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Abstract 
Interest in Bistatic and Multistatic SAR (Synthetic Aperture Radar) systems has grown in 

the last decade. They bring additional benefits to conventional monostatic SAR systems, such 
as flexibility, cost reduction, reduced vulnerability, etc. At the same time, processing 
complexity for bistatic configurations is much higher than for conventional monostatic 
processors. Until now only some numerical and intuitive solutions were given in this respect. 
No analytical solution is available. 

In this work we will focus on bistatic SAR processing problems. The algorithms we will 
develop are based on a point target reference spectrum derived at our research institute. In the 
beginning we will derive the bistatic formula itself, which contains quite lengthy and 
complex mathematical expressions. In the derivation, some approximations are used. We will 
therefore consider the constraints of validity. Later, we will demonstrate the performance of 
the bistatic formula with simulation by focusing the single and group of point targets. 

In the very general arbitrary configuration, the processing is range and azimuth time 
dependent. We will focus on increased complexity configurations. In this respect, we will 
first consider the Tandem case and the translationally invariant case. Later, we will extend 
the focusing task to the general case, which is the most challenging bistatic configuration. 
This will be accomplished by compensating the scaling in both range and azimuth directions. 
Here, transmitter and receiver are moving on non-parallel trajectories with non-equal 
velocities. We will see that azimuth time variance causes additional scaling of Doppler 
frequency. As the first approximation, the focusing of the general bistatic SAR will be solved 
by separating the scaling in range and azimuth frequency directions.  

Some modules of our current bistatic algorithm will be substituted later by a truly 2D 
scaling approach. We will derive the 2D Inverse Scaling approach and show some focusing 
results obtained from simulated raw data.  
 

Kurzfassung 
Das Interesse an bi- und multistatischen SAR (Synthetic Aperture Radar) Systemen ist im 

letztem Jahrzehnt stark angewachsen. Diese neuartigen SAR-Systeme, bei denen sich Sender 
und Empfänger an unterschiedlichen Positionen befinden, weisen bezüglich konventioneller 
monostatischer Systeme zusätzliche Vorteile auf, wie beispielsweise höhere Flexibilität, 
Kostenreduktion, höhere Ausfallsicherheit, etc. 

Gleichzeitig ist die Komplexität der SAR-Prozessierung für bistatische Anordnungen 
weit aus größer als es für die gängigen monostatischen Prozessoren der Fall ist. Bisher sind 
in diesem Zusammenhang nur einige numerische und intuitive Lösung bekannt. Es steht 
keine analytische Lösung zur Verfügung. 

Der Schwerpunkt dieser Arbeit liegt auf den Problemen der bistatischen SAR-
Verarbeitung. Die entwickelten Algorithmen basieren auf dem bistatischen Punktziel-
Referenzspektrum, welches im Zentrum für Sensorsysteme (ZESS) hergeleitet wurde. Zuerst 
wird die bistatische Formel hergeleitet, welche einige längliche und mathematisch komplexe 
Ausdrücke aufweist. Diese Herleitung enthält einige Näherungen, so dass auch 
Gültigkeitskriterien für allgemeine bistatische Anordnungen berücksichtigt und erfüllt 
werden müssen. Später wird die Leistungsfähigkeit der bistatischen Formel durch die 
Fokussierung einzelner und gruppierten Punktzielen simulativ überprüft. 



  

 

Im allgemeinen Fall (ungleicher Geschwindigkeitsvektoren für Sender und Empfänger) 
ist die bistatische Prozessierung Entfernungs- und Azimutzeitabhängig. Die Prozessierung 
solcher höher komplexen Anordnungen ist ebenfalls Teil dieser Arbeit. Beginnend mit 
Anordnungen mit konstantem Differenzvektor zwischen Sender und Empfänger wird der 
Fokussierungsalgorithmus auf den allgemeinen Fall erweitert. Es zeigt sich, dass die 
Azimutzeitvarianz eine zusätzliche Dopplerfrequenzskalierung hervorruft, so dass bei dem 
allgemeinen bistatischen Fall eine Reskalierung in Richtung beider Frequenzachsen erfolgen 
muss.  

Als ein erster Ansatz zur Fokussierung von bistatischen SAR-Daten wird eine getrennte 
Skalierung in Entfernung- und Azimutfrequenzrichtung durchgeführt. Einige  Module des 
bistatischen Algorithmus werden später durch einen 2D-Skalierungsansatz ersetzt. Dabei 
wird der 2D-Inverse-Scaling-Ansatz hergeleitet und einige Fokussierungsergebnisse, welche 
durch simulierte Rohdaten gewonnen wurden, gezeigt. 
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Notations 
τ    Azimuth (slow) time 
t    Range (fast) time 
f    Range frequency 
fτ    Azimuth frequency 

c    Speed of light in vacuum 
( )0 0,R RP R τ   Point target location (given in the receiver’s coordinates) 

0RR     Slant range at the receiver’s point of closest approach 

0Rτ    Azimuth time as the point of closest approach is reached 

0R    Slant range of closest approach (monostatic case) 
( )0 minR   Minimum slant range of the complete footprint (monostatic case) 

0τ    Azimuth time at the point of closest approach (monostatic case) 

RvG , TvG    Receiver’s and transmitter’s velocity vectors 

Rv , Tv    Receiver’s and transmitter’s velocities (magnitudes) 

( )0 0, ,R R RR Rτ τ
G

 Receiver’s slant range vector 

( )0 0, ,T R RR Rτ τ
G

 Transmitter’s slant range vector (given in the receiver’s coordinates) 

( )0 0,R RRσ τ  Backscattering coefficient (given in the receiver’s coordinates) 

lG  Point target reference spectrum 

0f    Range carrier frequency 

( )lS f    Spectrum of the transmitted chirp signal 

Rτ� , Tτ�    Receiver’s and transmitter’s points of stationary phase 
τ�    Common bistatic point of stationary phase 

cbτ    Center of the common bistatic azimuth window 

rk    Chirp sweep rate 

Rφ , Tφ    Receiver’s and transmitter’s half phase terms 
F    Forward Fourier transformation; 

−1F    Inverse Fourier transformation; 
0a , 2a  Parameters necessary for our bistatic processing approach; 

( )d t
G

   Vectorial baseline from the transmitter to the receiver; 

azB , rB   Azimuth and range bandwidths 

dcfτ    Azimuth Doppler centroid 

et    Time sampling variable 

ef    Frequency sampling variable 
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1 Introduction, Overview and Structure of the Document 
Bistatic SAR systems, as opposed to monostatic SAR constellations, offer considerable 

degrees of freedom in choosing transmitter (illuminator) and receiver (passive) motion 
trajectories. The increased flexibility of the design of bistatic SAR missions, however, pays a 
price with an increased complexity of the processing. 

In chapter 2 we will describe the concept of Synthetic Aperture Radar (SAR). We will 
make a short excursion in the history of SAR and discuss the benefits and possibilities of 
conventional SAR systems. We will then explain the concept of bistatic SAR and its 
corresponding benefits. Some airborne bistatic experiments were already successfully 
accomplished; we will discuss them and consider the future spaceborne bistatic missions like 
TanDEM-X, Interferometric Cartwheel, Interferometric Pendulum and hybrid bistatic 
experiments.  

A big part of our work is based on the bistatic point target reference spectrum (BPTRS), 
derived at ZESS by Prof. Loffeld and our SAR team [1]. We will make a detailed derivation 
of the bistatic formula in chapter 3.  

In chapter 4 we will interpret the BPTRS. We will explain in detail terms of BPTRS, 
such as bistatic phase term, quasi-monostatic phase term, amplitude term, etc. Monostatic 
case can be considered as the particular bistatic case when the transmitter and the receiver 
are located on the same platform. We will prove that, for monostatic case, the bistatic point 
target reference spectrum converges to the monostatic point target reference spectrum. In the 
same chapter we will interpret the different terms of bistatic point target reference spectrum 
for different bistatic configurations like general bistatic case, translationally invariant 
configuration and constant offset configuration. We will prove that, for constant offset 
configuration, our bistatic point target reference spectrum converges to the so called 
‘Rocca’s Smile’. 

In deriving BPTRS, some approximations were used. Therefore, the detection of the 
borders of the validity for bistatic point target reference spectrum is an important issue. In 
chapter 5 we will derive the constraints of validity. We will derive four constraints: two for 
the transmitter side and two for the receiver side. We will demonstrate the constraints, 
considering the particular bistatic configurations, and bring some simulation results.  

In chapter 6 we will demonstrate the performance of BPTRS by focusing single and 
groups of point targets. We do this initially for a single point target. For this reason, we have 
created the bistatic simulator. Assuming straight line trajectories, we can generate arbitrary 
bistatic configuration. Using a bistatic simulator, we will simulate different bistatic 
configurations and generate the raw data for scenes with single point and groups of point 
targets. Later, we will focus them by the BPTRS.  

Bistatic focusing for groups of point targets will be extended analytically for the 
complete scene. In our bistatic processing we will use some modules of monostatic SAR 
process developed at ZESS1. The monostatic processing itself is based on the Inverse Scaling 
algorithm. We will explain the monostatic Inverse Scaling algorithm in chapter 7. 

In chapter 8 we will develop the focusing algorithms for different bistatic configurations. 
We will start with the simplest cases of azimuth time invariant configurations. Here the 
processing is considerably simplified in comparison with the general case, where the 
transmitter and the receiver move at different velocities in different directions. The first 
configuration of this class is Tandem configuration. We will solve Tandem spaceborne 
configuration analytically and solve Tandem airborne configuration by dividing the complete 
scene in range blocks. The next configuration we will consider is translationally invariant 

                                                 
1 Zentrum für Sensorsysteme (Center for Sensorsystems) 
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configuration. We will develop the algorithm for the translationally invariant case and bring 
the focusing results for the simulated and the real bistatic raw data. In the general case, the 
processing does not only depend on range, but also on azimuth time. This problem will be 
addressed using a 2D Inverse Scaling approach. The processing results will be demonstrated 
using simulated raw data.  

The first results of measuring the bistatic processed image quality will be given in 
chapter 9. At first we will determine the directions of range and azimuth lines. The angles 
will be determined with the Radon transform. Then we will estimate the bistatic image 
quality by calculating range and azimuth resolutions, peak maximums and integrated and 
side lob ratios. 

Our bistatic processing algorithm will be implemented in frequency domain. We will 
observe that in the general bistatic case the processing additionally azimuth time variant, 
causing the azimuth frequency scaling. In this respect, the 2D Inverse Scaling approach 
could be very successful. In chapter 10 we will explain the bases of 2D Inverse Scaling 
algorithm presented by Prof. Loffeld in [16]. 

The results and summary of the work considered in the scope of this PhD research will 
be analyzed in chapter 11. 
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2 Conventional Monostatic SAR and Bistatic SAR, 
Experiments and Upcoming Missions 

In this chapter we introduce Synthetic Aperture Radar Systems. First, we will explain the 
principle and the benefits of conventional monostatic SAR. Then we will describe the 
bistatic SAR configuration. Such a configuration brings more benefits in comparison with 
monostatic SAR systems. We will discuss different advantages and disadvantages. Later, we 
will consider possible bistatic spaceborne configurations like Interferometric Cartwheel and 
Interferometric Pendulum.  

One of the future bistatic missions will be a hybrid bistatic experiment using a satellite as 
the transmitter and an airplane for the receiver. TerraSAR, launched by DLR on 15 June 
2007, will be used as the transmitter, and FGAN’s airplane PAMIR will operate as the 
receiver.  

In our bistatic processing approach, the different kinds of bistatic constellations are 
sorted in three subgroups: Tandem case, translationally invariant case and general case. We 
will explain all these bistatic constellations. 

 

2.1 Conventional Monostatic SAR 
Radar has been employed for electronic observance since World War II, and since that 

time, it has experienced recognizable technological boosts. Conventional radar systems were 
used to detect the distance and velocity of the moving object. Different processing 
approaches improved the possibilities of radar systems. One of the applications of radar 
systems is Synthetic Aperture Radar (SAR). In 1953, Carl A. Wiley was the first to publish 
the basic SAR principles in his work titled ‘Pulsed Doppler Radar and Means’. SAR is an 
image processing method based on signal processing, in which the satellite or airplanes are 
used to carry transmitting and receiving antennas. It generates photographic images (similar 
to maps) of the different scenes of the Earth and, by comparing the images to those from 
conventional radar systems, increases the geometrical resolution dramatically. Reflective 
features of the individual objects are rendered with grey tones or with colors. 

In optical imaging, the sun is used as the radiation source. In SAR systems, the 
transmitting system, located on a moving satellite or an airplane, is used as the radiation 
source. Received signals are not ready images, only data. By means of appropriate 
processing, the raw data can be transformed to a SAR image. A benefit of the SAR system is 
that it can give unrestricted service irrespective of solar radiation and time of day. 
Furthermore, the wavelengths of microwave transmitted signals are selected in a way such 
that attenuation of waves in the atmosphere is minimized. The resonance frequencies of 
molecules in the atmosphere are not in the bandwidth of the transmitted signal. This means 
that SAR can be used in any weather condition, even if the transmitting system is flying in 
deep clouds. 

The SAR images are used for different types of scientific applications like geology and 
archaeology, for forestry classification and inventory of cultivation areas and for 
determination of soil humidity. Interferometric SAR gives the possibility of generating 3D 
images. Normally, a SAR image is two-dimensional, but since SAR data is complex, it 
contains phase information in addition to magnitude. By combining two or more coherent 
images of the same scene, taken from different positions, it is possible to acquire height 
information by triangulation, which can be used for 3D mapping. 
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We have an example of a SAR image in Figure 2.1. It is a fully polarimetric E-SAR 
image of Oberpfaffenhofen, including the DLR facilities in the image center. The image is 
obtained from two dual-polarized SAR systems working in C-band. 

 

 
Figure 2.1. Fully polarimetric E-SAR image of Oberpfaffenhofen (Courtesy of DLR - 

German Aerospace Center).  
Different polarizations are colored as HH-green, HV-red, VV-blue. 

 

2.2 Benefits of Bistatic and Multistatic SAR in Comparison with 
Monostatic SAR 

In conventional monostatic missions, the transmitter and receiver are located on the same 
carrier. In the last decade, bistatic and multistatic SAR systems became very attractive. They 
give additional benefits, such as flexibility, reduced vulnerability in military applications, 
cost reduction, increased resolution by combining the images taken from different sensors, 
etc. All these benefits come at the expense of increased complexity.  

Bistatic radar is not a new concept, and its fundamental principles were demonstrated 
many years ago [64], even before development of operational monostatic radar. However, 
the interest in bistatic radar has dropped since the invention and demonstration of the 
monostatic radar after 1930. Most of the users were fascinated with the radar operated from 
the single site. Since that time, the bistatic radar has been rediscovered several times, mainly 
for military applications, such as for a precise target location or receiver camouflage. Only 
recently have the bi- and multistatic radar systems attracted interest with regard to SAR, and 
a number of bistatic and multistatic systems are under development. Proposed multistatic 
systems can be divided into fully and semi-active configurations. Most of the thorough 
overview of bi- and multistatic missions is given in [44].  
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A B
 

Figure 2.2. /A/ Fully active multistatic constellation; /B/ semi active multistatic system. 
 

In a fully active configuration, each radar has both transmitter and receiver capabilities. 
Each individual mobile sensor is a transmitter and a receiver at the same time, enabling 
individual SAR recording and, additionally, taking part in bistatic SAR. Different bistatic 
SAR combinations are possible. Semi-active radar systems combine one active illuminator 
and one or more passive receivers, as shown in Figure 2.2-B. An example of such a system is 
the Interferometric Cartwheel proposed in [49] and the Interferometric Pendulum proposed 
by DLR1.  

Distributed functionality in bi- and multistatic SAR allows a natural separation of radar 
payloads and, therefore, will strongly support the use of small, low cost satellites in the 
future. For example, the deployable antennas and reduced power demands of passive 
receivers enable the reduction of system costs. The satellites’ constellations will allow 
having a modular design, re-using major building blocks, and short development time, 
increasing flexibility and reducing costs. Bi- and multistatic configurations in highly 
reconfigurable and scalable satellite configurations will be used for a broad spectrum of 
remote sensing applications. In the following section, we will consider the potential benefits 
of bi- and multistatic SAR. 

