260020 — 1Y — Cun (0@ — 1) = LGy (o)~ 1)

+ (3(:1; +1)2H,(2) — —m ) G_1,a(

4 (dime — 8Ho(2)) Goro(w) + (3(95 F1)2H(2) — ;m(x + 1)2) Go1a(2)
+ (%m (32* 4+ 2z + 3) + (—32® — 2z — 3) H0(2)> G_1—ry(2)

+ (%m (32* 42z +3) + (—32% — 2z — 3) H0(2)> G_1,,()
+ (2271'33 — 433H0<2)) G07,1(:1:) + (2271'37 — 4.THO(2)) GO,l (I‘)
+ (4xHo(2) — 2imz) Go —ry(x) + (42 Ho(2) — 2im2) Go 1y ()

- (Ginte = 1 =30 = 1PHo@)) G1a(0) + (dime — 82Ho() Gralo)

+(gm(;g—1) —3(x —1)°H, ()) Gra(z)
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1
+ | (32% — 22 + 3) Hy(2) — 5@7 (327 — 2z + 3)) G1 —ry(2)

+

(
( (3¢% — 20+ 3) Hy(2) — %m (3¢% — 20 + 3)) G (@)

(2imx — 4xHy(2)) Gy —1(x) + (82Ho(2) — dinzx) Gy ()
(2imx — 4xHo(2)) G_py1(x) + (2imx — 4xHo(2)) Gy —1(x)
(8xHy(2) — dimx) Gy o(x) + (2imx — 42Hy(2)) Gry1 ()

+ o+ +

+ G1(x) (—%ﬂ (z* — 6z + 1) + dirzHo(2) — 8:5H0,0(2)>

+ G_y(z) <é7r2 (2® + 62 + 1) + dimzHo(2) — 8:1:H0,0(2))

+ G_y,(2) (—4inHo(2)x + 8Hoo(2)x — 7°x)
+ Gy (2) (—4imHo(2)x + 8Hoo(2)z — wx) — 2(z + 1)*°G_1 1,1 ()

1
+ 3(1’ + 1)2G_17_1,0<:L’) — 2(1’ + 1)2G_1’_1 1(I) + §($ + 1)2G_1,_1’_7«3 (I)

b5 16 () + <—‘%2 52— -> Gor01(x) — 820G 00(x)
+ (—%2 + br — —) G_101(z) —2(x +1)2°G_11_1(2) + 3(x + 1)’G_1.10(7)
—2(z +1)°G_q11.1(7) + %(x + 1)2G_11,—ry () + %(:c + 1)°G 1105 (2)
+ % (3x2 + 2z + 3) G_1_py—1(x) + (—i’)x2 —2r — 3) G 1, —ry0(x)
Z (327 + 22 + 3) G_1 1 ( i (=32 — 22 — 3) G_1 sy (2)
}l ( 3z% — 2 — ) G_1—pyrs(x) + i (3:v2 + 2 + 3) G_1ry-1()
+ (=322 — 22— 3) G_1 4, 0(7) + 2 (32% 4+ 22+ 3) G_1,,1(2)
+ 111 (=32 — 20— 3) G_1,y—ry () + i (=32* — 22 — 3) G141 (2)

+42Go_1,-1(x) — 4xGo _10(x) + 402Gy _11(2) — 220Gy 1 —py(x) — 202G —1 44 (T)
—22Goo-1(2) —22Go1(x) +20Go 0 —ry(x) + 220G () + 42Go 1 -1 ()
—42Goa0(x) +42Go11(x) — 22Go 1 —py () — 202G 1 4y (2) — 32Go —py —1(T)
+42Go s 0(2) = 32Go 1y 1(T) + TG0 —py 1y (T) + G — gy () — 3G 1y —1(2)
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Fsp3i1

+ 402Gy 0(2) — 328G 15.1(T) + XG0 1y 1y (T) + TG g g (T)

1 1
+3 (2* 4+ 10z + 1) Gy 9,-1(2) — 82CG10(x) + 5 (2* 4+ 10z + 1) Gro1(x)

1 3
(ZL’ + 1) G1 ,0, 'r3( ) §(ZE + 1)2G1 0r3<l’) — Z (3%2 — 2z + 3) Gl,—rg,—1<x>

3% — 2z + 3) G, —rs0(T) — % (3917 — 2z + 3) G,y 1(2)
() +

l\')l»—l

+

~—

1
322 — 22+ 3 Gi,—rg—rs 4(5U _2$+3)G1 ——c)

+

H»J;Iw»-lklw»lle
w
]
Do
|
DO
8
_l’_

( )

( 3) Giym1(z) + (32 — 22+ 3) Gy, 0(2)

(3% — 22+ 3) Gy i (322 — 22 + 3) G1py 1y (2)
)

+7 (327 = 22 + 3) Gy () + 220Gy 121 (x) — 42G_yy _10()

+ QJJG_7~3’_171(13) — 4(1]G_T3’07_1(Z‘) + 8ZEG_7«3’0’0($) — 4$G_T3,071(I)
+ Ql’G_Tg’L_l(l‘) - 4IG_T37170(CL’) + QIG_T,?”Ll(JZ) + 21’@7‘37_17_1(1‘)
— 4$GT37_170(I) + QI‘GT&_Ll(I) — 4IGT3707_1(ZL‘) + 8$Gr37070(l‘)

— 4Gy 01(x) + 202Gy 1 1 (x) — 42Gry10(2) + 220Gy 11 (2) + Ole)

€z
82

+e (%ﬁﬁo(z) F2H (2) + (%m(gx 441 + (—6x - 3) H0(2)> Go1 ()

+ (1221%(2) - ?m) Goro(w) + (62 +2)Ho(2) — i3z + 7)) G, i3(2)

+ (%m@x +41) + (—Gx - %) Ho(2)) Go11(2)

(62 + 2)Ho(2) — (372 + 7)) Grsa() + (1§4H0(2) _ %m) Go1(x)

152 304 164 82
+ (?ZW — ?H@( )) G070<$) + ( 3 H0(2) - ?ZW) G0,1<x)

4 (2im — 4H(2)) Go,_ra() + (2im — AHy(2)) Gos()
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+ (%fm(zu —92) + (63: — %) Ho(2)> G1-1(x)
N (%Ho(g) - 76;))”) Gholz) + (%m(m —92) + (6:c = %) Ho(2)) Gra(@)
+ (ir(3x — 1) + (2 — 62) Ho(2)) G1,—r3(x) + (im(3z — 1) + (2 — 62) Ho(2)) G1,3(2)

152 304 10072 152
+ Go(2) (?mHo(z) — S Hoo(2) + 9” ) + —-imHoo(2)

1 76 152 145
+ Gl(.’L') (§7T2(3$ — 50) - ?ZWHO(Q) + ?HO 0(2)) + (41’ + ?) G_17_17_1(ZL‘)

1 76 152 10 20
145 21
+ ( 6xr — 3) G_ 1, 10( ) + (433' + ?> G,l,,m(x) + (-l’ — ?) G,L,l,,rg(x)
152

-+ ( xr — ?> G,Lfl’r3<$€) + (LU — 39)G7170,71< ) —G 100( )

41 41
+ (I‘ — 39)G_170,1(ZL’) + <? - ZL’) G—I,O,—r3(x> + (3 - l’) G_l,O,r3(x>

145 82 145
+ ( 4z + ) G_o11-1(z) + < 6x — —) G_110(x) + (4$ + ?) G_11.1()

(

+ ( T — ) G_11-r3(x) + (—x - %) G_11,3(x)
E ¥
6

(-2~ ) G1vs () + (62 +2)C 1 wso(x) + (—9; _ %) Goi i)
(92 + 22)G_1 3 —r3(x) + %(990 +22)G 1 _y3p3(z) + (—9§ — %) G_1,3-1(2)