 

2.2.1 Frequent Monitoring of the Same Scene 
Users very often need to have continual time access to up-to-date SAR data of some 

scene of interest. The revisit times of current spaceborne SAR sensors range from several 
days to several weeks. This time is not sufficient for important applications such as a traffic 
monitoring, risk and disaster management or security. One promising approach in this 
respect could be the use of multiple mini satellites in conjunction with a geostationary 
illuminator. This kind of system allows a systematic reduction of the revisit times, as well as 
an upgrade to other imaging modes like cross-track interferometry. The multiple mini 
receivers share one illuminator, thereby reducing the overall costs of each complete mission.  
 
 
                                                 

1 Deutsches Zentrum für Luft- und Raumfahrt (Germany Aerospace Center) 
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Figure 2.3. Frequent monitoring of the same scene with a geo-stationary illuminator and low 

Earth orbit receivers  
 

2.2.2 Bistatic Observation 
Bistatic SAR imaging provides additional observations for the extraction of scene and 

target parameters. Bistatic data may be combined with monostatic data for multi-angle 
observations. The segmentation and classification of radar images is expected to improve by 
comparing the spatial statistics of mono- and bistatic scattering coefficients. Multi-angle 
observations in polarimetric configuration will allow the quantitative estimation of important 
bio- and geophysical parameters of the Earth’s surface and its vegetation cover. The 
increased bistatic scattering parameters of the Earth’s geometry may also enhance the 
radiometric sensitivity of the bistatic radar. Furthermore, because of reduced retro-reflector 
effects for urban areas at large bistatic angles, we can improve the detection ability of low 
intensity scattered signals in comparison with monostatic images. Additionally, potential 
arises from a combined mono- and bistatic range and Doppler evaluation for target 
localization and velocity estimation, measurements of ocean wave spectra, analysis of 
bistatic scattering water surfaces, atmospheric measurements, stereogrammetic applications, 
etc.  
 

2.2.3 Bi-, Multistatic Single Pass Interferometry  
SAR interferometry is a very precise technique for extracting important bio- and 

geophysical parameters from information about the Earth’s surface. However, because of 
temporal de-correlation and atmospheric distortions, conventional repeat pass interferometry 
is not always very efficient. Limitations caused by such problems can be avoided with a 
transition to bi- and multistatic systems. These systems offer a natural way to perform a 
single pass interferometry. Satellite formations enable a flexible imaging geometry with 
large baselines, thereby providing the possibility to significantly increase the interferometric 
performance for applications like DEM1 generation, in comparison to a single platform 
system like SRTM2. Single pass interferometry can be implemented either in a semi-active 

                                                 
1 Digital Elevation Model 
2 Shuttle Radar Topography Mission 



Conventional Monostatic SAR and Bistatic SAR, Experiments and Upcoming Missions 16 
 

 

or a fully active way. Fully active systems generally have a higher sensitivity and flexibility, 
have fewer tendencies to ambiguities and enable easier phase synchronization (as in a ping-
pong mode with alternating transmitter or by a direct exchange of radar pulses). 
Furthermore, they also provide a monostatic mode as a natural fallback solution in case of 
problems with orbit control or instrument synchronization. On the other hand, semi-active 
radar constellations have a significant cost advantage and provide more interferometric 
baselines per monetary unit. Excellent performance may be achieved by selecting small and 
large baselines to resolve phase ambiguities. Additionally, multiple baseline interferometry 
has the potential to solve the problems that arise from volume de-correlation in vegetated 
areas. Another very promising opportunity is along-track interferometry, e.g. for the 
measurement of ice drift and ocean currents. 
 

2.2.4 Large Aperture Imagery with Bi-, Multistatic Distributed Sensors  
A constellation of multiple radar satellites recording the signals from a common 

illuminated footprint can also be regarded as a large aperture with distributed sub-aperture 
elements. Any linear combination of multiple receivers can be treated as an antenna array. 
The opportunity to form very narrow beams allows the use of a space-time variant approach 
to suppress range and azimuth ambiguities. This will in turn lead to a reduction of the 
required antenna size for each individual receiver, thereby enabling cost-effective and 
powerful SAR missions with broad coverage and high resolution.  

Distributed aperture systems enable highly accurate velocity measurements of moving 
objects on the ground, and they most probably can overcome the problem of blindness 
against certain directions of target motion. Another opportunity they offer is performing 
precise target localization. A coherent combination of multiple SAR images acquired from 
slightly different view angles will improve the spatial resolution. Super resolution techniques 
may again be regarded as a formation of narrow beams, which is complementary to the 
ambiguity suppression mentioned above. Super resolution in range direction has the potential 
to overcome the bandwidth limitations for spaceborne SAR sensors available by 
international frequency regulations. 
 

2.3 Classification of Bistatic Configurations 
To rank the complexity of bistatic configurations, we divide the bistatic constellations 

into categories. From now on, we will use the definitions introduced in [29]. For a special 
case of when the transmitter and the receiver are located on the same carrier, we will have a 
monostatic mission. In this situation, the transmitter and the receiver move with the same 
velocity vectors. The monostatic configuration is shown in Figure 2.4: 
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Earth surface

 
Figure 2.4. Monostatic SAR 

 
Another type of bistatic constellation is the Tandem Case. The transmitter and the 

receiver move with equal velocities across the same trajectory. The offset between them is 
therefore kept constant during the acquisition. That is why this particular configuration is 
often referred as a ‘stationary offset configuration’ [27]. This case is shown in Figure 2.5: 

 

Tv
G

Rv
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Transmitter

Receiver

Earth surface

 
Figure 2.5. Tandem configuration 

 
The next bistatic configuration, if we increase the complexity, is the case in which 

transmitter and receiver move across parallel tracks. Their velocity vectors are constant and 
equal; therefore, the baseline between them is constant as well. This configuration will be 
named ‘translationally invariant configuration’. It is shown in Figure 2.6. 
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Figure 2.6. Translationally invariant configuration  

 
The last configuration we need to describe is the general case. Here, the transmitter and 

the receiver move along non-parallel trajectories with non-equal velocities. During the flight 
we assume that the velocities of transmitter and receiver do not change and that their tracks 
form straight lines. This configuration is shown in Figure 2.7: 
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Receiver
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Figure 2.7. General case configuration 

 

2.4 Upcoming Bistatic Constellations  
D. Ausherman was first who published in [78] different ideas of bistatic focusing and 

later J. L. Auterman presented in first bistatic SAR images from the first airborne bistatic 
SAR experiment in [79].  

Because of the increased interest in bistatic SAR imaginery, some airborne bistatic 
missions have been successfully accomplished recently. FGAN and DLR have performed 
airborne experiments using the translationally invariant configuration. The description of 
these experiments can be found in [29],[30],[31] and [68]. In the following section, we will 
describe some bistatic configurations which are planned to appear soon. 

 

2.4.1 Hybrid Bistatic Mission 
Very recently, hybrid Spaceborne-Airborne systems have attracted considerable interest 

[22], [23]. This is a revolutionary idea in bistatic SAR imagery. Using a transmitter located 
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on a satellite and a receiver located on an airplane will record the SAR raw data for further 
processing. This idea was first published in [77] by R. Goldstein. The principle of operation 
is shown schematically in Figure 2.8. 

TvG

RvG

Transmitter

Receiver

 
Figure 2.8. Hybrid bistatic experiment 

 
In hybrid missions, SAR illuminator possesses an azimuth antenna footprint extension 

much bigger than the airplane. Therefore, it is relatively easy to arrange a common footprint. 
One of the realizations of this configuration will be the experiment that uses TerraSAR-X as 
a transmitter and FGAN’s PAMIR system as a receiver. TerraSAR-X is an advanced, high 
resolution X-Band synthetic aperture radar system based on active phase array technology, 
which can operate in Spotlight, Stripmap and ScanSAR mode with full polarization 
capability. The TerraSAR-X instrument is operated at 9.65 GHz with selectable chirp 
bandwidth up to 300 MHz. 

 
Table 2.1. Transmitter and receiver parameters of hybrid bistatic experiment 

Parameter TerraSAR PAMIR 
Height (flat Earth assumed) 514 km 3000 m 
Relative velocity 7600 m/s 100 m/s 
Azimuth beam width 0.33° 2.9° 
Antenna elevation angle 2.3° 15° 
Maximum steering angle ±0.75° ±45° 
PRF 4KHz 4KHz 
Carrier frequency 9.65GHz 9.65GHz 
Transmitter bandwidth 150MHz 150MHz 

 
Table 2.1 shows the parameters of the TerraSAR and the PAMIR system. Because of the 

huge difference between the velocities of the satellite and the airplane, normal stripmap 
mode is not useful in this case. The common recorded scene will be very small. By operating 
the transmitter in a sliding spotlight or spotlight mode and using antenna steering at the 
receiver side, a useful scene extension in the azimuth direction can be achieved.  

We have done some simulations distributing the point targets (PT) at different locations 
in the scene. The individual azimuth bandwidth for each point target is around 800 Hz. For 
the complete azimuth bandwidth, we observed a frequency band between -2500Hz and 
+2500Hz. (This is due to a high azimuth time varying squint angle of the satellite during the 
steering.) As the PRF is around 4 KHz, we have aliasing problems in azimuth direction. A 
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bandwidth of 800 MHz raises hope that this mission will give us sufficient resolution in 
azimuth direction. In [33] the authors give an estimate for the achievable azimuth and range 
resolution. In the case of the TerraSAR-Pamir experiment, the range resolution is 84 cm, and 
the lateral resolution is 1.06 m.  
 

2.4.2 TanDEM-X Mission 
TanDEM-X is a mission proposal for a TerraSAR-X add-on satellite for high resolution 

single-pass interferometry (for more details, please see references [40],[45],[46]). This 
mission proposal has been selected for Phase A study within the scope of a Call for 
Proposals for another German Earth Observation Mission (to be launched in 2009). The 
mission’s goal is the generation of a global Digital Elevation Model (DEM) with an accuracy 
corresponding to the DTED-3 specifications (12 m positing, 2 m relative height accuracy for 
flat terrain). This goal will be achieved by means of a second TerraSAR-X satellite 
(TanDEM-X) flying in a close orbit configuration with TerraSAR-X. This experiment is the 
first bistatic SAR spaceborne mission. 

DEM generation will be performed in two different modes. The first mode uses bistatic 
interferometric SAR in translationally invariant configuration. The same scene will be 
measured simultaneously by two receivers: one operating in monostatic mode and the second 
one in bistatic mode. Simulations measurement avoids temporal de-correlation. Along-track 
baseline should be less than 2 km, and if we want to achieve high resolution DEMs, then the 
baseline should be less than 1 km. This mode is sketched in Figure 2.9.A.  

A secondary DEM generation mode is the pursuit monostatic (Interferometric Synthetic 
Aperture Radar) InSAR mode (Figure 2.9.B), where two satellites are operated 
independently, avoiding the need of synchronization. The temporal de-correlation is still 
small for most of terrain types except for water and vegetation. The interferometric height 
sensitivity doubles with respect to bistatic operation, meaning that the baseline determination 
has to be more accurate. 

 

Transmitter

Transmitter
Transmitter

Receiver
Receiver

Receiver

Receiver

A B 
Figure 2.9. TanDEM-X operational modes: /A/ bistatic InSAR, /B/ monostatic InSAR 

 

2.4.3 Interferometric Cartwheel and Pendulum 
A very interesting multistatic SAR configuration was proposed in [49] by D. Massonet 

from CNES1. This concept was named as Interferometric Cartwheel. Quasi-simultaneous 
radar images can be produced by a low-cost system using a set of passive receivers onboard 

                                                 
1 Centers National d’Etudes Spatiales (French Space Agency) 
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a constellation of microsatellites in a special orbital configuration. The combination of these 
images can improve the final resolution in range and azimuth and systematically produce 
across-track and along-track interferometric data. 

The Interferometric Cartwheel consists of one satellite that carries the transmitter and 
three small satellites that rotate around the Earth, as shown in Figure 2.10.A. All satellites 
move around the Earth with very similar orbits. The microsatellites have the same orbit 
plane, the same orbit eccentricity (slightly different from the transmitter eccentricity) and the 
same half axes, therefore they get the same roundtrip time.  

Perigee points of the microsatellites are located on the circle in the orbit plane and divide 
this circle in three equal angles. The times of perigee for different micro satellites are shifted 
in respect to each other in a way such that they are permanently in different parts of their 
individual orbits while rotating around Earth but are still always spatially close to each other.  

The microsatellites rotate on a virtual ellipse (Figure 2.10.B), creating very stable 
horizontal and vertical baselines (less than 8% variation during the orbit). Relative 
movement of the microsatellites to each other is similar to a wheel that rotates with a 
constant velocity around the virtual center point. On the other hand, this center point rotates 
around the Earth with relatively constant velocity. 

As an alternative to the Interferometric Cartwheel, DLR proposed a similar system 
known as Interferometric Pendulum, which has practically no orbital differences, but some 
operational differences with the Interferometric Cartwheel.  

 

A B

Radar illuminator
e.g. ENVISAT, ALOS,
TerraSAR, RadarSAT II

Radar footprint 
on the earth

Reference orbit

Receive only Micro satellites
in ‘Cartwheel’ configuration

 
Figure 2.10. Interferometric Cartwheel 

 

2.5 Bistatic Processing 
In the previous section we considered bistatic and multistatic configurations and showed 

the benefits that they can bring in comparison to monostatic SAR. However, all these 
advantages come at the expense of increased processing complexity in the same comparison.  

Two main families of algorithms exist for the monostatic SAR: algorithms implemented 
in the time domain (for example back projection algorithm), and algorithms operating in 
frequency domain. Time domain algorithms use interpolation; therefore, they are less 
computationally effective. Usually, time domain algorithms are more precise than frequency 
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domain algorithms; they are more flexible, and they can handle time-varying geometries. 
However, they have one big disadvantage: they are burdensome and slow.  

The frequency domain algorithms perform the azimuth compression by using the so-
called ‘Stolt-interpolation’ [73]. The usage of Fourier techniques makes the frequency 
domain algorithms efficient and easy to implement on current computer systems. The 
frequency domain algorithms themselves are classified in two classes. The first class consists 
of the so-called range-Doppler algorithms, and the second class consists of algorithms 
implemented in the range frequency/azimuth frequency domain. The most prominent 
members of the range-Doppler algorithm are the Chirp Scaling algorithm [38],[41], the 
Extended Chirp Scaling algorithm [39], the Non-Linear Chirp Scaling algorithm [74] and ω-
k algorithms. One representative of the algorithms operating in range frequency-Doppler 
frequency domains is the Inverse Scaled algorithm [3],[4]. The performance of these 
algorithms for monostatic configuration is well known and widely discussed in scientific 
literature [38],[37],[3],[71]. 

In the bistatic case, the situation is more complex when compared to the monostatic case. 
In the monostatic case, the range history has a hyperbolic shape; in the bistatic case, the 
bistatic phase is the sum of the corresponding phase histories of the transmitter and the 
receiver. Therefore, the total phase history in the bistatic case no longer has the shape of a 
hyperbola – its shape is slightly flattened (but only in the small bistatic angle 
configurations), so we speak about a flat-top hyperbola. Hence, it is not possible to process 
the bistatic raw data with conventional monostatic processors. 

The main goal of the current work is the derivation of bistatic focusing algorithms.  
One of the first approaches to solve bistatic problem was given by Prof. F. Rocca and the 

team of the Milan Polytechnic University [27]. The bistatic acquisitions are transformed into 
monostatic ones by applying what is called the ‘Smile’ operator. The ‘Smile’ is equivalent to 
the Dip Move Out operator known in seismic literature. In a preprocessing step, first ranged 
compressed raw data is convolved with ‘Smile’. With this operation, the bistatic problem is 
transformed into conventional monostatic processing. In SAR literature, the ‘Smile’ was first 
described using geometrical considerations and later transferred into microwave terms. The 
derivations were done for a Tandem configuration, with the transmitter and the receiver 
following each other with a fixed offset along a straight line. It was shown in [27] that the 
‘Smile’ is a slowly varying short operator depending on range time, but in azimuth it is time 
invariant (only in the Tandem Case). Later in [28], the team tried to extend the ‘Smile’ 
concept for the general case, where the transmitter and the receiver move with different 
trajectories and different velocity vectors. It was shown that the ‘Smile’ extension for the 
general case is conceptually possible, but the point target reference spectrum was not given 
in an analytical way.  

Very similar to the ‘Smile’ concept is the bistatic concept, derived by Prof. Loffeld and 
our bistatic team at ZESS1. It is based on the bistatic point target reference spectrum 
[1],[2],[9],[10],[11],[12]. The formula is valid for the general case. Analogous to the ‘Smile’ 
concept, we have the ‘Bistatic deformation term’. For the general case, this term is range and 
azimuth time-variant. We observed that the ‘Bistatic deformation term’ is slowly range and 
azimuth time-variant, and it is a shorter operator than the ‘Smile’. The detailed 
characteristics of the bistatic point target reference spectrum will be considered in the 
following chapters. 

Prof. Ender and the SAR team of FGAN2 proposed a bistatic approach based on the ω-k 
algorithm given in [29],[30]. The algorithm was introduced for the translationally invariant 

                                                 
1 Zentrum für Sensorsysteme (Center for Sensorsystems) 
2 Forschungsgesellschaft für Angewandte Naturwissenschaften (German research establishment for applied natural sciences) 
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configurations. Later, FGAN performed a real bistatic SAR experiment. The data were 
successfully processed by FGAN [31],[32] and our SAR team at ZESS [19],[20] in parallel. 

Prof. R. Bamler from DLR proposed bistatic processing using numerical transfer 
functions [35]. He proposed that this algorithm would solve the focusing for translationally 
invariant configurations. It calculates a numerical transfer function in order to correct the 
non-hyperbolic curvature of the bistatic phase for each range line. This operation is 
equivalent to the compensation using our ‘Bistatic Deformation Term’, or the convolution 
with ‘Rocca’s Smile’ operator. It is very interesting to note that the work given in [35] 
showed that the assumption of the equivalent monostatic flight path in bistatic SAR is not 
sufficient. It is thus impossible to convert the bistatic SAR processing problem to an 
imagined monostatic trajectory, where monostatic trajectory is average of the transmitter and 
the receiver trajectories. 

The SAR team of University of British Columbia from Canada, with supervision of Prof. 
Cumming and Prof. F. Wong, proposed a Non-Linear Chirp Scaling algorithm to solve the 
bistatic problem [74],[75],[76]. The approach is based on the Chirp Scaling algorithm, but 
uses the high order terms of Taylor series expansion. The high order terms were initially 
considered by introducing the ‘Perturbation function’ and later the ‘Power series inversion’.  

We would like to remark on one very important point in the derivation of the bistatic 
processing algorithms mentioned above. The conversion of the point target response function 
from azimuth time to azimuth frequency domain is normally carried out by the Method of 
the Stationary Phase (MSP). This method can be used if we know the exact location of the 
point of the stationary phase. The bistatic phase history is the sum of the transmitter and the 
receiver phase histories. Therefore, the calculation of the point of stationary phase for 
bistatic configurations is not as trivial as in monostatic case, which is the source of most 
problems in bistatic processing. 
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3 Point Target Reference Spectrum for Bistatic Configurations 
Algorithms exist which are formulated and work in a space/time domain, a 

space/Doppler or in a 2D frequency domain. Our bistatic processor is implemented in the 
range frequency, Doppler frequency domain. To develop the processing algorithm, the 
spectrum of the entire SAR scene has to be derived. Since the complete scene is the integral 
over all individual point target reference spectra, the 2D point target spectrum must be 
derived first.  

While in the monostatic SAR case the geometry is readily modeled and point target 
response functions are evaluated and carried to the frequency domain by stationary phase 
techniques, the situation is slightly more complex in the bistatic case. The outcoming range 
and phase history of any PT consists of the individual range history contributions of the 
transmitter and the receiver, where these contributions are variable due to the relative motion 
between the transmitter (illuminator) and the receiver. Furthermore, the classical monostatic 
correspondence between the azimuth frequency and the azimuth time, being closely related 
to a certain point in the orbit, is broken up, since two motion trajectories must be considered.  

 

3.1 Modeling the Bistatic Geometry 
In the following, we use the Born approximation, in which multiple scattering is 

neglected. In other words, we assume that each reflector acts independently from the others 
as a point scatter. In the bistatic case, the transmitter and the receiver are located on different 
platforms, and they move at different velocities in different directions. The geometry is 
shown in Figure 3.1. τ  denotes the azimuth time (in SAR, it is often called slow time), 0τ  is 
the azimuth time instant when the transmitter or the receiver ‘sees’ the point target at the 
closest distance (the point of closest approach, PCA). The indices ‘T’ and ‘R’ denote the 
transmitter and the receiver values respectively. The position ( )0 0,R RP R τ  of the Point 
target (PT) is implicitly specified by the time instant R0τ  when it is seen perpendicularly 

from the receiver track and by the corresponding slant range ( )0 0 00 , ,R R RR RR R Rτ τ=
G

. Hence, 

( )0 0,R RR τ  are the receiver’s coordinates in our bistatic approach. Likewise we could also 
express the point target in the transmitter terms by specifying the time 0Tτ , when the point 
target is seen perpendicularly from the transmitter’s track at the slant range 

( )0 0 00 , ,T T TT TR R Rτ τ=
G

. It should be noted that ( )0 0,R RR τ  determines the two point targets on 
the different sides of flying trajectory.  

For simplicity we assume that the surface is flat.  
The bistatic geometry for the arbitrary case is shown in Figure 3.1. For the receiver’s 

slant range vector, the following 3D vector equation is valid at azimuth time τ : 

( ) ( ) ( )

( )

0 0 0 0 0 0

0 0 0

, , , ,
:

, ,

R R R R R R R R R

R R R R R

R R R R v
where

R R v

τ τ τ τ τ τ

τ τ

= − ⋅ −

⊥

G G G

G G
 (3.1) 

 

( )0 0 0, ,R R R RR Rτ τ
G

 is the slant range vector from the receiver to the PT at the point of closest 
approach and it is orthogonal to the receiver’s velocity. For convenience, the velocities are 
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assumed to be constant. 0Rτ  is the azimuth time, when the PT is seen perpendicularly from 
the receiver’s track. Likewise we have the following for the transmitter’s range history: 

( ) ( ) ( )

( )

0 0 0 0 0 0

0 0 0

, , , ,
:

, ,

T T T T T T T T T

T T T T T

R R R R v
where

R R v

τ τ τ τ τ τ

τ τ

= − ⋅ −

⊥

G G G

G G
 (3.2) 
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Figure 3.1. Bistatic geometry 
 

( )0 0 0, ,T T T TR Rτ τ
G

 is the slant range vector from the transmitter to the PT at the azimuth time 

0Tτ . 0Tτ  is the azimuth time, when the PT is seen perpendicularly from the receiver’s track. 
These vectorial relations are better seen in Figure 3.2. 
 

 
 

Figure 3.2. The vectorial relation in the bistatic configuration 
 

In order to obtain the modulus of the slant ranges, we must square the vectorial 
expressions (3.1) and (3.2). 
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The transmitter’s motion is related to the receiver’s motion by:  

( ) ( ) ( ) ( )0 0 0 0 0 0 0, , , ,T R R R R R R T R RR R R R v dτ τ τ τ τ τ τ= − ⋅ − +
GG G G

 (3.4) 
 

where ( )d τ
G

 is a vector from the transmitter to the receiver in Figure 3.1. In particular, 
)()(eR)( 000 RRR Tcd τττ

GGG
−=  is the vectorial distance between the transmitter and the receiver at 

the receiver’s PCA. At the azimuth time 0Rτ , when the receiver is in its point of closest 
approach, we have:  

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0 0 0

22

0 0 0 0 0 0 0

, , , ,
:

, , , ,

T R R R R R R R R

T R R R R R R R R

R R R R d
and

R R R R d

τ τ τ τ τ

τ τ τ τ τ

= +

= +

GG G

GG G
 (3.5) 

 

Now, evaluating (3.3) at the time instant 0Rτ  and using the result of (3.5), we obtain: 

( ) ( ) ( ) ( )
22 22 2

0 0 0 0 0 0 0 0 0 0, , , ,T T T R R R R R R R T R TR R R R R d vτ τ τ τ τ τ τ= = + − ⋅ −
GG G

 (3.6) 
 

It should be mentioned, that ( )0 0 0, ,T T R RR Rτ τ
G

 and ( )0 0 0, ,T T T TR Rτ τ
G

 are used 

interchangeably. The reason is that ( )0 0,R RR τ  are coordinates, and ( )0 0 0, ,T T R RR Rτ τ
G

 actually 

means that the receiver’s slant range and azimuth time at the PCA are ( )0 0,R RR τ . The 

corresponding slant range and azimuth times of transmitter are ( )0 0,T TR τ . 
Dividing (3.6) by the squared slant range at the receiver’s PCA and using the relation 

RRRRRRRRR RRRRe 0000000 /),,(),,( ττττ
GG

= , the following is obtained: 
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which will be an important parameter in our bistatic processing approach. 
 

3.1.1 Slant Range Histories 
For the complete bistatic scalar range history, we then have: 

( ) ( ) ( )0 0 0 0 0 0, , , , , ,g R R R R R T R RR R R R R Rτ τ τ τ τ τ= +  (3.8) 
 

indicating that the transmitter (illuminator) and the receiver contribute to the overall slant 
range histories individually and independently.  
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Table 3.1. Simulation parameters 
Parameter Symbol Value 
Carrier Frequency 

0f  10 GHz 

Receiver Height 
Rh  1000 m 

Transmitter Height 
Th  1035 m 

Receiver Velocity 
Rv  90 ms-1 

Transmitter Velocity 
Tv  80 ms-1 

Slant Range Resolution  0.1 m 
Azimuth Resolution (nom)  0.1 m 
Azimuth Time of the Receiver’s Point of Closest Approach 

0Rτ  1 s 
Azimuth Center Time of the Common Window 

cbτ  1 s 
Receiver Slant Range at the Point of Closest Approach 

0RR  1800 m 
Angle between the Transmitter’s and the Receiver’s Velocity 
Vector 

 1° 

Time Difference Parameter 0 0 0T Ra τ τ= −  0a  14.82 s 

Slant Range Ratio Parameter 0
2

0

T

R

Ra
R

=  2a  2.125 

Doppler Centroid 
DCf  808 Hz 

Baseline Vector at the Receiver’s Azimuth Point of Closest 
Approach 

 
( )0Rd τ
G

 
2164,85
1248,88

35

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

m 

Bistatic Angle at the Receiver’s Point of closest Approach ( )0Rβ τ  25.34° 

 
Figure 3.3 shows the complete outcome of overall slant range histories over azimuth time 

for point targets at different 0RR  values. The parameters of this simulation are given in Table 
3.1.  

 
cbτ  is the center of the bistatic azimuth time window; 

0 0 0T Ra τ τ= −  is the azimuth time difference between transmitter and receiver times at 
the points of closets approach; 

0
2

0

T

R

Ra
R

=  is the ratio of the transmitter and the receiver slant ranges at the points of 

closes approach; 
0a , 2a  are two parameters that do not appear in the table accidentally. As we will see 

later, they are very important for our bistatic SAR focusing approach. 
( )0Rβ τ  is an angle with its vertex located on the point target and with its sides crossing 

the corresponding positions of the transmitter and the receiver. In this case, the angle is taken 
at the instant when the point target is at the receiver’s point of closest approach; 

The minimum slant range was subtracted in each curve for convenience. The dashed 
curve shows the receiver’s slant range history multiplied by 2. We note that the receiver’s 
azimuth time at point of closest approach is located at 1 second. 
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Figure 3.3. Bistatic slant range histories for different location of point targets, the dashed line 

shows receiver’s monostatic range history 
 

Analyzing Figure 3.3, we note that: 
 
1. The overall slant range histories lose their hyperbolic form and look different from the 

receiver’s slant range history. The reason for this is that the sum of two hyperbolas is no 
longer a hyperbola; usually the shape is flattened. That is why often it is referred to as a 
flat-top hyperbola. 

2. The azimuth points, where the overall slant range is minimum, vary with 0RR . The 
minimum of the slant range has direct connection with the point of stationary phase. So, 
the stationary points vary with slant range. 

3. The shape of the overall slant range history changes not only in scaling, but in quality. 
 

A drawback of these observations is that the bistatic overall slant range history is 
essentially different from the monostatic slant range history; hence, bistatic SAR processing 
cannot be achieved by purely monostatic approaches. 
 

3.2 Point Target Response 
In the derivation of SAR processing approaches, the pulse shaping effect by the 

transmitting and receiving channels is normally neglected. Here we assume that the received 
signal is a shifted replica of the transmitted signal weighted with a backscattering coefficient 
of a point target (PT). In the bistatic case, the signal’s travel time is the time from the 
transmitter to the scatterer plus the time from the scatterer to the receiver. This delay is 
calculated as: 

( ) ( ) ( )0 0 0 0 0 0 0, , , , , ,R R T R R R R Rt R t R t Rτ τ τ τ τ τ= +  (3.9) 
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0 0( , , )T R Rt Rτ τ  is the travel time of a signal from the transmitter to the point target, and it 

is calculated as ( ) ( )0 0
0 0

, ,
, , T R R

T R R

R R
t R

c
τ τ

τ τ = , where c  is the speed of light in a vacuum. 

In the same way, ( ) ( )0 0
0 0

, ,
, , R R R

R R R

R R
t R

c
τ τ

τ τ =  is the signal’s travel time from the 

scatterer to the receiver. With these notations, we rewrite (3.9) as: 

( ) ( ) ( )0 0 0 0
0 0 0

, , , ,
, , T R R R R R

R R

R R R R
t R

c
τ τ τ τ

τ τ
+

=  (3.10) 

The received signal response is expressed as a time-delayed replica of the amplitude-
weighted transmitted chirp signal. Since the received signal should be expressed in the 
baseband, the equivalent phase term correspondent to the delay is introduced, and the 
expression of the point target response is given as: 

( ) ( ) ( ) ( )( ) ( )0 0 0 02 , ,
0 0 0 0 0 0 0, , , , , , R Rj f t R

l R R R R cb l R Rg t R R w s t t R e π τ ττ τ σ τ τ τ τ τ − ⋅ ⋅= ⋅ − ⋅ − ⋅  (3.11) 

0 0( , )R RRσ τ  is a backscattering coefficient. In some references, it is referred to as the 
brightness of the PT. We assume that it is stationary during the acquisition. The aim of any 
SAR processor is to determine the backscattering coefficient for all PTs of the complete 
scene. t  is the bistatic range time. Very often the range time is referred as fast time. τ  is the 
azimuth time, known as slow time. ( )cbw τ τ−  is the azimuth time window. It can be 

expressed as a rectangular function: ( ) cb
cb

lb

w rect τ ττ τ
τ

⎛ ⎞−
− = ⎜ ⎟

⎝ ⎠
. In bistatic configurations, 

the common footprint is the overlap of the transmitter’s and the receiver’s footprints. cbτ  is 
the azimuth window’s center time, and lbτ  is the length of the common bistatic footprint. 
Hence, ( )cbw τ τ−  determines the azimuth time when the PT is seen within the common 
bistatic footprint.  
 

3.3 Point Target Spectrum 
We want to implement the focusing processor in the frequency domain; we must 

therefore transform equation (3.11) to the Fourier domain. At first, we perform the Fourier 
transformation over the range time t . The corresponding frequency variable is f . After the 
Fourier transformation, we get: 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 02 , , 2 , ,
0 0 0 0, , , , R R R Rj f t R j f t R

l R R R R cb lG f R R w S f e eπ τ τ π τ ττ τ σ τ τ τ − ⋅ ⋅ − ⋅ ⋅= ⋅ − ⋅  (3.12) 

Reordering the terms, we get: 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 02 , ,
0 0 0 0, , , , R Rj f f t R

l R R R R cb lG f R R w S f e π τ ττ τ σ τ τ τ − + ⋅= ⋅ − ⋅ ⋅  (3.13) 

We substitute the expression of ( )0 0 0, ,R Rt Rτ τ  from (3.10) into the equation above, and 
we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0
0

, , , ,
2

0 0 0 0, , , ,
R R R RR R R R

j f f
c

l R R R R cb lG f R R w S f e
τ τ τ τ

π
τ τ σ τ τ τ

+
− + ⋅

= ⋅ − ⋅ ⋅  (3.14) 
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(3.14) expresses the point target response of the signal in the range frequency azimuth 
time domain. To go one step further, we need to perform the transformation from the 
azimuth time (slow time) to the azimuth frequency (Doppler domain). The corresponding 
frequency variable is fτ . We write: 

( ) ( ) ( )

( ) ( ) ( ) ( )0 0 0 0
0

0 0 0 0

, , , ,
2 2

, , , ,
T R R R R R

l R R R R l

R R R R
j f f j fc

cb

G f R R S f

w e e dτ

τ τ τ τ
π π τ

τ τ σ τ

τ τ τ
+∞

− ⋅ + ⋅ − ⋅ ⋅

−∞

= ⋅ ⋅

⋅ − ⋅∫
 (3.15) 

 

For further calculations, we do not at the moment consider the backscattering coefficient 
and the spectrum of the chirp signal, and we only calculate the integral: 

 ( ) ( ) ( ) ( ) ( )0 0 0 0
0

, , , ,
2 2

0 0, , ,
T R R R R RR R R R

j f f j fc
R R cbI f R w e e dτ

τ τ τ τ
π π ττ τ τ τ τ

+∞
− + ⋅ −

−∞

= −∫  (3.16) 
 

For the phase term inside the integral, we introduce the notation: 

( ) ( )( )0
0 0 0 02 , , , ,b T R R R R R

f f R R R R f
c τφ π τ τ τ τ τ+⎛ ⎞= ⋅ + + ⋅⎜ ⎟

⎝ ⎠
 (3.17) 

bφ  is a bistatic phase term, and it is the sum of the equivalent phase terms of the transmitter 
and the receiver: 

( )0
0 02 , ,

2T T R R
f f fR R

c
τ τφ π τ τ+ ⋅⎛ ⎞= ⋅ +⎜ ⎟

⎝ ⎠
 

( )0
0 02 , ,

2R R R R
f f fR R

c
τ τφ π τ τ+ ⋅⎛ ⎞= ⋅ +⎜ ⎟

⎝ ⎠
 

(3.18) 
 

In the above we assume that transmitter and receiver have equal contributions to the 
overall bistatic Doppler frequency bandwidth. This assumption is true only for weak bistatic 
configurations. If we have big separation of transmitter and receiver, they will have strongly 
different Doppler frequencies and approximation of (3.18) will not be valid any more.  More 
correct derivation based on the individual phase modulations of transmitter and receiver are 
made in [25], [26]. 