(624 2)Gras0(x) + <—9§ - %) Goryia (@) + 597 +22)C 1.5 1s(a)

+ é(Qaz +92)G 1 () — ?007_1,_1(3:) + %GO,_LO@:) - ?Go,m(x)

+21Go 1 ws(x) + 21Go_1a5(x) + T8Co01(x) — 3—34G0,O,0(x> + 78Go01(2)

_ %GOO (@) — %Gom(x) _ %Go,l,mx) + 1;24@0,1,0@:) - %Go,l,l(m)

+21Go1,—r3(z) + 21Go 1 3(x) + ?GO,—rB,—l(l‘) 4G, _r30() + Go —r31(2)

22 22

28
_EGO 13, rs(ﬂf)—?Go - )+§Go,r3,71(ﬂf) 4G 30(T )+ G0r3 1(x)
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22 22 145
— = Goxs—s(z) — = Gopsps(e) + | —— — 4z ) G111 (2)
3 3 6
82 145 21
+ (617 - g) Gi-10(7) + <? - 456’) Gr-11(7) + <$ - 7) G1-1,-13(2)

21 152
+ (x — —) Gi-1,3(7) + (=2 — 39)Gro,-1(2) + TGLO’O(@

41 41
+ (—I — 39)G17071(ZL’) + <(L‘ + g) Gl,O,—r3<J7> + (l‘ —+ ?) Gl,O,rB(ZE)
145 82 145
+ (— — 41') G1717_1(l’) + (61’ — g) Gl,l,O(x) + (— — 437) GLLl(I)

6 6
21 21 9x 14
+ (33 — ?> Gi,—e3(x) + (33 — 7) Gh3(2) + (7 — §> G1-r3-1(2)
9r 14 1
+ (2 = 62)G1,—30(2) + (7 — ?) Gi—w3a(x) + 6(22 —92)G1,—r3,—r3(T)
1 92 14
+ 6<22 — 9$>G1,7r3,r3(l‘) + <7 - ?) Gl,r3,71<x> + (2 - 6x)G1,r3,0<x)
9z 14 1 1
+ <7 - g) Gl’rg,l (LL’) + 6(22 — 9I)G17r37_r3(l‘) + 6(22 — 9‘7})G1,r37r3<l’>
304 7 4. 4 5
— S Hooo(2) — 5((3) — 5ir*) + O(e )] ,
Cngle) [ 1 5 1 1N,/ 5 2
Frps2 = 4z |12 + 6( 12H0(Z) + 6H1(Z) + 3> +e ( 3Hg(z) + 3H1(z)
3Hy(z) 25 1 1 w2
- 2 + EHO’O(Z) — ngyo(Z) — §H171(Z) — E + 1)
+ e3< —5+ 37'(2 Ho(z)+ |2 — EWQ Hi(z) —6Hy(z) + 1—3H3(z)
18 18 2
25 4 4
—|— 3]’[@70(2’) — gHLO(Z) — g 171(2) — SHLQ(Z) + 5H270(Z> — 5H2’1(2)
125 2 8 22 2 8
1 0,00(2) + ng,O,o(Z) + §H1,1,0(Z) — ?Hl’l’l(z) —3¢(3) — §7T2 + g)

+ O(eh)

Y
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1

1
EH2(Z)Z4 — 5 Hoo(2)2" + =

5 ™ (—7r223+4z2+z—5)z

Fip3s = no(e) [
1 1
i (22° + 32+ 6) Ho(z)z + = (62" — 32% — 22 + 11) Hy(z)

1 1
+ E (1 — 24) HL()(Z) + E (24 — 1) Hl’l(Z)

161 7 1
+ 6<—H2(Z)Z4 — —Hy(2)z* + 6H271(Z)Z4 + Hopo(z)2*

(
(

+ — (—10142° — 4352% — 4462 + 1895) H, ()
(—1612"* 4 522° + 182" — 42 + 95) Hy o(2)
(

1612 — 762° — 302° — 42 — 51) Hy 1(z)

F5B34 = ’I’L()(E) 0+ O(E) s
no(e) | 2 11
Fsp3s = ig ) E+H_1,0(1—Z)—H1,1(Z)+6<—EWQH_1(1—z)

+ 4H,170(1 — Z) + 3H,1,2(1 — Z) — 4H1,1(Z> — 2H271(Z) — 5H,17,170(1 — Z)

1
— 4H,1’0’0(1 — Z) -+ 3H1’1’0(Z) — 11H171’1(2) —+ 6 (271'2 + 33<(3)) > + 0(62)] ,
no(€)

o [ _ éHl(z) + e(HO(Q ~2) (Ho(z — 1) — im) — ;Hl(z)
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) 5 2
+ H170(2 — Z) + gHLo(Z) — §H1’1<Z> + Z)

+ € ( Ho(2 — 2) <—2z7rH1(z) + Hy(z — 1) (2H(2) +4) — %(162' + m))
+3H _15(1 —2) —5Ho(z — 1)Hoo(2 — 2) + binHyo(2 — 2) + 4H1 (2 — 2)

11 10 20
+ Hl(Z) (2H1’0(2 — Z) + 1—871'2 — 2) + EHL()(Z) — EHLI(Z) + 2H1,2(Z)

25 19 38
— 5H270(2 — Z) — 5H17070(2 — Z) — EHLO’O(Z) + ?HLLO(Z) — ?lel,l(’z)




Appendix C

Differential Equation Matrices for

the Four-Body Integrals

All necessary matrices for the computation of the four-body integrals are collected

in this chapter. They can be split into two parts and are of the form

~

A
Ai,e = Ai,i’ .

ST

Ai,z +

IS

C.1 A,

For the first family, we get:

o
|
[\
N
jan)
ja=)
o
[a=)




224 Appendiz C. Differential Equation Matrices for the Four-Body Integrals

N
i

I
]
=]
o
w
(e
(e
(@]




C.2. Ao

225

C.2 A,

For the second set

56

ol

—11

of equations, we arrive at:

0

_ 124
15
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N -8 & B 3 92 2 0 2 0 0 0 0 0000

11 11 22

2 1% e dlmog 9 g 0 0 2 0 0 0000

7
680 mo105 g8 304 0 0 % 0 0000

1280 0 0 ¥ 42 0 0 4 0 -2 2 0020

82 44 81 16
%OOOEE—EOOO——OOOOO
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C.3 Aj

For the last of the four-body families, the matrices take the form:

24 0 0 0 =33 0 0 1134 0 0 0 0 0 0 0
72 ® 124 908 0 0 4032 0 -2 1 0 0 O O

11 11 11

400 O O O -—-630 0 0 2520 0 O O O O O O

2 0 0 0 -9%6 0 0 3024 4 0 0 0 —-10 O

o o o o o o0 0 o0 0 00 0 0 0O

-50 =% o0 - 630 0 0 —-2520 0 0 1 O O O -3

11 11



228 Appendiz C. Differential Equation Matrices for the Four-Body Integrals

g2 7 5 B 0 0 0 0 0 0 0 0 0 00
z 2 -z I 0 0 0 0 0 0 0 0 0 00
-2 -4 2 -I 0 0 0 0 0 0 0 0 0 00

42 26 12 4T g o2 0 0 0 0O 0O 0 00

-6 0 0 0 126 0 0 =504 2 0 O 0 0 00

52 % % % -504 0 O 2016 0 2 O 0 0 0O

o o %® £ 0o 0 0 0 0 0 2 0 0 00

o o0 o o o o0 o0 o o0 o 0 2 0 00

72 0 0 0 -9%6 0 0 3024 4 0 O 0 4 00

-72 &% B3 9722 0 0 —6048 —4 6 —6 60 —2 2 0

48 32 118
—40 -3 -9 —53¢ 1008 —-60 0 —4032 0 -2 2 =20 0 O 2




Appendix D

Differential Equation Matrices for

the Five-Body Integrals

All matrices that are needed for the computations of the five-body master integrals

are collected in this chapter. They split into three parts and are cast into the form:

A

1 - 1
Ai,€:

Mpet ——Aipe
1 +1+2 1+

Ai,z +

wl | =

1—-z

D.1 AlOl

For the first family these three matrices look as follows:

A= 24 —27 12 —48 0 |,

229
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A101,1+z = (65><5) .