The phase term in (3.16) changes very quickly, so the phasor itself oscillates with an 
increasing speed. This property allows us to solve for the types of integrals in (3.16) using 
the Method of Stationary Phase (MSP) (appendix A). In order to apply this method, the point 
of stationary phase (PSP) must first be determined. 

As a first step, we expand the individual phase contributions of the transmitter and the 
receiver around the individual points of stationary phase, Rτ~  and Tτ~ , by means of a Taylor 
series. The expansions are stopped at the second-order term. 

( ) ( ) ( ) ( ) ( )21 ..
2R R R R R R R R Rφ φ τ φ τ τ τ φ τ τ τ= + ⋅ − + ⋅ − +� ��� � � � �  

( ) ( ) ( ) ( ) ( )21 ..
2T T T T T T T T Tφ φ τ φ τ τ τ φ τ τ τ= + ⋅ − + ⋅ − +� ��� � � � �  

(3.19) 
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The definition of the PSP means that the value of the phase terms’ first derivative at this 

particular point is zero. Hence, we have 0
R

Rd
d τ τ

φ
τ =

=
�

 for the receiver and 0
T

Td
d τ τ

φ
τ =

=
�

 for the 

transmitter. Adding both phase contributions, we get: 

( ) ( ) ( ) ( ) ( ) ( )2 21 1 ..
2 2b R R R R R T T T T Tφ φ τ φ τ τ τ φ τ φ τ τ τ= + ⋅ − + + ⋅ −�� ��� � � � � �  (3.20) 

We substitute the phase term in (3.20) inside the integral in (3.16). ( ), ( )R T TRφ τ φ τ� �  are the 
phase values at the points of stationary phase, so they are constant. We extract the 
corresponding phasor out of the integral.  

( ) ( ) ( ) ( )0 0 1 0 0, , , , , ,R R T Tj
R R R RI f f R e I f f Rφ τ φ τ

τ ττ τ− ⎡ + ⎤⎣ ⎦= ⋅� �  (3.21) 

The remaining integral is given by: 

( ) ( ) ( ) ( ) ( ) ( )2 21
2

1 0 0, , , R R R T T Tj

R R cbI f f R w e d
φ τ τ τ φ τ τ τ

τ τ τ τ τ
∞ ⎡ ⎤− ⋅ − + ⋅ −⎢ ⎥⎣ ⎦

−∞

= − ⋅∫
�� ��� � � �

 (3.22) 

In summary, we have a sum of two quadratic phase terms in (3.22), each one having a 
different maximum (or minimum) at a different position of τ . Knowing that the sum of two 
quadratic terms is again a quadratic term with contributions up to the maximum of second-
order in τ .  We want to express the sum of two quadratic terms as one quadratic term 
around one common point of stationary phase of maximum (or minimum). We therefore 
introduce some shorthand notations: 

( )R Rb φ τ= �� �  and ( )T Ta φ τ= �� �  (3.23) 

Substituting these abbreviations, we obtain the following from (3.22): 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
s R R R T T T R Tb aφ τ φ τ τ τ φ τ τ τ τ τ τ τ= ⋅ − + ⋅ − = ⋅ − + ⋅ −�� ��� � � � � �  (3.24) 

The expression above is a sum of two quadratic terms, and the sum remains quadratic. 
So, we could think about regrouping the expression above around the common bistatic PSP. 
However, the individual extensions are only valid for points in the vicinity of the individual 
PSPs. The approach of decomposing the bistatic phase history into a sum of two second-
order Taylor series expansions will only be valid for azimuth times, not too far away from 
both individual points of the stationary phase. This requirement will impose some constraints 
onto the validity of the approach, which will be analyzed in a late chapter.  

Now the task is to determine the common point of minimum or maximum, which will be 
called the common bistatic PSP. If τ�  is the common bistatic PSP, then the bistatic phase 
histories’ first derivatives must vanish at this point, which gives us: 

( ) ( )2 2 0R Tb aτ τ τ τ⋅ − + ⋅ − =� � � �  (3.25) 

Solving (3.25) for τ� , we obtain: 

T Ra b
a b

τ ττ ⋅ + ⋅
=

+
� ��  (3.26) 

and resubstituting the abbreviations given in (3.23), we obtain for the PSP: 

( ) ( )
( ) ( )

T T T R R R

T T R R

φ τ τ φ τ τ
τ

φ τ φ τ
⋅ + ⋅

=
+

�� ��� � � �
� �� ��� �

 (3.27) 
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This is value of the azimuth time, where we experience a stationary phase behavior of the 
bistatic phase term. It can be interpreted as a weighted average, with the weighting factors 
being the second-order derivatives, evaluated in the corresponding points of the stationary 
phase. We will also need the value of the bistatic phase at the PSP, which will be used in the 
next chapter when we apply the MSP. We can determine this value by resubstituting (3.27) 
into (3.24).  

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2 2

2 2

2 22 2
2

2 2
2 2

2

1

s T R

T R T T R R

R T R T

R T R T

a b

a b a b a b a b
a b

a b a b

b a b a
a b

b a b a a b
a ba b

φ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ

τ τ τ τ

= ⋅ − + ⋅ −

⋅ + ⋅ − + ⋅ ⋅ + ⋅ − + ⋅⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅ ⋅ ⋅ − + ⋅ ⋅ −⎣ ⎦+

⋅ + ⋅ ⋅
= ⋅ − = ⋅ −

++

� � � � �

� � � � � �

� � � �

� � � �

 (3.28) 

Resubstituting the values of a  and b  from (3.23), we obtain for the phase value at the PSP: 

( ) ( ) ( )
( ) ( ) ( )2T T R R

s R T
T T R R

φ τ φ τ
φ τ τ τ

φ τ φ τ
⋅

= ⋅ −
+

�� ��� �
� � ��� ��� �

 (3.29) 

 Now (3.29) is inserted into equation (3.20) to get the final expression of the Taylor 
series for the bistatic phase around the bistatic PSP: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

2 2

1
2s s s

T T R R
R T T T R R

T T R R

φ τ φ τ φ τ τ τ

φ τ φ τ
τ τ φ τ φ τ τ τ

φ τ φ τ

= + ⋅ −

⋅
⎡ ⎤= ⋅ − + + ⋅ −⎣ ⎦+

��� � �

�� ��� � �� ��� � � � ��� ��� �

 (3.30) 

We proceed to solve the Fourier integral given in (3.21) by substituting the bistatic phase 
term given in (3.30). After reordering we get: 

( ) ( ) ( )( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

2

2

1
2

0 0

1
2

, , ,
T T R R

T R
R R T T T T R R

T T R R

j
j

R R

j

cb

I f f R e e

w e d

φ τ φ τ
τ τ

φ τ φ τ φ τ φ τ
τ

φ τ φ τ τ τ

τ

τ τ τ

⋅
− ⋅ −

− + +

∞
− + ⋅ −

−∞

= ⋅ ⋅

− ⋅∫

�� ��� �
� ��� ��� � � �

�� ��� � �
 (3.31) 

Here we use the MSP, thus obtaining: 

( ) ( ) ( )( )
( ) ( )
( ) ( ) ( )

( )
( ) ( )

21
2

0 0

4

, , ,

2

T T R R
T R

R R T T T T R R
j

j
R R

j

cb

T T R R

I f f R e e

w e

φ τ φ τ
τ τ

φ τ φ τ φ τ φ τ
τ

π

τ

πτ τ
φ τ φ τ

⋅
− ⋅ −

− + +

−

= ⋅ ⋅

⋅ − ⋅ ⋅
+

�� ��� �
� ��� ��� � � �

�
�� ��� �

 (3.32) 

The result of (3.32) is substituted in (3.15), and we obtain the searched point target reference 
spectrum as a final result. 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )
( ) ( )
( ) ( ) ( )2

4
0 0 0 0

1
2

2, , , ,

T T R R
T R

R R T T T T R R

j

R R R R cb l

T T R R

j
j

G f f R R w S f e

e e

π

τ

φ τ φ τ
τ τ

φ τ φ τ φ τ φ τ

πτ σ τ τ τ
φ τ φ τ

−

⋅
− ⋅ −

− + +

= ⋅ − ⋅ ⋅ ⋅ ⋅
+

⋅

�� ��� �
� ��� ��� � � �

�
�� ��� �  (3.33) 

This is the Bistatic Point Target Reference Spectrum (BPTRS). It will be essential for the 
derivation of our bistatic processing algorithms.  
 

3.4 Bistatic Point Target Reference Spectrum 
The Bistatic Point Target Reference Spectrum (BPTRS) given in (3.33) conceptually 

shows how we can combine the two monostatic phase and Doppler histories of the 
transmitter and the receiver to the BPTRS. We have to calculate the individual points of 
stationary phases, the corresponding phase arguments in those points and their second order 
phase derivatives. 

For the receiver, the calculation is straightforward and has been documented in the open 
literature [24]. When considering the transmitter, we have similar expressions as for the 
receiver, but finally we intend to express everything in terms of the receiver’s coordinates.  

 

3.4.1 General Discussion 
The quite general form of the bistatic point target reference spectrum, as expressed in 

(3.33), shows the individual contributions of the transmitter and the receiver to the bistatic 
representation: 

• ( )0 0, , ,R RG f f Rτ τ  is the point target reference spectrum. It depends on the range 
frequency f , the azimuth frequency fτ  and the position of the individual point 
target. The location of the point target (PT) in our bistatic approach is given by 
the receiver’s coordinates ( )0 0,R RR τ . 0RR  is the slant range when the PT is seen 
perpendicularly from the receiver, and 0Rτ  is the azimuth time when the receiver 
reaches the point of closest approach. 

• ( )0 0,R RRσ τ  is the backscattering coefficient expressed in the receiver’s 
coordinates. The SAR processor must determine it for the complete scene. 

• ( )cbw τ τ−�  is a rectangular window centered at cbτ . 
• cbτ  is the azimuth time at the center of the common bistatic footprint.  
• τ�  is the common bistatic point of stationary phase, given in (3.27). Since it 

depends on the azimuth (Doppler) frequency fτ , ( )cbw τ τ−�  defines the azimuth 
bandwidth as a rectangular window around the bistatic Doppler centroid 
frequency. 

• ( )lS f  is the transmitted signal’s spectrum. 

• The first exponential term, ( ) ( )( )R R T T QMj je eφ τ φ τ− + − Ψ≅� � , will be called a quasi-
monostatic term. 

• The second phase term, 
( ) ( )
( ) ( ) ( )21 1

2 2
T T R R

T R BIT T R R
j j

e e
φ τ φ τ

τ τ
φ τ φ τ

⋅
− ⋅ − − Ψ+ ≅

�� ��� �
� ��� ��� � , will be denoted as a 

bistatic deformation term. The nature of the quasi-monostatic and the bistatic 
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deformation terms, their meaning and their behavior are considered in the 
following chapters. 

 
We need to further determine the components of the bistatic point target reference 

spectrum over range and azimuth frequency, and the coordinates of our bistatic approach 
( )0 0, , ,R Rf f Rτ τ . Similar derivations are well known for the Monostatic Point Target 
Reference Spectrum (MPTRS) [24]. Here we will do the derivations for the bistatic case. We 
start with the common bistatic point of stationary phase given in (3.27).  
 

3.4.1.1 Receiver’s Contributions 

3.4.1.1.1 Receiver’s Point of Stationary Phase  
First we calculate the unknown parts related to the receiver. From (3.18) we have: 

( ) ( )0
02 , ,

2R R R R
f f fR R

c
τφ τ π τ τ τ+⎡ ⎤= ⋅ + ⋅⎢ ⎥⎣ ⎦

 (3.34) 

The first- and the second-order derivatives of the receiver’s phase terms are then: 

( ) ( )0
0 02 , ,

2R R R R
f f fR R

c
τφ τ π τ τ+⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

� �  (3.35) 

and 

( ) ( )0
0 02 , ,R R R R

f f R R
c

φ τ π τ τ+⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
�� ��  (3.36) 

Hence, in order to determine the phase and its derivatives, we need to obtain the 
corresponding receiver’s slant range RR  and its derivatives.  

As the inner product of the vector with itself is the squared modulus of the vector. We 
write for the receiver’s slant range vector RR

G
. 

( ) ( ) ( )2
0 0 0 0 0 0, , , , , ,R R R R R R R R RR R R R R Rτ τ τ τ τ τ= ⋅

G G
 (3.37) 

Differentiating the expression above, we obtain: 
( ) ( ) ( ) ( )0 0 0 0 0 0 0 02 , , , , 2 , , , ,R R R R R R R R R R R RR R R R R R R Rτ τ τ τ τ τ τ τ⋅ = ⋅

G G��  (3.38) 
and after the reordering, we get: 

( ) ( ) ( )
( )

0 0
0 0 0 0

0 0

, ,
, , , ,

, ,
R R R

R R R R R R
R R R

R R
R R R R

R R
τ τ

τ τ τ τ
τ τ

= ⋅

G
G��  (3.39) 

The derivative of the slant range vector is the negative velocity vector of the receiver. 

( )0 0, ,R R R RR R vτ τ = −
G G�  (3.40) 

Now we multiply both sides of the equation given in (3.1) by RvG  and obtain: 

( ) ( ) ( )0 0 0 0 0 0, , , ,R R R R R R R R R R R RR R v v R R v vτ τ τ τ τ τ⋅ = ⋅ − ⋅ ⋅ −
G GG G G G  (3.41) 
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At the point of closest approach, the point target is seen perpendicular to the receiver’s 
movement. Hence the receiver’s velocity vector and the slant range vector at the PCA are 
orthogonal, and we have ( )0 0 0, , 0R R R R Rv R Rτ τ⋅ =

GG . Summarizing, we obtain from (3.41): 

( ) ( )2
0 0 0, ,R R R R R Rv R R vτ τ τ τ⋅ = − ⋅ −

GG  (3.42) 

Inserting the result of (3.42) in (3.39), we get: 

( ) ( )
( ) ( ) ( )

( )
0 0 02

0 0 0 0
0 0 0 0

, ,
, , , ,

, , , ,
R R R R

R R R R R r R R R
R R R R R R

R R
R R v v e R v

R R R R
τ τ τ τ

τ τ τ τ
τ τ τ τ

−
= − ⋅ = − ⋅ = ⋅

G
G G G�  (3.43) 

To determine the second-order derivative, we differentiate (3.38) again and get: 

( ) ( ) ( )
( ) ( ) ( ) ( )

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0

, , , , , ,

, , , , , , , ,

R R R R R R R R R

R R R R R R R R R R R R

R R R R R R

R R R R R R R R

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

+ ⋅ =

⋅ + ⋅

� ��
G G G G�� � �  (3.44) 

Solving (3.44) for ( )0 0, ,R R RR Rτ τ�� , and substituting (3.43), the second-order derivative of 
the receiver’s slant range is found to be: 

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

0 0
0 0 0 0

0 0

2

0 0 0 0 0 0

0 0 0 0 0 0

, ,
, , , ,

, ,

, , , , , ,1
, , , , , ,

R R R
R R R R R R

R R R

R R R R R R R R R
R

R R R R R R R R R

R R
R R R R

R R

R R R R R R
v

R R R R R R

τ τ
τ τ τ τ

τ τ

τ τ τ τ τ τ
τ τ τ τ τ τ

= ⋅ −

⎡ ⎤ ⋅
⎢ ⎥− ⋅ +
⎢ ⎥⎣ ⎦

G
G����

G G G� � �G
 (3.45) 

Since the velocity vector is assumed constant, its derivative is zero 
( )0 0, , 0R R R RR R vτ τ = − =

GG G�� � , and using (3.42) we obtain the following simplification: 

( )
( )

( ) ( )
4 2

2
0 0 03

0 00 0

, ,
, ,, ,

R R
R R R R

R R RR R R

v vR R
R RR R

τ τ τ τ
τ ττ τ

= − ⋅ − +��  (3.46) 

Now returning to (3.35) and using the definition of the point of stationary phase (PSP), 
we have: 

( ) ( )0
0 02 , , 0

2R R R R R R
f f fR R

c
τφ τ π τ τ+⎡ ⎤= ⋅ + =⎢ ⎥⎣ ⎦

� �� �  (3.47) 

and: 

( )0
0 0, , 0

2R R R R
f f fR R

c
ττ τ+

⋅ + =� �  (3.48) 

Now we use the slant range derivative from (3.43) and get from (3.48): 

( )
( )

2
00 0

2
R R R

R R

vf f f
c R

ττ τ
τ
−+

⋅ + =
�
�

 (3.49) 

or ( ) ( )2
0

0

2R R R R R
cv f R

f fττ τ τ− ⋅ = − ⋅ ⋅
+

� �  (3.50) 
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From the above, the azimuth time difference between the PSP and the azimuth time at the 
PCA is determined as:  

( ) ( )0 2
02R R R R

R

cf R
v f fττ τ τ− = − ⋅ ⋅

+
� �  (3.51) 

We square the expression above and get: 

( ) ( )
( )

2
2 22

0 24
04

R R R R
R

cf R
v f f

ττ τ τ− = ⋅ ⋅
+

� �  (3.52) 

With some rearrangements, we have: 

( ) ( ) ( )2 2 24 2 2
0 04R R R R Rv f f f R cττ τ τ− ⋅ ⋅ + = ⋅ ⋅� �  (3.53) 

The azimuth time difference between the receiver’s PSP and the PCA determined above 
can be obtained in a different way. At the PCA, the velocity vector and the slant range 
vectors are orthogonal, so after squaring (3.1) and evaluating the expression at the receiver’s 
PSP, we obtain:  

( ) ( )2 22 2
0 0R R R R R RR R vτ τ τ= + ⋅ −� �  (3.54) 

That is equivalent to: 

( ) ( )2 22 2
0 0R R R R R Rv R Rτ τ τ⋅ − = −� �  (3.55) 

The right part of this expression is substituted in (3.53), and we get: 

( )( ) ( ) ( )2 2 22 2 2 2
0 04 R R R R R Rv R R f f f R cττ τ⋅ − ⋅ + = ⋅ ⋅� �  (3.56) 

We do some reordering: 

( ) ( )( ) ( )2 2 22 2 2 2 2
0 0 04 4R R R R RR v f f f c v R f fττ ⋅ ⋅ + − = ⋅ +�  (3.57) 

Thus, we have determined the receiver’s slant range squared value at receiver’s PCA as: 

( ) ( )

( )

22
2 0 0

2 2
2

0 24

R
R R

R

R f f
R

f cf f
v

τ

τ
⋅ +

=
+ −

�  (3.58) 

Now we take the square root and obtain: 

( )
( )

0
0 2 2

2
0 24

R R R

R

f f
R R

f cf f
v

τ

τ
+

= ⋅

+ −

�  
(3.59) 

Since the square root expression is a core element of any SAR processor, and we will 
frequently use it in further developments, the following two new symbols are introduced: 
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( ) ( )

( ) ( )

2
2

0 2

2
2

0 2

,
4

,
4

R
R

T
T

f cF f f f f
v

f cF f f f f
v

τ
τ

τ
τ

= + −

= + −
 (3.60) 

Substituting the symbols into (3.59), we obtain: 

( )
( )

0
0 1

2,
R R R

R

f f
R R

F f fτ

τ
+

= ⋅�  (3.61) 

and in an analogous way: 

( )
( )

0
0 1

2,
T T T

T

f f
R R

F f fτ

τ
+

= ⋅�  (3.62) 

Equation (3.61) is substituted in (3.51), and we express the receiver’s PSP in terms of 
( )0 0, , ,R Rf f Rτ τ  variables: 

( )
( )

0
0 0 22 2

2 0
0 2

2
4

R R R
R

R

f f cf R
v f ff cf f

v

τ

τ

τ τ
+

− = − ⋅ ⋅ ⋅
⋅ +

+ −

�  
(3.63) 

which is equivalent to: 

( )
( )

0
0 0 22 2

2 0
0 2

2
4

R R R
R

R

f f cf R
v f ff cf f

v

τ

τ

τ τ
+

= − ⋅ ⋅ ⋅
+

+ −

�  
(3.64) 

The expression above could be written in an elegant way by introducing the sgn1 function. 

( )
( )

0 0 0 22 2
2

0 2

1sgn
2

4

R R R
R

R

cf R f f
vf cf f

v

τ

τ

τ τ= + ⋅ ⋅ + ⋅ ⋅

+ −

�  
(3.65) 

Hence, the final expression of the receiver’s PSP is: 

( )
( )

0 0 0 1 2
2

1sgn
2

,
R R R

R
R

cf R f f
v

F f f
τ

τ

τ τ= − ⋅ ⋅ + ⋅ ⋅�  (3.66) 

 
 

3.4.1.1.2 Receiver’s Phase Term at the Point of Stationary Phase 
For the next step, we need to calculate the value of the second-order derivative of the 

receiver’s phase term at the Point of Stationary Phase (PSP). This value appears both in the 

                                                 

1  signum function is defined as
1, 0

sgn( ) 0, 0
1, 0

x
x x

x

>
= =

− <

⎧⎪
⎨
⎪⎩
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bistatic phasor and in the amplitude factor of the bistatic point target reference spectrum. 
From equation (3.36) we have: 

 ( ) ( )0
0 02 , ,R R R R

f f R R
c

φ τ π τ τ+
= ⋅�� �� . 

In (3.46), we have already determined the second-order derivative of the receiver’s slant 
range. We substitute the expression (3.43) into (3.46) and get: 

( ) ( )
( ) ( )

2 2
0 0

0 0
0 0 0 0

, ,
, ,

, , , ,
R R R R

R R R
R R R R R R

R R vR R
R R R R

τ τ
τ τ

τ τ τ τ
= − +

�
��  (3.67) 

We evaluate (3.67) at the PSP and obtain:  

( ) ( )
( )

22
R R R

R R
R R

v R
R

R
τ

τ
τ

−
=

� ��� �
�

 (3.68) 

In (3.69), we first determine ( )R RR τ� � . We use (3.43), and by inserting the expression of 
(3.51), we get the slant range’s first order derivative at the PSP as: 

( ) ( )
( ) ( )

( )
( ) ( )

2 2
0 2

2
0 0

1
2 2

R R R R R R
R R R

R R R R R

v v R c f cR v f
R R v f f f f

τ
τ

τ τ τ
τ

τ τ
⋅ − ⋅ ⋅ ⋅

= = − ⋅ ⋅ ⋅ = −
+ +

� �� �
� �

 (3.69) 

Inserting the derivative above into (3.68), we get: 

( )
( )

( )
( )

( )
( )

( )

2

2
2 2

20
0 2

0 0

3
2 2 22

2 02 2 2 22 2 2
20

02 22
00 0 0 0 0

2
( )

4

4 4
44

R

R R
R R

R RR

R RR

f cv
f f f cR f f

R f f v

f cf f
v f f f c vf c vf f

v RR f f f f f f f f

τ

τ

τ

τ τ

τ

⎡ ⎤⋅
− ⎢ ⎥+⎣ ⎦= ⋅ + −

⋅ +

⎡ ⎤
+ −⎢ ⎥⋅ + − ⎣ ⎦= ⋅ + − = ⋅

⋅ + ⋅ + + ⋅ +

�� �
 (3.70) 

We insert the result of (3.70) into (3.36) and get: 

( ) ( )
( )

( )

( ) ( )

( )

3
2 2 22

0 22
0 0

0 0 2
0 0 0

3
2 2 22

0 022

2
0 0

4
2 , , 2

sgn
42

RR
R R R R R

R

RR

R

f cf f
vf f f f vR R

c c R f f f f

f cf f f f
vv

c R f f

τ

τ

φ τ π τ τ π

π

⎡ ⎤
+ −⎢ ⎥+ +⎡ ⎤ ⎣ ⎦= ⋅ = ⋅ ⋅⎢ ⎥⎣ ⎦ + +

⎡ ⎤
+ − ⋅ +⎢ ⎥

⎣ ⎦= ⋅ ⋅
+

�� ���

 (3.71) 

Thus, the final expression for the receiver’s second order phase derivative at the PSP is: 

( ) ( )
( )

3
2 2

0
2

0 0

sgn2 RR
R R

R

F f fv
c R f f
πφ τ

⋅ +
= ⋅ ⋅

+
�� �  (3.72) 
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3.4.1.1.3 Receiver’s Phase Value at the Point of Stationary Phase  
In a similar way, we determine the receiver’s phase term at the PSP. Here we insert the 

expression (3.66) in equation (3.34) and write: 

( ) ( )

( ) ( )
( )

0
0 0

0 00
0 0 0 2

0

2 , ,
2

, ,
2 , ,

2 2

R R R R R R R

R R R R
R R R R R

R

f f fR R
c

f R R cf f fR R
c v f f

τ

ττ

φ τ π τ τ τ

τ τ
π τ τ τ

+⎡ ⎤= ⋅ + ⋅⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞⋅+

= ⋅ + ⋅ −⎢ ⎥⎜ ⎟⎜ ⎟⋅ +⎢ ⎥⎝ ⎠⎣ ⎦

� � �

�
�

 (3.73) 

Now we substitute ( )0 0, ,R R R RR Rτ τ�  from (3.61) and get: 

( ) ( ) ( )
2 2

2
0 0 0 0 2

2 sgn
4R R R R

R

f cf f f R f f
c v

τ
τ

πφ τ π τ= ⋅ + + ⋅ ⋅ + −�  (3.74) 

In summary, we have the final expression of the receiver’s phase term at the point of 
stationary phase: 

( ) ( )
1
2

0 0 0
2 sgnR R R R Rf f f R F
cτ
πφ τ π τ= ⋅ + + ⋅ ⋅�  (3.75) 

 

3.4.1.2 Transmitter’s Contributions 

3.4.1.2.1 Transmitter’s Point of Stationary Phase 
The transmitter’s phase contribution is given by: 

( ) ( )0
0 02 , ,

2T T R R
f f fR R

c
τφ τ π τ τ τ+⎡ ⎤= ⋅ + ⋅⎢ ⎥⎣ ⎦

 (3.76) 

The first-order derivative of transmitter’s phase term is then: 

( ) ( )0
0 02 , ,

2T T R R
f f fR R

c
τφ τ π τ τ+⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

� �  (3.77) 

The derivative of the slant range vector is the negative velocity vector of the transmitter: 

( )0 0, ,T R R TR R vτ τ = −
G G  (3.78) 

In section 3.1 we derived the special dependency between the transmitter’s slant range 
vector at any instant and the receiver’s slant range vector at its Point of Closest Approach 
(PCA): 

( ) ( ) ( ) ( )0 0 0 0 0 0 0, , , ,T R R R R R R R T RR R R R d vτ τ τ τ τ τ τ= + − ⋅ −
GG G G  (3.79) 

In (3.38) we have the dependency between the receiver’s slant range, velocity and equivalent 
vectorial expressions. For the transmitter, a similar expression holds: 

( ) ( ) ( )0 0 0 0 0 0, , , , , ,T R R T R R T T R RR R R R v R Rτ τ τ τ τ τ⋅ = − ⋅
GG�  (3.80) 

Using the vectorial representation in (3.79), the following expression for the transmitter’s 
slant range is obtained: 
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( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )( )
( )

0 0 0 0 0 0
0 0

0 0 0 0

0 0 0 0 0

0 0

2
0 0 0 0

0 0

, , , , , ,
, ,

, , , ,

, ,
, ,

, ,

, ,

T R R T R R T R R
T R R T

T R R T R R

R R R R R T R
T

T R R

T R T R R R R

T R R

R R R R R R
R R v

R R R R

R R d v
v

R R

v v R R d

R R

τ τ τ τ τ τ
τ τ

τ τ τ τ

τ τ τ τ τ
τ τ

τ τ τ τ τ

τ τ

⋅
= = − ⋅

+ − −
= − ⋅

⋅ − − ⋅ +
=

G G G� G�

GG G
G

GGG

 (3.81) 

Now we differentiate (3.80) to find the second-order derivative of transmitter’s slant range: 

( ) ( ) ( ) ( )2
0 0 0 0 0 0 0 0, , , , , , , ,T R R T R R T R R T T R RR R R R R R v R Rτ τ τ τ τ τ τ τ+ ⋅ = − ⋅

GG �� ��  (3.82) 

The transmitter’s and the receiver’s velocity vectors are constant. That is why TR
G��  

vanishes in the expression above.  
Reordering, we obtain: 

( ) ( ) ( )
( )

( )
( )

2 2 2
0 0 0 0 0 0

0 0
0 0 0 0

, , , , , ,
, ,

, , , ,
T T R R T R R T T R R

T R R
T R R T R R

v R R R R v R R
R R

R R R R
τ τ τ τ τ τ

τ τ
τ τ τ τ

− ⋅ − −
= =

GG � � �
��  (3.83) 

Using the definition of the stationary phase, the first-order derivative of the transmitter’s 
phase must vanish in the PSP: 

( ) ( )0
0 02 , , 0

2T T T T R R
f f fR R

c
τφ τ π τ τ+⎡ ⎤= ⋅ + =⎢ ⎥⎣ ⎦

� �� �  (3.84) 

Hence, we have got the first-order derivative of the slant range as: 

( ) ( )0 0
0

 , ,
2T T R R

f cR R
f f

ττ τ = −
+

� �  (3.85) 

Combining (3.85) and (3.83), we get the value of second-order derivative at the 
transmitter’s PSP: 

( ) ( )
( )

( )
( )

2 2
2

22 2
0 0 0

0 0
0 0 0 0

, , 4
, ,

, , , ,

T
T T T R R

T T R R
T T R R T R R

f cv
v R R f f

R R
R R R R

τ

τ τ
τ τ

τ τ τ τ

−
− +

= =
� ��� �
�

 (3.86) 

Next, we substitute the expression of (3.81) evaluated at Tτ�  into (3.84) and obtain the 
following (we use the expression given in the brackets): 

( ) ( ) ( )( )
( )

2
0 0 0 0 00

0 0

, ,
2

, ,
T T R T R R R R R

T R R

v v R R df f f
c R R τ

τ τ τ τ τ

τ τ

− − ⋅ ++
⋅ = −

GGG�
 (3.87) 

After reordering we get: 

( ) ( ) ( ) ( ) ( )( )2
0 0 0 0 0 0

0

, , , ,
2T R T T R R T R R R R R

f cv R R v R R d
f f

ττ τ τ τ τ τ τ−
⋅ − = ⋅ + ⋅ +

+

GGG� �  (3.88) 

Now we divide both sides of the expression above by 2
Tv : 
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( ) ( ) ( ) ( )( )
0

0 0 0 0 0 0 02 2
0

, , , ,
2

T
T R T T R R R R R R R

T T

a

f c vR R R R d
v f f v

ττ τ τ τ τ τ τ−
− = ⋅ + ⋅ +

⋅ +

G GG
� �

�������	������

 

(3.89) 

In (3.89) we have introduced the new parameter 0a . This parameter is very important in 
our bistatic approach. The value and meaning of 0a  can be determined in the following way. 
First we evaluate the expression (3.79) at 0Tτ  and get: 

( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0, , , ,T T R R R R R R R T T RR R R R d vτ τ τ τ τ τ τ= + − ⋅ −
GG G G  (3.90) 

Now we multiply the expression above with TvG , and as the receiver’s velocity vector and 

slant range vectors are orthogonal at the transmitter’s PCA: ( )0 0 0, ,T T T R Rv R Rτ τ⊥
GG  we get: 