D.2 A102

For the second family, we get the following coefficient matrices:

—2 0 0 0 0O 0 0 0 0
1 -3 0 0 0O 0 0 0 0
2 2 -6 =% 0 0 -2 0
e S i T
A102,z: % % —% g—f’l % 0 0 —% 0 )
: -3 0 0 0O 0 0 0 0
0 -6 0 0 0 12 =4 0 0
-151 &% M 161 —459 0 0 B2 0
-18 20 -6 -7 =8 0 0 16 -2
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Avo2,1-

A102,1+E =

wl

267
20

11769

799
180

171
20
8949

209
60

1881

18

21
10

1099

_m
90

|
[S21[9V]

0 0
0 0
5 219
4 40
_ 525 5859
4 8
5 _3
18 20
0 0
0 0
25 2511
4 8
0 0
0 0
0 0
135
35325
== 0
55
0 0
0 0
7425
< 0
L)

367
0 — 120

0 2569

367
0 540

49
40

7693
48

539
1080
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D.3 A103

For Fp3 the matrices take the form:

24 =27 12 —-48 0 O 0 0 0

Awe=| 8 b <% 6 - o
12 -1 -2 2 20 2 -2 -2 0
S e N A N e
-2 3 -3+ 6 0 -2 0 2 0
o 8 —-% 12 0 -3 -2 8 2
-3 0 0 0 0 0 0 0 O
o 0 0 0 0 0 0 0 0
9 —27 3 270 0 0 0 O
1 -6 2 -6 0 0 0 0 0
Agpz=| 4 3 1L 5 ¢ 3 o _9 o [,

-0 6 —-% 12 0 -4 0 —6 0

2 3 -4 6 0 -2 0 -3 0
0 8 -8 12 0 -% 2 8 -3
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Ajp3142 =
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D.4 A104

Aqoq has the following components:

30 5 10 3 2
2 200 ¥ 2 Z 200 -4 0 0
-5 0 00 =¥ 2 0 -20-22 -2 0




D4 A104

235

61
15

61
15

Aos14z =

N~

NI~
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D.5 A105

For 121105 we get:

T -2 -850 0 -2-220 0 0 0 00
Atosz = -2 1 8580 0 -2-20 0 0 0 0 O )

o
o
o
o
o
o
o
|
V]
o
o
o
o
o

-2 9 -2 0 00 00 0 0 000
Aros1-2 = -2 4 2 0 0-250 0 0 000 [

w
o
o
—
o
o
o
o
o
o
o
o
o

2 12 0 ¥ 0 0 00 -18 2 001

A105,1+2 = <013><13) .



D.6. A]_OG
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D.6 A.]_OG

For the last family, the

A106 z =

)

AIOG,I—Z

system of equations has the coefficients:
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A106,1+2: 0o 0 0 0 00 0O OCOO O 0 O

-4 -6 0 -400 -2006 —-100 =5



Appendix E

Differential Equations for the Last

Four Five-Body Integrals

Some of the five-body master integrals were excluded from the transformation to

the e-base. We give here their differential equations in the original base, which we

used to solve these:

az F; 5B30 —

az F5B31 = -

(3e — 2)(4e — 3) c30.1 (€, 2) (26 — 1)? c30.2(€, 2)

32(z + 1)(z 4 3)z3€3(3¢ — 1) Fop1 + 3(z + 1)(z + 3)23€2(3e — 1) Foee
N 2(3e — 2)(2€ — 1)(9z€ — 22 — 9e) P 22(3e — 2)(2¢ — 1) 7
32(z + 3)22€2 PG A ) (2 + 3)72e P
(3¢ — 2) (352€% — 24z¢ + 42 — 35€% + 28¢ — 4)
a3z T 3(2 + 3)22% Fopis
Jr2(26—1)(7ze—2z—7e) 2t z—Tet+l) 7
3(z + 3)2% BT D (z+3)2Be—1) P
(2 +3) e 1) 2(2z¢ +2e+ 1) 2
DGR T T L 13) B3~ 3 Fspsi
(3e — 2)(4e — 3)c311 (€, 2) (2¢ — 1)2%c319(€, 2)
32(z+ 1)(z+3)z% 1 3z(z+ 1)(z + 3)zte2” P
~2(3¢ = 2)(3e — 1)(26 — 1)esas(e, z)F _ ca5(6 2)
32(z + 3)z3¢2 BB 3z + 3)%e 0P
2(2¢ — 1)e3116(c, 2) 22(3z+1)(3e — 2)(3e — 1)(2¢ — 1)
— . Fspi6 Fspao

3z(z + 3)z3%€ (z4+1)(z + 3)z%e

239
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2(3e — 2)(3e — 1)F B
(24 3)22 pp23
22(3e — 1)(4e — 1)

(z4+1)(z+3)z2

(22%€ — 2% 4+ 20ze + 2¢ + 1)
(z+1)(z + 3)z2
(3e —1)(4e — 1)
(z+3)z

F5B26

2(z+6e+1)
(z+3)z

Fspos + Fspao — Fsps ,

3€ — 2)(46 - 3) C32,1 (E, Z) i (26 - 1)2 63271(6, Z)
32%(z 4+ 1)z%e3 opl 32%(z 4+ 1)z3€2
N (3e —2)(3e — 1)(2e — 1)F5B13 22+ 1D(Be—2)(3e — 1)(2¢ - 1)
3227%€2 (z+ 1)z
N (3e — 2)(3e — 1)F 2(bze — 2z —2e+ 1)
2Z%€ op8 32222
2(2¢ — 1)(2ze — be + 1) 2(3e —1)(4e — 1)
F;
* 3227%¢ B16 F (z+1)z3€
(5z2+1) (3e — 1) 1 (bze + z — 3e)

e ) F — Frpay —
FEEEI AL + 5 L5830 + 5 oBal

azFE)BSZ:_(

5B2

F5B2

Fspis

Fspos

— F5B32 )
ZZ

(3 — 2) c36.1(€, 2) C36.24(€, 2)
3(z —2)2%(z + 1)z%e3(5e — 3) 32%(z + 1)z3¢(be — 3
¢3613(3¢ — 2) (3¢ — 1)(4¢ — 1)
T G T e (de —3)Be = 3) PP T o9y 1 )T
(2 — 1) c36.2(€, 2) (3e —2)(3e — 1)
 3(z —2)22(z + 1)23e2(4e — 3)(5¢ — 3) Fopz + 22 Fopes
(3e — 1) 2(22 +1)(2¢ — 1)(3e — 2)(3e — 1)
TR =2+ D)zte Fopzz
(3e —2)(Te — 4)(Te — 3) c36,33(€, 2)
22(z + 1)z3(e — 2)e(be — 3)
z(z +5) 1 He (2e+1)