( ) ( )( ) ( )2
0 0 0 0 0 00 , ,T R R R R R T T Rv R R d vτ τ τ τ τ= ⋅ + − ⋅ −

GGG  (3.91) 

Solving (3.91) for the time difference of the points of closest approach, we obtain: 

( ) ( )( )0 0 0 0 0 02 , ,T
T R R R R R

T

v R R d a
v

τ τ τ τ τ− = ⋅ + =
G GG

 (3.92) 

Which is exactly the vectorial expression for the 0a  introduced in (3.89), related to the 
bistatic geometry. Summarizing, in (3.92) and (3.7) we introduced two parameters 
describing the bistatic degree of a constellation, crucial for our processing approach: 

( ) ( )( )

( )
( ) ( ) ( ) ( )

0 0 0 0 0 02

22 22
0 0 0 0 0 02 20

2 0 0 02 2
0 0 00 0 0

, ,

, ,
, ,

, ,

T
T R R R R R

T

T T R R R R TT
R R R R T

R R RR R R R

va R R d
v

R R dRa e R v
R R RR R

τ τ τ τ τ

τ τ τ τ τ
τ τ

τ τ

= − = ⋅ +

−
= = = + − ⋅

G GG

GG
GG

 (3.93) 

We continue with determination of the transmitter’s PSP. Using the upper expression of 
(3.93) in (3.89), we have: 

( ) ( )0 0 0 02
0

, ,
2T R T T R R

T

f c R R a
v f f

ττ τ τ τ= − ⋅ +
⋅ +

G
� �  (3.94) 

Now we multiply both sides of (3.94) with the transmitter’s velocity vector TvG : 

( ) ( ) ( )0 0 0 02
0

, ,
2T R T T T T R R

T

f cv v R R a
v f f

ττ τ τ τ
⎛ ⎞

− ⋅ = ⋅ − ⋅ +⎜ ⎟⎜ ⎟⋅ +⎝ ⎠

GG G� �  (3.95) 

 In the above, we need to determine ( )0 0, ,T T R RR Rτ τ
G
� . Evaluating (3.79) at the 

transmitter’s PSP, we obtain: 

( ) ( ) ( ) ( )0 0 0 0 0 0 0, , , ,T T R R R R R R R T T RR R R R d vτ τ τ τ τ τ τ= + − ⋅ −
GG G G� �  (3.96) 

Now substituting (3.95) in (3.96), and after reordering, we get: 



Point Target Reference Spectrum for Bistatic Configurations 42 
 

 

( ) ( ) ( )

( ) ( )

0 0 0 0 0 0

0 0 02
0

, , , ,

, ,
2

T T R R R R R R R

T R T R R
T

R R R R d

f cv R R a
v f f

τ

τ τ τ τ τ

τ τ

= + +

⎛ ⎞
+ ⋅ ⋅ −⎜ ⎟⎜ ⎟+⎝ ⎠

GG G
�

GG �
 (3.97) 

We square both sides of (3.97) and get: 

( ) ( ) ( )( )

( ) ( )

( ) ( )( )

( ) ( )

2
0

22
0 0 0 0 0 0

2

2
0 0 02

0

0 0 0 0

0 0 02
0

, , , ,

, ,
2

2 , ,

, ,
2

T

T T R R R R R R R

T R T R R
T

T R R R R R

a v

T T R R
T

R R R R d

f cv R R a
v f f

v R R d

f c R R a
v f f

τ

τ

τ τ τ τ τ

τ τ

τ τ τ

τ τ

= + +

⎛ ⎞
+ ⋅ ⋅ − +⎜ ⎟⎜ ⎟⋅ +⎝ ⎠

+ ⋅ + ⋅

⎛ ⎞
⋅ ⋅ −⎜ ⎟⎜ ⎟⋅ +⎝ ⎠

GG
�

G
�

GGG
������	�����


G
�

 (3.98) 

In (3.98) we use the bistatic parameter 0a  from (3.93), and by simplifying it we obtain: 

( ) ( ) ( )( ) ( )
( )

( )
( )

( )
( )

( ) ( )( )

2 2 22 0 02 2
0 0 0 0 0 0 24

0

2
0 02 2 2 2 2

0 0 022
0

2
0 02

022
0

2 2 22 0 0
0 0 0 0

, ,
, , , ,

4

, ,
2

, ,

, ,
, ,

T T R R
T T R R R R R R R T

T

T T R R
T T T

T

T T R R
T

T

T T R
R R R R R

f c R R
R R R R d v

v f f

f c R R
v a v a v a

v f f

f c R R
v a

v f f

f c R R
R R d

τ

τ

τ

τ

τ τ
τ τ τ τ τ

τ τ

τ τ

τ τ
τ τ τ

⋅ ⋅
= + + +

⋅ +

⋅ ⋅
+ − − +

⋅ +

⋅ ⋅
+

⋅ +

⋅ ⋅
= + +

GG �
� �

�

�

GG �( )
( )

2 2
022

04
R

T
T

v a
v f f

− ⋅
⋅ +

 (3.99) 

From the above, we determine ( )2
0, ,T T R RR Rτ τ� . After reordering, we get: 

( )
( )

( ) ( )( )
2 2 22 2 2

0 0 0 0 0 0 022
0

, , 1 , ,
4

T T R R R R R R R T
T

f cR R R R d v a
v f f

ττ τ τ τ τ
⎛ ⎞
⎜ ⎟⋅ − = + − ⋅
⎜ ⎟⋅ +⎝ ⎠

GG
�  (3.100) 

Finally, we take the square root to obtain: 

( )
( ) ( )

( )

2 2 2
0 0 0 0 0

0 0 02 2
2

0 2

, ,
, ,

4

R R R R R T

T T R R

T

R R d v a
R R f f

f cf f
v

τ

τ τ τ
τ τ

⎡ ⎤+ −⎣ ⎦= ⋅ +

+ −

GG

�  (3.101) 

For convenience, we introduce the notation 0 0 0( , , )R R R R RR R Rτ τ =
G

, (that is, the slant range 

modulus at the receiver’s PCA), and insert the shorthand notation into (3.101): 
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( )
( ) ( )

( )

2
2 2

0 0
0 0 0 0 0 2

0 0
0 0 2 2

2
0 2

, ,

, ,

4

R T
R R R R R

R R
T T R R

T

d a vR f f e R
R R

R R
f cf f
v

τ

τ
τ τ

τ τ

⎡ ⎤
⋅ + ⋅ + −⎢ ⎥

⎢ ⎥⎣ ⎦=

+ −

G
G

�  (3.102) 

Using (3.93), we obtain: 

( )
( )
0 2

0 01
2

, ,
,

R
T T R R

T

R aR R f f
F f fτ

τ τ ⋅
= ⋅ +�  (3.103) 

( )0 0, ,R R R Re Rτ τG  is the unit vector perpendicular to the receiver’s trajectory at the PCA and is 
given by: 

( ) ( )0 0 0
0 0 0

0

, ,
, , R R R R

R R R R
R

R R
e R

R
τ τ

τ τ =

G
G  (3.104) 

Now we substitute (3.103) into (3.89) and get:  

( )
( )

( )

( )

0 0 2
0 02 2 2

2
0 2

0 0 2
02 2 2

2
0 2

2
4

sgn
2

4

R
T R

T

T

R

T

T

R f f af c a
v f f f cf f

v

R f f af c a
v f cf f

v

τ

τ

τ

τ

τ τ
⋅ + ⋅− ⋅

− = ⋅ +
⋅ +

+ −

⋅ + ⋅⋅
= − ⋅ +

+ −

�

 (3.105) 

We are able to determine the transmitter’s PSP as: 

( )
( )

( )

( )

0 0 2
0 02 2 2

2
0 2

0 0 2
0 02 2 2

2
0 2

2
4

sgn
2

4

R
T R

T

T

R
R

T

T

R f f af c a
v f f f cf f

v

R f f af c a
v f cf f

v

τ

τ

τ

τ

τ τ

τ

⋅ + ⋅⋅
= − +

⋅ +
+ −

⋅ + ⋅
= − ⋅ +

+ −

�

 (3.106) 

And finally, we obtain: 

( )

( )
0 0 2

0 012
2

sgn
2

,

R
T R

T
T

R f f af c a
v

F f f

τ

τ

τ τ
⋅ + ⋅⋅

= − ⋅ +�  (3.107) 

This is the transmitter’s PSP expressed in the receiver’s coordinates. Likewise, by 

resubstituting the definitions 0
0 0 0 2

0

, T
T R

R

Ra a
R

τ τ= − =  given in (3.93) in (3.107), we could 

get: 
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( )

( )
0 0

0 12
2

sgn
2

,

T
T T

T
T

R f ff c
v

F f f

τ

τ

τ τ
⋅ +

= − ⋅�  (3.108) 

which is completely symmetric to equation (3.66) and could be used as a test of 
reasonableness on the result of (3.107). 
 

3.4.1.2.2 Time Difference of Transmitter’s and Receiver’s Points of Stationary Phase 
Now we combine (3.107) with the azimuth time distance between 0Rτ  and Rτ�  given in 

(3.66), and we obtain the time distance between the individual points of stationary phase 
(PSP): 

( )

( ) ( )

( ) ( )

0 02 2

2 2 2 2
2 22 2

0 2 02 2

02 2 2 2
2 2

0 02 2

sgn
2

4 4

1

4 4

T R R
T R

R T
R T

R T

f c R f f
v v

f c f cv f f a v f f
v v

a
f c f cf f f f
v v

τ

τ τ

τ τ

τ τ− = − ⋅ ⋅ +
⋅

⎛ ⎞
= ⋅ + − − ⋅ + − ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

⋅ +

+ − ⋅ + −

� �

 
(3.109) 

Simplifying this term, we get the azimuth time difference between the transmitter’s and 
receiver’s points of stationary phase: 

( ) ( )
( ) ( )

0

1 1
2 22 2

0 2 1 12 2
2 2

1, ,
2

, ,

T R

R R R T T
T R

T T

a

f c R v F f f a v F f f
v v

F f f F f f

τ
τ τ

τ τ

τ τ− = −

⎛ ⎞
− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅⎜ ⎟

⎝ ⎠ ⋅

� �

 (3.110)

This time distance is an important element of the bistatic deformation term given in (3.33). 
 

3.4.1.2.3 Transmitter’s Phase Term at the Transmitter’s Point of Stationary Phase 
(3.76) describes the transmitter’s phase contribution at any azimuth time instant. We 

need to evaluate it at the Point of Stationary Phase (PSP). We start at (3.76), substitute 
(3.107), and further use the transmitter’s slant range value at the PSP given in (3.103): 
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( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

0
0 0

2
0 0 0

0 0 0 02
0

2 2
20 0

0 0 02
0

0 0

2 2
2

0 0 2

2 , ,
2

2 , , , ,
4 2 2

, ,
2

4

2

4

T T T T R R T

R
T T R R T T R R

T

T T R R
R

T

R

T

f f fR R
c

f f f acR R R R f f
c v f f

R R f cf f f a
c f f v

R f f

f cc f f f f
v

τ

τ
τ τ

τ
τ

τ

φ τ π τ τ τ

τπ τ τ τ τ

τ τ
π π τ

π

+⎛ ⎞= ⋅ + ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞+
= ⋅ − ⋅ ⋅ + + ⋅⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞
= ⋅ + − + ⋅ +⎜ ⎟+ ⎝ ⎠

⋅ +
= ⋅

+ ⋅ + −

� � �

� �

�

( ) ( )
2 2

2
0 2 0 024 R

T

f cf f a f a
v

τ
τπ τ

⎛ ⎞
+ − + ⋅ +⎜ ⎟

⎝ ⎠

 
(3.111) 

Summarizing, we have: 

( ) ( ) ( ) ( )
2 2

20 0
0 2 0 02

sgn
2

4
R

T T R
T

Monostatic term

R f f f cf f a f a
c v

τ
τφ τ π π τ

⋅ +
= ⋅ + − + ⋅ +�
��������	�������


 (3.112) 

Finally, we obtain the transmitter’s phase term at its PSP expressed in the local 
coordinates:  

( ) ( ) ( ) ( )
1

0 0 2
2 0 0

sgn
2 ,R

T T T R

Monostatic term

R f f
F f f a f a

c τ τφ τ π π τ
⋅ +

= ⋅ ⋅ + ⋅ +�
�������	������


 (3.113) 

If we pay attention to the equation above, we recognize the part of the term marked as 
‘Monostatic term’ is similar to the monostatic phase history.  
 

3.4.1.2.4 Second Derivative of the Transmitter’s Phase Term at the Point of Stationary 
Phase 

The second-order derivative of transmitter’s phase term was given by: 

( ) ( )0
0 02 , ,T T T T R R

f f R R
c

φ τ π τ τ+
= ⋅ ⋅�� ��� �  (3.114) 

Now we use ( )0 0, ,T T R RR Rτ τ�� �  given in (3.86) and get: 

( ) ( )
( )

( ) ( )

2 2
0 00

0 0

2 2 2 2
2 2

2 0 2
00

0 0 2

, ,
2

, ,

4 4
2

T T T R R
T T

T T R R

T
T

R

v R Rf f
c R R

f c f cv f f
f f vf f

c R f f a

τ τ

τ τ
φ τ π

τ τ

π

−+
= ⋅ ⋅

− + −
++

= ⋅ ⋅ ⋅
⋅ +

� ��� �
�

 (3.115) 

Simplifying terms again, we obtain: 



Point Target Reference Spectrum for Bistatic Configurations 46 
 

 

( ) ( )
( )

( )
3

2 2 22
0 22

0
2

0 20

sgn 4
2 TT

T T
R

f cf f
f f vv

cR af f

τ

φ τ π

⎛ ⎞
+ −⎜ ⎟+ ⎝ ⎠= ⋅ ⋅

+
�� �  

(3.116) 

And finally, the second-order derivative of the transmitter’s phase term at the point of 
stationary phase (PSP) is: 

( ) ( )
( )

( )
3

2 2
0

2
0 20

sgn ,
2 TT

T T
R

f f F f fv
cR af f

τφ τ π
+

= ⋅ ⋅
+

�� �  (3.117) 

Substituting 0
2

0

T

R

Ra
R

=  gives: 

( ) ( )
( )

( )
2 3

0 2
2

0 0

sgn
2 ,T

T T T
T

f f v F f f
cR f f

τφ τ π
+

= ⋅ ⋅
+

�� �  (3.118) 

 

3.5 Quasi-Monostatic Phase Term 
After determining the individual phase terms and their derivatives at the transmitter’s and 

the receiver’s points of stationary phase given in (3.66), (3.72), (3.107), (3.113), (3.117), we 
are able to determine the quasi-monostatic term. From (3.33) we know that the quasi-
monostatic term is the sum of the phase terms of the transmitter and the receiver evaluated at 
the points of stationary phases. Adding the expressions of (3.75) and (3.113), we obtain: 

( ) ( ) ( )

( ) ( ) ( )

0 0

2 2 2 2
2 20

0 0 0 22 2

2

2 sgn
4 4

T T R R R

R

R T

f a

R f c f cf f f f f f a
c v v

τ

τ τ

φ τ φ τ π τ

π

+ = ⋅ + +

⎛ ⎞
+ ⋅ + ⋅ + − + + − ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

� �

 (3.119) 

(3.119) indicates that the quasi-monostatic term is the sum of the transmitter’s and the 
receiver’s semi monostatic phase terms. 
 

3.6 Bistatic Deformation Term 
In a similar way we can determine the bistatic deformation term. We need the second-

order phase derivatives of the transmitter and the receiver given in (3.117) and (3.72). We 
then evaluate the bistatic phase term using (3.32). 

We start calculating the part of the bistatic term, without the squared time interval: 
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( ) ( )
( ) ( ) ( )

( )

( ) ( )

( )
( )

2 2

02
0 0

3 3
2 2 2 22 22 2

0 02 2

3
2 2 22 2 3

0 2 2 2 22 2
2 0 2

2

2 2

0

2 sgn

4 4

4
4

2 sgn

T T R R T R

T T R R R

R T

T
T

R
R

T R
R

v v f f
R c f f

f c f cf f f f
v v

f cf f v
v f ca f f v

a v

v v f
R c

τ τ

τ

τ

φ τ φ τ π
φ τ φ τ

π

⋅ ⋅
= ⋅ ⋅ + ⋅

+ +

⎛ ⎞ ⎛ ⎞
+ − ⋅ + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⋅
⎛ ⎞

⎡ ⎤⎜ ⎟+ − ⋅⎢ ⎥⎜ ⎟⎡ ⎤⎣ ⎦⋅ + + − ⋅⎜ ⎟⎢ ⎥
⎜ ⎟⎣ ⎦
⎜ ⎟⎜ ⎟
⎝ ⎠

=

�� ��� �
�� ��� �

( )

( ) ( )

( ) ( )

0

3 3
2 2 2 22 22 2

0 02 2

3 3
2 2 2 22 22 22 2

0 2 02 2

4 4

4 4

R T

T R
T R

f

f c f cf f f f
v v

f c f cf f v a f f v
v v

τ τ

τ τ

+ ⋅

⎛ ⎞ ⎛ ⎞
+ − ⋅ + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⋅
⎛ ⎞ ⎛ ⎞

+ − ⋅ + ⋅ + − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(3.120) 

The intermediate result is: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

3 3
2 2

2 2
0 3 3

2 20 2 2
2

, ,2 sgn
, ,

T T R R R T
T R

T T R R R
T T R R

F f f F f f
v v f f

R c F f f v a F f f v

τ τ

τ τ

φ τ φ τ π
φ τ φ τ

⋅ ⋅
= ⋅ ⋅ ⋅ + ⋅

+ ⋅ + ⋅ ⋅

�� ��� �
�� ��� �

 (3.121) 

Still missing from the bistatic term is the squared azimuth time difference of the 
transmitter’s and the receiver’s points of stationary phase, calculated at (3.110). After 
squaring (3.110) we get: 

( )

( ) ( )
( ) ( )

2

2

1 1
2 20 2 2

0 21 12 2
2 2

, ,
2

, ,

T R

R
R R T T

T R
T T

f c Ra v F f f a v F f f
v v

F f f F f f

τ
τ τ

τ τ

τ τ− =

⎡ ⎤
⎡ ⎤⎢ ⎥− ⋅ ⋅ ⋅ − ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⋅⎣ ⎦

� �

 (3.122) 

 To summarize, the whole formula of the bistatic deformation phase term is the product 
of the expressions given in (3.121) and (3.122): 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

2

3 3
2 2

2 2
0 3 3

2 20 2 2
2

2

1 1
2 20 2 2

0 21 12 2
2 2

,

, ,2 sgn
, ,

, ,
2

, ,

T T R R
BI T R

T T R R

R T
T R

R
T T R R

R
R R T T

T R
T T

f f

F f f F f f
v v f f

R c F f f v a F f f v

f c Ra v F f f a v F f f
v v

F f f F f f

τ

τ τ

τ τ

τ
τ τ

τ τ

φ τ φ τ
τ τ

φ τ φ τ

π

⋅
Ψ = ⋅ −

+

⋅
= ⋅ ⋅ + ⋅ ⋅

⋅ + ⋅ ⋅

⎡ ⎤
⎡ ⎤⎢ ⎥⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅⎢ ⎥⎢ ⎥⋅ ⎣ ⎦⎢ ⎥⋅⎣ ⎦

�� ��� �
� ��� ��� �

 

(3.123) 
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3.7 Common Bistatic Point of Stationary Phase 
In (3.27) we determined the azimuth time of the common bistatic point of stationary 

phase (PSP) as: 

( ) ( )
( ) ( )

T T T R R R

T T R R

φ τ τ φ τ τ
τ

φ τ φ τ
⋅ + ⋅

=
+

�� ��� � � �
� �� ��� �

 (3.124) 

This value is important for the determination of the bistatic Doppler bandwidth and the 
bistatic Doppler centroid. 

We start calculating the denominator. We already know the second-order phase 
derivatives of the transmitter and the receiver given in (3.117) and (3.72). The sum of their 
values yields: 

( ) ( ) ( )
( )

3
3 22

22
0 2

20 0

2 sgn T T
T T R R R R

R

F vcf f F v
aR f f

φ τ φ τ π
⎛ ⎞
⎜ ⎟+ = + ⋅ ⋅ +⎜ ⎟+ ⎜ ⎟
⎝ ⎠

�� ��� �  (3.125) 

Or in a symmetric notation, we have: 

( ) ( ) ( )
( )

3 3
2 22 2

0 2
0 00

2 sgn R R T T
T T R R

R T

F v F vcf f
R Rf f

φ τ φ τ π
⎛ ⎞
⎜ ⎟+ = + ⋅ ⋅ +⎜ ⎟+ ⎜ ⎟
⎝ ⎠

�� ��� �  (3.126) 

Now we inverse (3.125) and get for the denominator: 

( ) ( )
( )

( )

2
0 0 2

3 3
2 22 2

0 2

1

2 sgn

R

T T R R
R R T T

R f f a

f f c a F v F v
φ τ φ τ

π

⋅ + ⋅
=

+ ⎛ ⎞
⋅ + ⋅ +⎜ ⎟

⎝ ⎠

�� ��� �
 

(3.127) 

or, in symmetric notation:  

( ) ( )
( )

( )

2
0

3 3
2 22 2

0
0 0

1

2 sgn
T T R R

R R T T

R T

f f

F v F vf f c
R R

φ τ φ τ
π

+
=

+ ⎛ ⎞
⎜ ⎟⋅ + ⋅ ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

�� ��� �
 

(3.128) 

After determining the denominator, we start calculating the first half of the numerator. It 
is the product of the transmitter’s second-order phase derivative given in (3.117) with the 
PSP itself given in (3.107): 

( ) ( )
( )

( ) ( )

( )
( )

( )
( )

3
2 2

2
0 0 0 0 02 12

0 2 20

3
2 2

0 0 02 2
0 20 0

2 sgn sgn
2

2 sgn

T T
T T T R R

R T
T

T T T
R

R

f cv F af f a f f R
R c a vf f F

v F Ff f a f
R c af f f f

τ

τ

πφ τ τ τ

π τ π

⎛ ⎞
⎜ ⎟⋅ = ⋅ + ⋅ ⋅ + − ⋅ + ⋅ ⋅⎜ ⎟+ ⎜ ⎟
⎝ ⎠

= ⋅ + ⋅ ⋅ ⋅ + − ⋅
+ +

�� � �

 (3.129)

In an analogous way we obtain the value for the receiver by using (3.72) and (3.66): 
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( ) ( )
( )

( )

( )
( ) ( )

32
2
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2
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0 0 0

2 1sgn sgn
2

2 sgn

R
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R

R R
R R

R

f cvf f F f f R
R c vf f F

v Ff f F f
R c f f f f

τ

τ

πφ τ τ τ

π τ π

⎛ ⎞
⎜ ⎟⋅ = ⋅ + ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅⎜ ⎟+ ⎜ ⎟
⎝ ⎠

= + ⋅ ⋅ ⋅ − ⋅
+ +
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 (3.130) 

 

Now we have both parts of the numerator, and hence, the sum of (3.129) and (3.130) gives: 

( ) ( ) ( )
( )

( )

( )

( )
( )

( )

( )

3
32

2 22
0 0 0 02

0 20

2
0
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2 22 2
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2
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R
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τ

τ

πφ τ τ φ τ τ τ τ

π

τ τπ

π

⎡ ⎤
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+
− ⋅

+

⋅ + ⋅ + ⋅ ⋅ ⋅
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(3.131)

Finally, we combine the numerator and the denominator and obtain: 

( ) ( )
( ) ( )

( )

( )

( )
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2 22 2

0 0 0 2
3 3

2 22 2
2

0 2
3 3

2 22 2
0 22 sgn
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f c F F R a
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τ

φ τ τ φ τ τ τ τ
τ

φ τ φ τ

π

π

⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅
= = −

+
⋅ + ⋅ ⋅

⋅ ⋅ + ⋅ ⋅
−

⎛ ⎞
+ ⋅ ⋅ + ⋅ ⋅⎜ ⎟

⎝ ⎠

�� ��� � � �
� �� ��� �

 (3.132) 

Resubstituting 0
0 0 0 2

0

, T
T R

R

Ra a
R

τ τ= − =  into (3.132), we get: 

( ) ( )

3 3
2 22 2

0 0

00 0
3 3 3 3

2 2 2 22 2 2 2

0 0 0 0

sgn

2

T T T R R R

T RT R

T T R R T T R R

T R T R

v F F v
f c F F f fR R

F v v F F v v F
R R R R

τ

τ τ

τ

⋅ ⋅ ⋅ ⋅
+

⋅ ⋅ + ⋅ +
= −

⎡ ⎤
⋅ ⋅ ⋅ ⋅⎢ ⎥+ ⋅ +⎢ ⎥

⎢ ⎥⎣ ⎦

�  (3.133) 

 

3.8 Bistatic Amplitude Term 
The Bistatic Point Target Reference Spectrum given in (3.33) contains amplitude term, 

which has the following expression: 
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( )
( ) ( )

0 0
2, , ,R R

T T R R

Amp f f Rτ
πτ

φ τ φ τ
=

+�� ��� �
 (3.134) 

We substitute 
( ) ( )

1

T T R Rφ τ φ τ+�� ��� �
 from (3.127) into (3.134) and obtain: 

( ) 0
0 0 3 3

2 22 2

0 0

, , ,R R

R R T T

R T

f f
Amp f f R

F v F vc
R R

τ τ
+

=
⎛ ⎞

⋅ ⋅⎜ ⎟⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

 

(3.135) 

  

3.9 Result and Summary 
(3.33) represents the Bistatic Point Target Reference Spectrum (BPTRS). In the previous 

chapters, we successfully expressed all the unknowns in terms of ( )0 0, , ,R Rf f Rτ τ . The 
quasi-monostatic phase term is given in (3.119), and the bistatic deformation phasor is 
expressed in (3.123). They are substituted in (3.33), and we obtain the final expression of the 
BPTRS: 
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(3.136) 

In a symmetric notation, substituting 0
0 0 0 2

0

, T
T R

R

Ra a
R

τ τ= − = , we would get: 
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(3.137) 

To our knowledge, (3.136) and (3.137) were the first approach to express the point target 
reference spectrum for the arbitrary bistatic configurations.  

The team of the Polytechnic University of Milan derived a similar formula, but for a 
special bistatic case in which the transmitter and the receiver follow each other on a fixed 
offset. The bistatic processing is done by converting the processing task to the monostatic 
processing, but initially convolving the raw data with the ‘Smile’ operator [27], [28]. This 
configuration is referred to as the Tandem Case in our bistatic processing; the authors from 
the name it ‘Stationary Offset Configuration’. We found the similarity between the bistatic 
deformation term and the ‘Smile’ concept. In the following chapters, we will demonstrate 
the equivalence of our approach and the ‘Smile’ concept from Polytechnic University of 
Milan for the Tandem configuration.  

(3.136) and (3.137) are expressed in the Fourier domain. If we do the inverse Fourier 
transformation, then multiplications will be transformed to convolutions. We will have a 
triple convolution: two terms corresponding to the semi-monostatic terms of the transmitter 
and the receiver, and the term corresponding to the bistatic deformation phasor. Hence, the 
nature of the bistatic deformation term is vital in the bistatic processing. It will be 
demonstrated later (and it was also observed by our colleges from the Polytechnic University 
of Milan [16]) that the bistatic term is a short and slowly varying operator.  

 

3.9.1 Monostatic SAR as a special case of Bistatic SAR 
Monostatic SAR can be understood as a special case of a bistatic configuration in which 

the transmitter and the receiver are located on the same carrier. Therefore, for the monostatic 
constellation, the bistatic formula should diverge to the monostatic formula. This is the first 
simple test of validity for the Bistatic Point Target Reference Spectrum (BPTRS) that we 
will demonstrate here. 
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As an example, we show the formula of the point target reference spectrum for the 
monostatic configuration, derived at ZESS1. It is described in detail in [24] and has 
following expression: 

( ) ( ) ( )

( )

( )

( ) ( )

( )

2 2
20

0 2
0

0

0
0 0 0 0

2/40 4
3

2 2 42
0 2

0
0 0

2/40
3

2 2 42
0 2

1, , , ,
2

4

1,
2

4

MO c
l l

az

R f cj f f
j fj c v

c
l

az

j fj

f f cRG f f R S f R rect
B v

f f e e e
f cf f

v

f f cRS f R rect
B v

f f e e e
f cf f

v

τ

τ

τ

τ

π
π τπ

τ

π τπ

τ

τ σ τ

σ τ

− + −
−−

−−

⎛ ⎞−
= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

+
⋅ ⋅ ⋅ ⋅
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

⎛ ⎞−
= ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
+

⋅ ⋅ ⋅
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

MOj− Ψ

 (3.138) 

 
• ( )0 0, , ,MO

lG f f Rτ τ  is the monostatic point target reference spectrum in low-pass 
domain. 

• MOΨ  is a monostatic phase term ( )
2 2

20
0 24

R f cf f
c v

τπ ⋅ + − . 

• 0R  is the slant range at the point of closest approach (PCA). 
• 0τ  is the azimuth time when the PCA is achieved. 
• ( )0 0,Rσ τ  is the backscattering coefficient for the point target positioned at ( )0 0,R τ . 
• v  is the sensor velocity. 

• c

az

f frect
B

⎛ ⎞−
⎜ ⎟
⎝ ⎠

 determines the azimuth frequency range, where azB  is the azimuth 

bandwidth and cf  is the Doppler centroid frequency. 
 
The obvious difference with the monostatic point target reference spectrum is that the 

bistatic formula is longer and more complex. The quasi-monostatic term has some similarity 
with the monostatic phase term, but it contains the receiver’s and the transmitter’s phase 
contributions (that is why we named it as quasi-monostatic term). This phasor is crucial in 
the bistatic processing. Compared to the monostatic formula, the bistatic formula 

additionally contains the phasor with the bistatic deformations term 
1
2 BIj

e
− Ψ

. The expression 
of BIΨ  is given in (3.123). 

Now we will consider the each term of (3.137) for the monostatic case. Velocities of the 
transmitter and the receiver are the same during the whole acquisition T Rv v v= ≅ . Also, 
because the positions of the transmitter and the receiver coincide in the monostatic case, the 
azimuth times and the slant ranges at the points of closest approach will be same for the 
transmitter and the receiver. Therefore, we have in the monostatic case 0 0 0R Tτ τ τ= ≅ , 

                                                 
1 Zentrum für Sensorsysteme (Center for Sensorsystems) 
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0 0 0R TR R R= ≅ , 0 0a = , 2 1a = . Hence, considering (3.60) we have: 

( ) ( ) ( )
1 1 1
2 2 2, , ,R TF f f F f f F f fτ τ τ= = . 
We start with bistatic deformation term. In (3.137) it has quite a lengthy expression for 

the general case. But, in the case of monostatic configuration, the bistatic deformation can be 
calculated as: 
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(3.139) 

Hence, bistatic term phasor completely makes 
1
2 1BIj

e
− Ψ

= .  
In ( )cbw τ τ−� , τ�  is a common bistatic PSP given in (3.132). In the monostatic case, the 

transmitter’s and the receiver’s phase terms introduced are the same, and, therefore, they 
have equal points of stationary phase: T Rτ τ τ= =� � � . cbτ  is the bistatic footprint center, which 
coincides with the monostatic footprint center. The PSP depends on azimuth frequency, and 
so the expression ( )cbw τ τ−�  determines the monostatic Doppler frequency bandwidth 

c

az

f frect
B

⎛ ⎞−
⎜ ⎟
⎝ ⎠

. 

Now we consider the amplitude terms. The bistatic amplitude term given in (3.137) has 
the expression: 

( ) ( )
2

T T R R

π

φ τ φ τ+�� ��� �
 (3.140) 

 ( )R Rφ τ�� � , ( )T Tφ τ�� �  are the expressions of the second-order derivative of the transmitter’s and 
receiver’s phase taken at their individual points of stationary phase (they are given in (3.72) 
and (3.117), respectively). It is obvious that for the monostatic case ( ) ( )R R T Tφ τ φ τ=�� ��� � , and 
they are expressed as follows: 
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v F f f
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τφ τ φ τ π= = ⋅ ⋅

+
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We substitute (3.141) into (3.140) and get: 
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(3.142) 

This expression is the same as the amplitude term of the monostatic point target 
reference spectrum given in (3.138). 

A remaining term we need to consider is the quasi-monostatic term. We calculate it from 
(3.138): 
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 (3.143) 

We therefore see that in the monostatic case the quasi-monostatic term has exactly the 
same expression as a monostatic phasor QM MOj je e− Ψ − Ψ= . 

If we look to the result of the comparison of individual terms taken from the bistatic and 
the monostatic formulas, we observe that a bistatic point target reference spectrum converges 
to a monostatic point target reference spectrum.  
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4 Interpretation of the Bistatic Point Target Reference 
Spectrum for Different Configurations 

The bistatic point target reference spectrum is given in (3.138). In this chapter, we 
consider the behavior of the bistatic point target reference spectrum for different bistatic 
configurations in more details. The classification of the bistatic configuration was already 
done in 2.3. 