— F; -F ————Fspss — Fspse -
-2+ 1) 5B26 + S HoBatl + -2 5B35 = 5B36

az F5B36 = - F5B1 - )F5B24

F5B33

In the equations, we have used the abbreviations:

cs0,1(€, 2) = 27 (96€® — 63¢” + 19¢ — 2) — 2z (21¢® + 3€® — 5e + 1)
—96(662—5€+1) )
cs0,2(€, 2) = 32°€(17e — 3) + 2 (—96€> + 30e — 2) + 45€> — 9e — 2,
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(€, 2) = 2° (48¢® — 34€® + 10e — 1) + 2% (—72¢” + 19¢ — 2)
+ 2 (—18€% + 20€* — 6e + 1) + 3¢ (6€° — Te +2) |
cs12(6,2) = 32%(6e — 1) + 2° (—10262 + 26€ — 1) + 2%e(57e — 14)
+ 2 (—66* +2e 4+ 1) + 3¢(3e — 1),
ca13(e, 2) = (52’26 — 22— Tze+ 2+ 66) ,
ca115(€, 2) = 2° (50€® — 55¢% + 19¢ — 2) — 22% (56¢” — 55¢” + 18¢ — 2)
+ 2 (50€® — 53€® + 17€ — 2) 4 6(1 — 2¢)€”,
cs16(6,2) = 2° (1062 — Te+ 1) + 22 (—1462 + Te — 1)
+ ze(31le — 7) + 3(1 — He)e,,

c31(€,2) = 2% (1262 4+ 2e — 1) + 3z(e — 1)e + 126> — 8e + 1,
Caa2(€, 2) = 92%(4e — 1) + 2(15¢ —4) + 3¢ — 1,

c36,1(€, 2) = 32%€ (65€® — 86€” + 34e — 3) + 2° (—253€* + 140€® + 92€* — T2¢ + 9)
+ 2% (—431€' 4+ 1095¢* — 796€* + 216 — 18) + z( — 521" + 796€
— 488¢” + 126¢ — 9) + 2 (235¢* — 432¢” 4 302¢* — 90e + 9) ,

cs62(€, 2) = 2* (20€* + 33¢® — 92¢” + 5de — 9) + 27 (1045¢* — 2225€ + 1723¢
— 564€ + 63) — 327 (78¢* — 61€® — 24€” + 29¢ — 6) + z€(173€® — 85¢”
— 79€ + 39) + 2¢ (—205¢” + 291€* — 125¢ + 15)

cs6,13(€, 2) = 22° (95€° — 186€” + 112e — 21) € + 2°( — 324€* + T21€® — 550€°
+ 171e — 18) + 22 (—105¢* + 164€> — 86¢ + 15) € + 500¢* — 975¢°
+ 670€” — 189¢ + 18,

cs6,24(€, 2) = 2* (125€° — 150€” + 55¢ — 6) — 42°¢ (156> — 16€ + 4)
— 42%¢ (19€* — 16€ + 3) — 4ze (15¢* — 16¢ + 4)
+125€® — 150€> + 55¢ — 6,

Cc36,33(€, 2) = 22(5e¢ — 1) — 4ze + 5e — 1.
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Appendix F

Transformations Matrices for the

Four-Body Bases

F.1 T,

Here we give all the transformation matrices that bring the original base of the

four-body integrals into the e-base via

Al o

G =T, F;. (F.1)

7

The matrix 7 takes the following form:

Tl = ( T17a1 Tl,az ) )

243
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with the entries:

_ 5ze72z536+1 0 0 0
5ze—2z—3et1 €(3e—1)
0 - 2z 22(2¢—1)2 0
0 2(2;1)2 _ 3zez—;+e 0
TLU«I = 0 0 0 _ 5z€72zz;26+1 ,
0 2(2e—1)3 2—1 2(2¢—1)3
2(2z—1)ze? T 2(22—1)ze T 2(2z-1)ze2
0 20(26—1)3(4e—1) 4(2—3)(2¢—1)(4e—1)  20(2e—1)3(4e—1)
32(2z—1)ze(e+1) 32(22—1)z(e+1) 32(2z—1)ze(e+1)
0 _ 8(2e—1)3(4e—1) 8(2¢—1)(4e—1) 8(2¢—1)3(4e—1)

2(22—1)z3€2(3e+1) (22—1)z3€(3e+1) 2(22—1)z3€2(3e+1)

0 0 0
0 0 0
0 0 0
Ty = 0 0 0
_25e) s 0
2z—1 (22—1)(4e—1)
2+2)e(de—1)(Be—1)  (422=3243)e 0
3z(2z—1)z(e+1) 2(2z—1)z
4(de—1)(5e1) __AG+D(e+]) __5Szetz—3e
2(22—1)z2(3e+1) 2(22—1)z2(3e+1) 2z

F.2 T,

The matrix 7’5 takes the following form:
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the components being:

0

60€3 (6z25272226727%2+15z572z+25627156+2)

11(2e—1)3(3e—1)(4e—1)

120(z+1)e®
T 11(2e—1)(4e—1)

_120€3(3ze—z—5e+1)
11(2e—1)(3¢—1)(4e—1)

_ 1202z€* 0
(e—1)(2e—1)(3e—2)(3e—1)
0 180zz¢*
11(2e—1)3(4e—1)
0 0
0 0
30263(10262—7ze+z+652—26)
T - T 2(2¢-1)3(Be—1)(4e—1) 0
Q’al 30ze€3 (4z52+3267271262+4e)
z(2e—1)2(3e—1)(de—1) 0
0 0
18(e+1) 360z¢>
3e—1 11(2e—1)(3e—1)(4e—1)
_ 6Ge(et+1)(16e—3) 0
(2e—1)(3e—1)(4e—1)
- 242 (e+1) 3602z€>
(2¢—1)(3e—1)(4e—1) 11(2e—1)(3e—1)(4e—1)
0
15¢3 (662262 —2222¢—1832€2+932¢+102+125¢2 —T5¢ )
B 11(2e—1)3(3e—1)(4e—1)
__30(z=5)e® _
11(2e—1)(4e—1)
3063 (212e—52—25¢+5)
T 11(2e—1)(3e—1)(4e—1)
~ 0
T2,a2 =
0
0

30(222¢3—25€3—11€2+12¢—2)
11(2e—1)(3e—1)(4e—1)

0

3062 (22ze—e—1)
T 11(2e—1)(3e—1)(4e—1)

0

0

0

24(102€3—25€3—11€2+12¢—2)

11(2e—1)(3e—1)(4e—1)

0

24€(10ze—e—1)
T 11(2e—1)(3e—1)(4e—1)

0

0

5z¢3 (3225—8z€+22—35)

0

0

15z€3 (225—4z€+z—e)

2(2e—1)3(4e—1)

10263(26724»36)

2(2e—1)3(4e—1)

15z€3 (22— 2+2¢)

z(2e—1)2(4e—1)
0

16(e+1)
3(3e—1)

2¢(452¢2—41€2-33¢+8)

z(2e—1)2(4e—1)
0

7(e+1)
3e—1

5(30z5273462 727€+7)

3(2e—1)(3e—1)(4e—1)

6e2(5ze—e—1)

(2¢—1)(3e—1)(4e—1)

6c2(5ze—e—1)

(2e—1)(3e—1)(4e—1)

(2e—1)(3e—1)(4e—1)
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0 0 0 000000O
0 0 0 0000000
0 0 0 0000000
0 0 0 0000000
— 0 0 0 0000000
2,a3 = )
0 0 0 0000000
— e 0 0 0000000
0 (4 =L 1000000
0 0 25 0000000
0 G 0 0000000
0 00
0 00
- 0 00
Top, = ,
82;52 0 0
0 00

ta,
(2671)3(36722)'(13671)(4571) 00

0 0 0

0 0 0

~ 0 0 0
T2,b2 , ) )

0 - 3(75i1) 32;

0 0 0

t ]
0 (2671)3(36722)?3671)(4671)
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ze?
0 00 0 —meoeena=D 0o 0 0 0 0
0 00 0 0 1 0 0 0 0
. 0 0 0 0 0 0 2 0 0 0
T2’b3 - 2 2 2 2
0 0 2 0 — 40 - 0 - 0 0
0 00 0 0 o 0 0 —-f 0
2

t2, b2t 9ze
(2571)3(36722)?3671)(4571) 0 0 0 o 0 0 0 0

T (2¢-1)3(3¢—2)(3e—1)(4e—1)

For better readability we used the abbreviations:

to1 = —602%(c — 1)(de — 1)e* + %z(e +1) (1278¢% — 1377€” + 448¢ — 52) €
_ 60(e — 1)(3e = 1)
z
tay = —152" (3¢’ — 1) ' + 1—152(6 +1) (2691€® — 2619¢® 4 781e — 94) €
15(e — 1)(3e — 1)t

— 5 (63¢®> — 66€” 4 25¢ — 4) €* — . :

— 30 (28€® — 27€* + 11e — 2) ¢

?

3
tos =—152" (3¢ — 1) €' + gz(e +1) (399¢® — 416€* 4 134€ — 16) €
5 15(e—1)(3e — 1)et

?

— 15 (336’ — 37€” + 14e — 2) € .
2
tos = 2702%€* (26 — 1)(3e — 2) — ?7262(6 +1)(2¢ — 1)(3e — 2)(8¢ — 1),
24
tas = —302%(e — 1)(2e — 1)(3e — 1)€* — Ez(e +1)(2e — 1)(3e — 1)(7e — 3)€?

+30(2¢ — 1)(3e — 1)(5e — 3)e®.
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F.3 T,

The matrix 7’3 takes the following form:

0

t3,2

T 11(2e—1)2(3e—1)(4e—1)

40(2+1)€
11(4e—1)

_ 40€%(3ze—z—5e+1)
11(3e—1)(4e—1)

0

0

8(102¢?—9e2—7e+2)

~ T3,a1 T3,a2 T3,a3
T3 =
Td,bl T3,b2 T&,bg
the components being:
40(2—1)ze®
(e—1)(3e—2)(3e—1) 0
60(z—1)ze?
0 T 11(2e—1)2(4e—1)
0 0
0 0
4(2—1)e?(432€2 28244241562 —5c )
Tg _ 2(2e—1)2(3e—1)(4e—1) 0
o 40(2—1)é® 0
(2e—1)(3e—2)(3e—1)
120z€2
0 11(3e—1)(de—1)
_ t3,1 0
22(2e—1)2(3e—2)(3e—1)(4e—3)(4e—1)
8(e+1)(5e—1)
T Be—1)(4e—1) 0
80¢3 48252(e+1)

T1(3e—1)(de—1)

0

0

8¢?(4ze+42—30e+5)

(2e—1)(3e—1)(4e—1)

11(2e—1)(3e—1)(de—1)

T1(26—1)(3e—1)(de—1)
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T37a3 =

4(2e—1)
3(3e—1)

T 11(2e—1)2(3e—1)(4e—1)

0

t3,3

10(2—5)€?
11(4e—1)

_ 10€2(21ze—52z—25¢+5)
11(3e—1)(4e—1)

0
0

10(222¢?—9€2—Te+2)
T1(3e—1)(de—1)

0

0

2¢? (44ze+442—150e+25)

0

0

105(z—1)e? (32282422 —3¢)

2(2e—1)2(4e—1)

0

0
3,4
T 222(2e—1)2(4¢—3)(4e—1)
14(45262—412—33¢+8)
(3e—1)(4e—1)

25262(264"2756)

T1(26—1)(3e—1)(de—1)

0

0

630(2—1)€? (22%e—4ze+2—2¢)

(2e—1)(3e—1)(4e—1)

2(2e—1)2(4e—1)

0

0

t3,5
22(2e—1)2(4e—3)(4e—1)

126(20z€2~16€2—13¢+3)

(3e—1)(4e—1)

10082 (ze+2—5¢)
(2¢—1)(3e—1)(4e—1)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
Se=y 0

0 _ 22¢2

60(z—1)%€3
(2e—1)(3e—2)(3e—1)

0

0

zZe

0

0

0

0

2

(2e—1)(3e—1)

(2¢—1)(3e—1)

0
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000

000

Tsp,=| 000 |,

000

000
0000 —¢ 0 0 0 0
0000 0 2 0 0 0
T3,b3_ 0000 0 0 =L 0 0
0000 0 0 0 X 0
0000 0 0 o o -1

For better readability, we used the abbreviations:

t3) = 227 (1462264 — 5622%€® + 5622%€* — 2062%¢ + 2427 + 4802¢*
— 7552€3 4 380z€2 — 60ze — 90€* + 135¢% — 652 + 106) ,
t32 = 20€ (62262 —22% — 272¢* + 15z — 22 + 25¢% — 15¢ + 2) ,
ts5 = be” (662°€” — 222°€ — 183z¢” + 93ze — 10z + 125> — 75e + 10) ,
t34 = 105z%¢ (62’362 — 62%¢ — 142%€? + 232%€ — 627 — 302z€® + 18z¢ + 6¢* — 36) ,
tss = 3152%€* (42°€* — 42 — 42°€” + 1027 — 32° — 202€” + 12z€ + 4€” — 2e) .



Appendix G

Transformations Matrices for the

Five-Body Bases

Here we give all six transformation matrices that bring the original base of the

four-body integrals into the e-base via

P

(2

G.1 TlOl

The matrix T101 takes the following form:

322z€3(e+1)
B (25—1)(35—;)(25—1)(45—3)(45—1) 0 0 0 0
32z (e+1) 3z (c+1)
(2671)22(;51)(4671) B 2(2:;1);(4671) 0 0 0
T1o1 — L 3(e+D) 3(e+1) =2(ctl)  _3E=3)()
(4e—1)(5e—1) (4e—1)(5e—1) (4e—1)(5e—1) (4e—1)(5e—1)
0 0 0 1 0
0 0 0 0 —%

251
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G.2 Tlog

The matrix T 102 reads:

T2 = ( T102,a,

the components being:

322z¢*(3e+1)
2(2e—1)(3e¢—2)(3e—1)(4e—3)(4e—1)

3ze3 (3e+1) (2ze+e—1)
4(2e—1)3(3e—1)(4e—1)

T102,a0 110205 ) ’

0

3z¢3(3e+1)
4(2e—1)3(4e—1)

0

0

3e(3e+1)(8ze+z+4e) 9¢2(3e+1) 3e(3e+1)(31ze—9z+22¢)
2(4e—1)(5e—1)(6e—1) " (4e—1)(5¢—1)(6e—1) 8(4e—1)(5e—1)(6e—1)
0 0 1Be+1)
TIOZ — _ €(3e+1) t102.1 €2(3e+1) t1o2,2 €(3e—1)(3e+1) t102,3
a1 8(2¢—1)3(4e—1)(5e—2)(5e—1)(6e—1)  4(2e—1)3(de—1)(5e—2)(5e—1)(6e—1)  32(2e—1)3(de—1)(5e—2)(5e—1)(6e—1)
3e(3e+1)
0 T 2(4e—1)(5e—1) 0
0 0 0
3ze?(3e+1) t1o2,7 _ 32e3(3e—1)(3e+1)(38¢—13) o 3ze2(3e+1) t102,8
2(2e—1)3(3e—1)(4e—1)(5e—1)(6e—1) 2(2e—1)3(4e—1)(5e—1)(6e—1) 8(2¢—1)2(4e—1)(5e—1)(6e—1)
0 0 0
0 0 0
0 0 0
_36(36+1>(525732+245) _ 27¢(3e+1)(1112e—9z+32¢) 0
8(4e—1)(5e—1)(6e—1) 16(4e—1)(5e—1)(6e—1)
—2(3e+1) — (3¢ + 1) 0
7 — t102,4 €(3¢—1)(3e+1) 9¢(3e—1)(3e+1) t102,
T1027a2 - 32(2671)§?Z:1)(5672>(5571)(6671) 64(2671)3(4571)(5672>(§2i51)(6671) 0 ’
3(z+1)e(3e+1)
0 0 =D (Be=D)
0 0 0
3z€%(3e+1) tr02,0 - 27z€2(3¢+1) t1o2,10 0
8(2e—1)2(4e—1)(5e—1)(6e—1) 16(2e—1)2(4e—1)(5e—1)(6e—1)

0

0

0
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0 0 0

0 0 0

o Sl

0 T(Be+1) 0

T1027a3 - 0 96(26—1;§?Z;jl>§?;:j2))t(li'i)jfl)(Ge—1) 0 !

e G 0 0

62(?:11)> 0 0

0 - 8(26—12)522 ((j:jf))(tsleoff)l(ee—l) 0

0 0 1

with the functions:

tioen = —62° + (282° + 152 — 24z — 4) e + (—406z° + 1772% + 1832 + 52) €
+ (21562° — 948%2% — 357z — 248) €® + (—4970z° + 17282° — 1682 + 512) €’
+12 (3502 — 100z* + 61z — 32) €°,
tiome = —3 — 182 + 92% + (—1372° + 1722 + 39) € + (762z° — 616z — 186) >
+ (—1828%% + 988z + 384) €’ + 6 (2652> — 100z — 48) €'
tioas = 542° 4 (—462° — 4652° — 132z — 22) e + (5292° + 10932” + 936% + 220) €
+ (—19552% + 204z% — 2380z — 704) €* + 4 (575z% — 520z% + 518z + 176) ¢*
tiooa = 1827, (—262° — 1172° — 144z — 24) e + (299z° + 1432% + 978z + 240) ¢
+ (—11052" 4 350z% — 2300z — 768) €* + 4 (3252 — 1502% + 460z + 192) €*
ions = —543% + (1142 4 10955 + 1925 + 32) € + (13112° — 625327
— 1086z — 320) ¢ + (—4845z° + 151662” + 1620z + 1024) €
+ 4 (14252° — 34302” — 108z — 256) €
tione = 1262% — (1982° 4 7532% + 1020z + 170) € + (227723 + 457z
+ 69487 + 1700) € + (—84152° + 4064z% — 16428z — 5440) ¢*
+ (9900z° — 5840z + 132247 + 5440) €*
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tioor = —1 —Z+ (9 — 152)e + (178% — 35)e? + (69 — 528%)€® + 6(762 — 7)e*,

tioas = —1 — 92 + (262 + 55)e + (532 — 184)€”,
tiooe = 7 — 32(—22 — 29)e + (552 + 42)€?,
ti02.10 = —29 + 9z + (255 — 1862)e + (5072 — 646)¢>
tiog1 = 47 — 212 — 3(10Z + 59)e + (4412 + 220)€>.

G.3 Tlog

For the third family the transformation matrix looks as follows:

T3 = ( T103a1 T103,a0 110305 ) )

the components being:

T103,0, =

322z¢*(3e+1)

0

T 2(2e—1)(3¢—2)(3e—1) (de—3) (de—1)

32264(35+1)

2(2e—1)3(3e—1)(4e—1)

3e(3e+1)

T 2(4e—1)(5e—1)

3253(35+1)

3e(3e+1)
2(Ae—1)(5e—1)

4(2e—1)3(4e—1)

0

0

(2—2)e(3e+1)
2(4e—1)(5e—1)

0 0 0
__3e(3et1)(ze+2+5¢) 0 €2(3e+1)
2(4e—1)(5e—1)(6e—1) (4e—1)(5e—1)(6e—1)
0 0 0
3z€2(3e+1) t103,1 3z¢3(3e+1) ze3(3e+1)(7e—2)
2(2e—1)3(3e—1)(4e—1)(5e—1)(6e—1) 2(2e—1)3(4e—1) (2e—1)2(4e—1)(5e—1)(6e—1)
0 0 0
0 0 0
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T103,a0 =

T103,05 =

0

0

_ 3(2—3)e(3et1)
2(4e—1)(5e—1)

€(3e+1)
2(e+1)

3e2(3e+1)

T (e—1)(5e—1)(6e—1)

0

3ze3 (3e+1)(7e—2)

0

0

15(2—2)€e?(3e+1)

(4e—1)(5e—1)(6e—1)

0

15(2—2)z€3 (3e+1) (Te—2)

0

0

_ €(3e+1)(8zet+z—12¢)

(4e—1)(5e—1)(6e—1)
1Be+1)

ze? (36+1) t103,2

(2e—1)2(4e—1)(5e—1)(6e—1)

(2e—1)2(4e—1)(5e—1)(6e—1)

2(2e—1)2(4e—1)(5e—1)(6e—1)

0 0 0

0 0 0
0 0 0

0 0 0

0 0 0

0 0 0
3e(3e+1)(5ze+z—3€) _ 3e(3e+1)(7ze+z2—9¢) 0

4(4e—1)(5e—1)(6e—1) 2(4e—1)(5e—1)(6e—1)

0 0 0

3ze2(3e+1) ti03,3 B 3z€e2(3e+1) t103,4 0

4(2¢—1)2(4e—1)(5¢—1)(6e—1) 2(2e—1)2(4e—1)(5e—1)(6e—1)
0 3e+1 0
4e

0 0 -1

The functions t193, are defined as:

tiosn =2 — 2+ (32 — T)e + (252 — 38)e? 4 (193 — 1052)e® + (782 — 210)€*,

tiose = —1 + 22 + (29 — 242)e + (522 — 78)€?,
tioss = =2+ 2+ (13 — 62)e + (52 — 21)é?,
tiosa = —2+ 2+ (25 — 102)e + (192 — 63)€>.
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G.4 T104

For the fourth family the transformation matrix looks as follows:

Thoa = < Ty

the components being:

622z€°
(2e—1)(3¢—2)(3¢—1)(dc—3) (de—1) 0 0
3zt (2zete—1) 3zet 0
(2e—1)3(3e—1)(4e—1) (2e—1)3(4e—1)
0 _ 62 2(z+1)e?
1) (Be-1) (1) (5e-1)
0 0 0
0 0 0
2¢2(62¢2+662~Te+1)
T Re—1D)(Be—1)2(de—1) 0 0
] = 263 104, 663 (22— ze4 1262 ~Te+1)
T104’a1 (26—1)(36—1)(45i014)(175—2)(76—1) T @e—1)(3e—1)(4e—1)(Te—2)(Te—1) 0
_ €3 t104,3 363 ti04,4 0
2(2e—1)2(3e—1)(4e—1)(Te—2)(Te—1)  2(2e—1)2(3e—1)(4e—1)(7e—2)(Te—1)
0 0 0
0 0 0
_ ti04,5€€104,1 €e104,1 t104,7 0
30(4c—1) 5(de—1)

0 0 0
0 0 0




G.4. Tioa 257

0 0 0
0 0 0
- (457%((;71) 0 0
2 0 0
0 (2571)(357.22)2(3171)(4571) 0
0 (2547(15:(3;:17)((211) (2575)((2571)
T1047‘12 - 0 (2571)(35714;32014)’?7572)(7571) 0 )
0 - (2571)2(35712)‘(3421341)6(7572)(7571) 0
0 0 0
0 0 0
0 gt 0
0 0 0
0 0 0
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
0 0 0 0 0 00
T1047a3 - 2(2e—11)5(6:1(2216)?73;6:21))(75—1) 2(261—512)5(2((5—2;(27:3;(171—1) 0 0 0 00
e o e N I I
0 0 5T 0 0 00
0 0 0 1 -1 0 0
—Leeioun tiong S 0 —H2 22 00
0 0 0 0 0 1
0 0 0 0 0 0 1
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With the functions:
B 1
A0 = e T 1)(3e — 2)(3e — 1)(Te — 4)(Te — 3)(Te — 2)(Te — 1)’
tioan =5 — 4z +22% + (—182° 4+ 232 — 35) € + (402” — 192 4 60) €,
tione =7 — 4z +22° + (—182° + 192 — 46) € + (402" — 32 4+ 63) ¢*,
tioas = —6 + 20z — 82% + (9227 — 210z + 61) € + (—340z° + 686z — 196) €’
+ (400z* — 736z +201) €’
tioas = —2 + (42 + 23)e — 14(2 + 6)e* + (10z + 99)¢?
tioas = 4827 + (7202 — 7680z° 4 6092z% — 600) e — 20 (65424 — 6474z" + 36982

+ 846z — 525) €’ + 3 (32040z* — 293620z° + 955672* + 70660z — 25000) €*
+ (—365880z" + 3119100z — 340493z* — 1019580z + 279300) €*
+ <76140024 — 6112740z° — 3490672 + 2346960z — 570600) ¢
- 15(5480024 — 421732z° — 683232% + 171780z — 40320) e’
+ 18 (20000z* — 150400z° — 307872 + 59770z — 14400) €,
tioae = —6 + 10z — 42% + (462° — 972 + 61) € + (—1702* 4 291z — 181) €’
+ 8(2522 362+ 21)63 ,
tioa7 = 482° — 4 (2772 + 15) € — 10 (182° — 1229z + 186z — 105) ¢
+ 6 (3052% — 11604z% + 4005z — 1250) €* + ( — 72302° + 213667z
— 120600z + 27930) ' + (13830z% — 3592372° + 293910z — 57060) €’

— 15 (8502° — 205932* + 23184z — 4032) ¢°
+9 (500z° — 11659z% + 17760z — 2880) €',

tioas = —11042° + (480z* — 5120z° + 302842 — 560) € — 20 (43624 — 4340z°
1440327 + 12602 — 580 )¢ + (640802 — 505720" + 13304472% + 343240
- 98380) ¢ + (—243920z" 4 2118720z" — 33388812% — 1759040% + 420520) ¢*

+ (5076002 — 4122120z* + 46398612 + 4284520z — 943800) €’
— 5 (109600z* — 832864z + 668679z + 998400z — 210960) €®
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+ 12 (20000z* — 142400z + 809042° + 186360z — 38395) €’ ,
tioe = 5282° + (120 — 100762%) € + 4 (180z° + 168592z* 4+ 900z — 405) €

— 5 (13202 + 437392% 4 6312z — 1704) €* + (2232023 + 372337z° + 101400z
— 21780) ' — 3 (11000z° 4 1061832z* 4 47160z — 9000) €’
+ 9 (2000z* + 118912% 4 8040z — 1440) €®
tioa,10 = —3362° 4 (—180z* + 19202° + 46122” 4 60) € + (255024 — 25500z° — 2543227
+ 1620z — 810) €’ — 5 (2766z* — 257222° — 14629z + 2814z — 852) ¢’

+ (36150z* — 311730z — 116039z + 44760z — 10890) €*
+ (—45750z" + 365730z° + 957032 — 61830% + 13500) €’
+9 (2500z* — 18550z° — 3517z + 3480z — 720) €°.

G.5 T105

The transformation matrix for family 105 contains the following entries:

Thos = ( T10500 110500 1105,a5 > ’
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the components being:

622z€3(2¢—1)

(3¢—2)(3e—1)(4e—3)(4e—1) 0 0
3ze2(2Zete—1) 3z¢2 0
(2e—1)(3e—1)(4e—1) 8e2—6e+1
6222 (2e—1)
0 0 (3¢—2)(3e—1)(4e—1)
62(z41)€>

T (Be=2)(3e—1)(4e—1) 0 0

0 0 4e(2¢—1)(3zete—1)

T (3¢—2)(3e—1)(4e—1)

6e(2e—1)((2+12)e2—(3+T)e+1)
T (Be—1)(4e—1)(Te—2)(Te—1)

2¢e(2e—1) t104,1
(3e—1)(4e—1)(7e—2)(Te—1)

4t105,2¢(2e—1)
(3e—1)(4e—1)(7e—2)(Te—1)

T1057a1 - _2(35—1)(4:—2[)?'71—2)(75—1) 2(36—1)(45?11)[2477:—2)(75—1) _(36—1)(452—?)1?726—2)(%—1) ’

e 0 0
SR SR :
0 0 0
0 0 0
0 0 0

0 0 0

0 0 0

0 0 0

e O 0

U 0

0 0 0

s 0 0

0 0 0

0 0 0

0 0 0

b0, 0 0

22(8€2—6e+1)
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
15z€(2¢—1)(2+(52—3)¢)
2(3e—1)(7e—2)(Te—1) 0 0 0 0 0 0
T _ 152¢((252+6)e>— (155+2)e+22 )
T105’a3 T ABe=1)(7e=2)(Te—1) 0 0 0 0 0 0
0 %:—gi 0 0 0 0 0
6(z—2)ze(2e—1)  4(z—3)ze(2e—1)
0 U 2(3e—1)(de—1)  2(3e—1)(de—1) 0 0 0
0 0 0 2¢e — 1 0 0 0
0 0 0 0 =29 o 0
0 0 0 0 0 @22
0 0 t105,4 t105,5 0 0 1
22(12e2—Te+1) 322(12€2—Te+1)

Some of the functions were already defined for family 104 in the last section, the

new ones are:

tiosy = =222 +3(22° +2° — 102+ 6) e + (—332° + 3527 + 652 — 52) €7
+ (51z° — 842° — 33z +48) €’
tiose = —22° +3(22° + 2 — 102 + 6) e + (—332" + 352" 4 65z — 52) €’
+ (452° — 722° — 39z + 48) ¢*,
tioss = 2"+ (—22° =22 +102 — 6) e+ 2 (2* — 62 + 4) €,
tiosa = —22° 4+ (—32" +182° — 162" — 16z + 14) e + 3 (' — 122° + 182 + 42 — 8) €%,
tioss = 72"+ (62% — 482% + 412° 4 622 — 49) € + —6 (z* — 172° 4+ 262" + 10z — 14) €*.
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G.6 T106

For the last family, we have the following transformation:

To6 = ( T106,0r 110600 1106,a; ) ,

with the entries:

622z¢t

(36—2)(3e—1)(4e—3)(4e—1)

3ze3(2Zete—1)
(2e—1)2(3e—1)(4e—1)

0

6z(z+1)e?

T (2e—1)(3e—2)(3e—1)(4e—1)

0
26(6262+652 —7e+1>
(3e—1)%(4e—1)

26(6262+652 —7e+1)
T (Be—1)2(4e—1)

T106,a1 -

6¢2 t106,1

0

3z¢3
(2e—1)2(4e—1)

0
0
0
0

0

62 t106,2

0

0

622¢3
(3¢—2)(3e—1)(4e—1)

0

4€%(3zete—1)
T (3e—2)(3e—1)(4e—1)

0

4e(3ze+e—1)
(3e—1)(4e—1)

662(5671) t106,3

(3e—1)(4e—1)(7e—2)(Te—1)

(e—2)€? e106,1 t106,5
(2¢—1)(4e—3)(4e—1)

6z€2
T 2(Be—1)(4e—1)

0

__€e106,2 106,10
423

0

T Be—1)(4e—1)(7e—2)(Te—1)

(e—2)€? e106,1 t106,6
(2e—1)(4e—3)(4e—1)

6z€2
 2(Be-1)(de-1)

0

_3ee106,2 t106,11
423

0

(3e—1)(4e—1)(7e—2)(Te—1)

2(e—2)€? e106,1 t106,7
(4e—3)(4e—1)

0

0
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T106,a2 =

0

0

2z2¢3

T 2(2e—1)(3¢—2)(3e—1)

2¢2
(3¢—2)(3e—1)

0
0
0

0

2z¢2
T 2(Be—1)(4e—1)

0

€e106,2 106,12
223

0

0

0

2¢2
(3¢—2)(3e—1)

0

0

0

0

0

18¢2 t106,4

(3e—1)(7e—2)(Te—1)
€106,1 £106,8
0

0
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and

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 O

T106,a3 = 0 0 0 0 O
— S 0 0 0 0
€106,1 1106,9 0 0 0 0

0 - z(ge(i)z ()fin z(:i(i)g ()fil) 0 0

0 0 € 0 O

0 —€1062t106,13  €1062t106,14 3.7 O

0 0 0 0 1

The functions that are used are defined as:

1
U061 = (36— 2) (3¢ — 1)(Te — 4)(Te — 3)(Te — 2)(Te — 1)’
1

U062 = 19e —1)2(3¢ — 2)(3¢ — 1)(de — 3)(4e — 1)’

tign = 2" + (=922 + 152 — 7) e + (202° — 252 + 12) €%,
tiee = 1+ (=2 — Te + (2 + 12)€,

tiss = —2+2z2—2° + (42° — 22+ 2) e,

tioea = 1+22 — 2 + (527 — 122 — 3) €,

tioss = 362" — 6 (99z* — 3862° + 5552% — 334z + T7) e + (389624 — 1485023
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+204212° — 10792z + 2352)62 + ( —130142" + 49024z° — 650172° + 29349z
- 6090) ¢’ + (234202 — 88510z + 1151772° — 43537z + 8484) ¢*
+ (—21600z* + 83192z — 1084972* 4 34311z — 6048) ¢’
+ (8000z* — 31892z° + 425422% — 11551z 4 1728) ¢°.
t1o6,6 = 36 — 6 (62° — 212° + 262 + 77) € + (306z° — 10652> + 1276z + 2352) €”
— (1016z° — 33352" + 34952 + 6090) €* + (16462° — 4619z* + 2875z + 8484) €'
+ (—1300z* + 2539z% + 1851z — 6048) € + (400z° — 244z> — 2711z + 1728) €°
tioer = —18 (2! — 42° + 62 — 4z + 2) 4 3 (872" — 3282° + 4442 — 2242 + 108) €
+ (—1426z* + 5138z% — 62552° 4 1902z — 785) € + (365524 — 129202
+ 145742 — 1812z + 158> ¢® — (4400z* — 15640z° + 17061z* — 168z — 1253) ¢*
+ (20002 — 73062° + 8058z + 162z — 914) €’
ioos = 6(c = 2)e | — 6 (5 — 42° + 622 — 42 — 1) + (552" — 2402° + 30627
— 288z — 33) e+ (—150z" + 686z* — 1190z* + 900% + 54) ¢
+ (1252* — 590z° + 1058z — 816z — 27) 63} :
tlo69 = —36(2 — 2)7(e — 2)E*(5¢ — 2) [3 (22— 22+ 2) + (—2022 4 44z — 44) €
+ (2522 - 58z +58)
tios,10 = —242° + (54z* — 4947° + 10682% — 9247 + 284) € — 6(225 + 772"
— 524z° + 964z° — 750% + 214) e+ (3656 — 1112° + 1797z* — 90797
1472757 — 104642 + 2776 )
—3(322° — 1212° + 9542" — 3952z° + 5850z% — 3867z + 960) ¢*
+ 3 (20z° — 822° 4 507z* — 18772° + 26132% — 1637z + 384) €°,
tioe1 = —122° +2 (92" — 1062° + 2492* — 2252 + 71) e — 2(255 + 777" — 6312°
+ 12852 — 1071z + 321)62 + (2755 + 447z — 3289z° 4 6157z° — 48362
+ 1388) e + (—53z° — 542z" 4 38922° — 6910z + 5197z — 1440) ¢*
+ (322° + 235z* — 17132% + 29372% — 2139z + 576) €°
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tiog12 = 122° + (=92* + 1772° — 4622° + 4382 — 142) e + ( —22° 4 742" — 9162°
+22052% — 2020z + 642) e+ (1225 — 217z* + 2153z% — 49372% + 4430z
— 1388) * + (—222° + 276" — 23622° + 5240z° — 4644z + 1440) ¢*

+4(32° — 322" +2462° — 5322% + 468z — 144) €°
€(2¢ — 1)
223

+ (1826 —72z% — 2552* 4+ 1982z — 3678z% + 28562 — 812)62

t106,13 = — [ —242° 4 (—32° + 92° + 54z — 4462° + 9242° — 780% + 236) €
+ ( —332% + 1532° + 399z* — 322273 + 5682z — 4212z + 1152)63
+6 (325 — 162° — 342* + 2022% — 50022 + 360z — 96) 64} ,
€(2¢ — 1) 3 =6 =5 24 =3 22 3
bog 1 = — g | = 62% + (=20 4 35 4 275" — 1642° + 2852 — 2132 + 59) ¢
z
+ <626 2355 — 143%* 4 8062 — 12362 + 8197 — 203) €2
- ( — 112°% + 482° + 2462* — 13772% + 199422 — 1242z + 288) e

2 (320 — 1527 — 682! 4 386" — 5402% + 3242 — 72) !



Appendix H

Five-Particle Phase Space

A parametrization for the five-particle phase space has been derived in Ref. [72].
For completeness we give a brief overview of the derivation here, for the detailled
calculation we refer to the original paper.

The starting point of the derivation is, as for the lower dimensional measures, the
formula Eq. (3.23).

This is first rewritten in terms of energies and relative angles of the particle trajec-
tories, which can then in turn be replaced by the momentum invariants s;;.

Introducing the shorthand notation

Y1 = 812/, Yo = 513/0°, Y3 = 523/ 0%, Y1 = 514/ 0%, Y5 = Soa/
Ys = 834/612, Y7 = 315/612, Ys = 325/q2, Yg = 835/612, Y10 = 345/6127 (Hl)

the phase space integrations for a decaying b-quark can be written as
/dPS5 =(27)574P272 2Py (D — 1)V(D — 2)V(D — 3)V(D — 4)(m?)*P~>
10 10 ;
/H5(1 =) un)(—A5)2 PO(-As). (H.2)
j=1 i=1
Aj is related to the determinant of the Gram matrix (defined as G;; = p; - p;) via

A, = —% det G/ ()" . (H.3)

267
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Explicitly written, this looks as follows:

A5 = Yloy1y2Ys + Yoy1yays + YsYayals + Y7YsYsYs + Ysy1yYs
+ Y2YayrYo + Y2YsYsYo + Y3YaYryio + Vi YsYeyio
+ Y10[Y2ysysyr + Y1Y3Y6Yr + Y2YsYaYs + Y1Y29sYs + Y1Ysyae + Y1y2ysYol
+ Yo[yays (Ysyr + y2ys) + Y26 (Ysyr + Yays)] + Yeyrys(ysya + yoys) . (H.4)

It is now of great help to use a parametrization that factorizes the Gram determinant.
One example for this is given in Ref. [71]. For this, y; is eliminated by momentum
conservation and the double invariants yg and y; are traded for a triple and quadruple
invariant, respectively.

The theta function constraint is solved for ys, which gives the solutions
y5jE = yg +VRs5, (H.5)

then \/Rs > 0 is solved for yg and finally y5 — yg is solved for .

New variables t; are introduced that are integrated from zero to one:

s1345/4° = t7, s34/q° = totglrty,

s134/q° = tetr , s15/q° = trtg[L — to(1 — tata)] — w10,
s13/q° = tetrta, s35/q° =y + (Y5 —ys s
s23/q° = tstr(1 — tota)(telo + to) ,  s35/q° = trtole(1 — tats),
s14/q° = tatatety $15/0° = Yo + (Yo — Yio)t1o »

so1/q* =5 + (v — y5 )ts) .

With these new variables, the phase space now finally factorizes:

1
10
1_e
/d@lDﬁE) = IC )20 /H [tsts] ™ " “[tststiotio] 2

0 7j=2
X [tatstels]' >[(fatststatatote)] t2 €. (H.6)
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Here, we collected the prefactors from the phase space in IC(F5), which reads:

K = (2m)°~1P27272P278y (D — 1)V(D — 2)V(D — 3)V(D — 4)
446
T2 (—20) (2 — 2¢)

(H.7)

Note that this is the phase space without a cut included, which means that we
have not yet assigned p4 to the photon. We thus still have the power to rename all

the momenta to best fit the kernels at hand in our calculation.
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