 

4.1 General Case 
The most arbitrary configuration is the general case. The transmitter and the receiver are 

moving with different velocities across non-parallel trajectories. This case is azimuth time 
variant. 

 

4.1.1 Quasi-Monostatic term 
Now we will consider the parts of the bistatic point target reference spectrum (BPTRS) 

for different configurations in more detail. The first phasor term can be regarded as a quasi-
monostatic term QMje− Ψ , where: 
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 (4.1) 

Instead of the familiar single monostatic hyperbola, weighted by the doubled slant range 
02 R⋅  (two-way delay), we have the sum of two semi-monostatic phase histories, the first one 

being the one-way receiver’s phase history, and the second one the one-way transmitter’s 
phase history. Due to 0 0R TR R≠ , both histories differ in amplitude, and due to R Tv v≠ , they 
also differ in shape. The linear phase term in fτ  shifts the corresponding azimuth time 
history to the midpoint between the individual points of closest approach. 0TR  and 0Tτ  can 
be determined from (3.93). Because of general vectorial dependences, 0TR , 0Tτ  and other 
bistatic parameters become strongly dependent on the specific bistatic configurations. For 
the transmitter’s and the receiver’s slant ranges, we have the vectorial relation given in 
(3.26): ( ) ( ) ( )0 0 0 0 0 0 0, , , ,T R R R R R R R RR R R R dτ τ τ τ τ= +

GG G
. Azimuth time variance means that the 

relation between the slant ranges is changing with azimuth time. In the case of ( ) 0d t =
G G� , the 

azimuth time variance vanishes. The relation ( ) 0d t =
G G�  is equivalent to T Rv v=

G G . For the case 
of equal velocity vector, both quasi-monostatic and bistatic deformation terms are range and 
azimuth time invariant.  

Conceptually, the sum of the transformations of two semi-monostatic phase histories 
(giving rise to the product of the corresponding exponentials) results in the convolution in 
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time domain of the corresponding monostatic semi-range hyperbolas, where the convolution 
partners in the general case are range and azimuth time variant. 

 

4.1.2 Bistatic Deformation Term 
Analyzing the range histories of a bistatic sensor shown in Figure 3.3, it becomes clear 

that even for identical velocities the normal bistatic range history takes the form of a 
‘flattened’ hyperbola, or a flat-top hyperbola. Conceptually, this flat-top hyperbola is 
generated by further convolving the quasi-monostatic hyperbola with the inverse Fourier 

transformation of the bistatic deformation phasor 
1
2 BIj

e
− Ψ

 with the following phase term: 
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 (4.2) 

The inverse of the complex exponential contained in (4.2) turns out to be an elliptic arc 
in the range-azimuth time domain. Conceptually, the multiplication of the two exponentials 
indicates that the range history of a bistatic sensor can be expressed as a convolution of a 
monostatic SAR sensor’s range history with a small part of an ellipse. 

It is important to note that the elliptic arc has a complex value, and it shows itself a 
heavily varying phase; this is to be expected. The elliptic arc, as well as the quasi-monostatic 
hyperbola, is Dirac line consisting of non-countable infinities of 2D Dirac impulses. During 
the convolution, any Dirac impulse of one line (e.g. the ellipse) reproduces a shifted replica 
of the other; the superposition of all shifted replicas of the hyperbola must constructively 
interfere along the line of the flat-top hyperbola and must vanish elsewhere. This is only 
possible by an additional phase modulation of the elliptic arc. 

Ignoring the convolution with the range chirp, we note again that in the general case a 
bistatic point target response can be conceptually modeled as a triple convolution: the semi-
point target response of a monostatic sensor (receiver/transmitter) is first convolved with the 
semi-point target response of the second sensor (transmitter/receiver). The outcome is then 
further convolved with an elliptic arc (the bistatic deformation term). This elliptic arc, a 
generalized ‘Smile’, might be considered as some generalization of the ‘Rocca’s Smile’ [27], 
which was derived for the constant offset case.  

 

4.1.2.1 Graphical Representation of the Bistatic Deformation Term 
The result of section 4.1.2 means that for the bistatic processing we convolve the raw 

(range-compressed) data with the bistatic deformation term. The bistatic deformation term 
depends on the following variables: ( )0 0, , ,R Rf f Rτ τ . f  is the range frequency, fτ  is the 
azimuth frequency, 0R  is the receiver slant range at the PCA and 0Rτ  is the azimuth time at 
the PCA. The compensation of the bistatic deformation phasor is done in frequency domain, 
by multiplying the spectrum of the raw data by the complex conjugate of the bistatic 
deformation phasor. During this operation, the bistatic term is averaged in the range-azimuth 
blocks. The averaging can be possible only if, across the slant range, the bistatic phase term 
does not change so much that it could cause noticeable phase errors.  
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We can observe the behavior of the bistatic term on one particular simulation. It is the 
translationally invariant case with parameters given in Table 4.1: 

 
Table 4.1. Airborne translationally invariant case 

Parameter Transmitter Receiver 
Speed of airplanes 110m/s 110m/s 
Pulse duration 3.0μs 
 Carrier Frequency 10.13GHz 
Bandwidth 100MHz 
Squint angle 0° 0° 
Off nadir angle 57° 55° 
Opening angle in azimuth direction 1.8° 1.8° 
Opening angle in elevation 8° 8° 
PRF 1250Hz 
Distance between airplanes (constant) 1000m 

 
The illuminated scene consists of 10 point targets, located at the vertexes of a 2x5 

matrix, where 2 is the number of range columns and 5 is the number of azimuth lines. We 
have generated the raw data corresponding to the scene done range compression. 

 

 
Figure 4.1. Left: magnitude of range-compressed raw data; right: bistatic phase term  

 
We want to see how much the bistatic term changes over slant range. This case is 

translationally invariant; therefore, we do not have a variation over the azimuth time. On the 
left side of Figure 4.1, we can see the absolute value of the raw data itself. On the right side, 
the bistatic deformation term (phase) is shown with the Doppler frequency and the slant 
range. We can see that the bistatic phase term with respect to the slant range is practically 
invariant. Normally in SAR processing, a phase error of / 8 0.4 radiansπ ≈  is acceptable. To 
find out the possible error from the bistatic phase term, we need to take a closer look. We 
therefore take the slices of the right plot given in Figure 4.1. In this way, we can observe the 
behavior of the bistatic phase term with the slant range, taking slices for the different 
Doppler frequencies. 

Figure 4.2 shows the plots of the bistatic term dependency on the slant range for 
minimum and maximum Doppler frequencies. At the zero Doppler frequency we have 
practically no change, but at the Doppler frequency of 625 Hz we observe a change of the 
phase term of 1.5 radians over the complete slant range. If we need to have a correct 
compensation of the bistatic term with a maximum phase error of radian4.08/ ≈π s, then 
we have to divide the whole slant range into 4 blocks. 

 



Interpretation of the Bistatic Point Target Reference Spectrum for Different Configurations 58 
 

 

P
h a

se
 te

rm
 in

 ra
di

an
s

Slant range (m)Slant range (m)

Doppler fr=0
Doppler fr=625Hz

 
Figure 4.2. Evolution of the bistatic phase term with the slant range: left at zero Doppler 

frequency, right at a Doppler frequency of 625 Hz. 
 

The compensation of the bistatic term is done in the Fourier domain, which is equivalent 
to the convolution in the time domain. It is well known that that convolution extends the 
resulting signal duration. In this respect, it is very interesting to observe the bistatic term in 
the range-azimuth spatial domain (in order to check the spatial extend of bistatic phase 
term). We generate the bistatic term tuned at the center of the slant range and convert it to a 
slant range-azimuth range representation. 

 

Azimut (m)
Azimut (m)

Slant Range (m)

Slant Range (m)  
Figure 4.3. Left: the magnitude of the bistatic term for the complete scene; right: a close look 

of the bistatic term. 
 
The left side of Figure 4.3 shows the bistatic term with respect to the whole scene. We 

observe that the bistatic phasor in spatial domain behaves as a Dirac pulse. A close look-up 
is shown at the right side of Figure 4.3. It is clearly seen from these two plots that the bistatic 
term is in fact a short operator (4 m azimuth x 2 m range) that allows it to compensate by a 
convolution in the range-azimuth time domain by averaging the bistatic term in range 
azimuth blocks. This nice feature gives us the freedom of creating range blocks that are 
smaller than those blocks, where the processing is done, and thus realize finer bistatic term 
compensation. This can be quite useful in the airborne case for high squint angles causing 
high Doppler frequencies.  
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4.2 Bistatic Doppler Bandwidth and Doppler Centroid 
The azimuth window around the point target determines the azimuth bandwidth. From 

(3.32), this window is represented by ( )cbw τ τ−� . For convenience, we substitute ( )w τ  with 

a rectangular window, obtaining the expression cb

az

rect τ τ
τ

⎛ ⎞−
⎜ ⎟
⎝ ⎠

�
, to be analyzed further. Here 

cbτ  is the azimuth window center. azτ  is the length of the window. τ�  is the bistatic point of 
stationary phase (PSP). All these parameters depend on the position of the PT and the 
configuration of the bistatic mission; the Doppler bandwidth and the Doppler centroid 
depend on these coordinates as well. The bistatic common PSP is determined with the 
formula given in (3.132). We perform some changes on the first term of τ� , which allows us 
to take 0Rτ  out of the fraction, thus obtaining: 

( )

( ) ( )
( ) ( )

( ) ( )

3
2 2

0 0 3 3
2 22 2

2

0 2 3 3
2 22 2

2

,

, ,

, ,
2 , ,

T T
R

T T R R

R T
R

T T R R

v F f f
a

v F f f a v F f f

F f f F f fcf R a
v F f f a v F f f

τ

τ τ

τ τ
τ

τ τ

τ τ
⋅

= + −
⋅ + ⋅

+
− ⋅ ⋅

⋅ + ⋅

�

 (4.3) 

As already mentioned, the Doppler bandwidth and the Doppler centroid are determined 
with the rectangular window. The rect  function is symmetric, so we can write: 

cb cb
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rect rectτ τ τ τ
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 (4.4) 

Then, for the argument of the rect  function, we get: 
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Here we introduce the next notation for the denominator: 

( ) ( )
3 3

2 22 2
2, ,T T R RN v F f f a v F f fτ τ= ⋅ + ⋅  (4.6) 

With this notation, we rewrite (4.5) as: 
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( ) ( ) ( ) ( )( )

3
2 2

0 0 0 2

3
2 2
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v F f f F f f F f fca f R a
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cN a v F f f f R a F f f F f f
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τ τ τ
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τ τ
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τ τ

τ

⎛ ⎞⋅ +⎜ ⎟= ⋅ − + − ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

− ⋅ + ⋅ − ⋅ ⋅ +
=

 (4.7) 

We need to give the above expression the shape of a Doppler frequency window: 

dc

az

f frect
B

τ τ⎛ ⎞−
⎜ ⎟
⎝ ⎠

 (4.8) 

 In (4.7), we invert the numerator. We want to separate fτ  as it is given in (4.8): 

( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )( )

( ) ( )( )

3
2 2

0 2 0 0

3
2 2

0 0

0 2

0 2

, , ,
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,
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2
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R R T R cb T T
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R cb T T

R R T
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R R T

cf R a F f f F f f N a v F f f

N

N a v F f f
f cR a F f f F f f

N
cR a F f f F f f

τ τ τ τ

τ
τ

τ τ

τ τ

τ τ

τ

τ τ

τ

⋅ ⋅ ⋅ + − − ⋅ + ⋅ ⋅
− =

− ⋅ + ⋅
−

⋅ +
=

⋅ +

 (4.9) 

Thus, we can get the expressions of the Doppler centroid and the Doppler bandwidth: 

( ) ( )
( ) ( )( )

3
2 2

0 0

0 2

,

, ,
2

R cb T TBist
dc

R R T

N a v F f f
f cR a F f f F f f

τ
τ

τ τ

τ τ− ⋅ + ⋅
=

⋅ +
 (4.10) 

( ) ( )( )0 2 , ,
2

Bist az
az

R R T

NB cR a F f f F f fτ τ

τ
=

⋅ +
 

(4.11) 

Both expressions depend on the range frequency, bistatic parameters, coordinates and the 
azimuth frequency itself. These expressions would be explicit without the fτ  dependency. 
To eliminate these dependencies on ( ),RF f fτ  and ( ),TF f fτ , the following approximations 
are used: 

( ) ( ) ( )

( ) ( ) ( )

2 2
2 2

0 02

2 2
2 2

0 02

,
4

,
4

R
R

T
T

f cF f f f f f f
v

f cF f f f f f f
v

τ
τ

τ
τ

= + − ≈ +

= + − +�
 (4.12) 
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These approximations are substituted in (4.10) and (4.11), obtaining: 

( ) ( ) ( ) ( )

( )

3 3 32 2 2
0 0 2 0 0 0

2
0 2 02

2
dc

R cb T R TBist

R

v f f v a f f a v f f
f cR a f f
τ

τ τ ⎡ ⎤− ⋅ ⋅ + + ⋅ + + ⋅ +⎣ ⎦=
⋅ ⋅ +

 (4.13) 

And finally, we get: 

( )
( )

( )

( )

2 2 2
0 2 0

0

0 2

2 2 20
0 2 0

2 0

22 2
0 0

0
0 0 0

2
2
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R cb T R TBist

R

R cb T R T
R

TT R
R cb

T R T

v v a a v
f f f cR a

f f v v a a v
ca R

f f a vv v
c R R R

τ

τ τ

τ τ

τ τ

⎡ ⎤− ⋅ + +⎣ ⎦= + ⋅

+ ⎡ ⎤⎡ ⎤= ⋅ − ⋅ + +⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤+
= ⋅ − ⋅ + +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦

 (4.14) 

Analogously, we obtain for the Doppler bandwidth: 

( ) ( )( )

( ) ( )

( )

0 2

3 32 2
0 2 0

2
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, ,
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2

Bist az
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R R T

az T R

R

NB cR a F f f F f f

v f f v a f f

cR a f f

τ τ

τ

τ

=
⋅ +

⎡ ⎤⋅ ⋅ + + ⋅ +⎣ ⎦=
⋅ ⋅ +

 (4.15) 

Canceling terms on the numerator and the denominator, we get the final result together 
with Doppler centroid frequency: 

( )
2 2 2 2

02
0

0 2 0 0

Bist T R T R
az az az

R T R

f fv v a v vB f f
R ca c R R

τ τ
⎛ ⎞++

= ⋅ + ⋅ = ⋅ ⋅ +⎜ ⎟
⎝ ⎠

 

2 2 2 2
0

0 0
0 0 0 0

dc

Bist R T T R
R T cb

R T T R

f f v v v vf
c R R R Rτ τ τ τ

⎡ ⎤⎛ ⎞+
= ⋅ ⋅ + ⋅ − ⋅ +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

(4.16) 

These expressions were used in the different stages of the processing [9],[19],[22],[23], 
and gave reasonable approximations. 

 

4.2.1 Comparison with Doppler Frequency Results Obtained for Monostatic 
SAR 

As already mentioned, the monostatic SAR is a special case of the bistatic SAR, where 
the transmitter and the receiver are located on the same carrier. (4.16) shows the Doppler 
bandwidth expression for bistatic configurations, and (4.14) shows the equivalent Doppler 
centroid expression. We would like to use these expressions to calculate the values of the 
Doppler bandwidth and the Doppler centroid for monostatic SAR and compare the results 
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with those ones already known in monostatic processing. In [24], the Doppler centroid for 
monostatic SAR was calculated as: 

( ) ( ) ( ) 2
0 0

2mon
dc c

c

f f f v
c Rτ τ τ

τ
= ⋅ + ⋅ − ⋅

⋅
 (4.17) 

And for the monostatic Doppler bandwidth, the following expression was given: 

( )
202mon

az az
c

f fB v
c R

τ
τ

+
= ⋅ ⋅

⋅
 (4.18) 

 
• mon

dcfτ  is the monostatic Doppler centroid frequency. 
• mon

azB  is the Doppler bandwidth. 
• ( )cR τ  is the slant range at the center of the footprint. 
• 0f  is the carrier frequency. 
• v  is the sensor’s velocity. 
• azτ  is the azimuth time corresponding to the center of the footprint. 

 
If we consider the monostatic case as a special case of bistatic SAR, then the sensors will 

have the same velocity and should move across the same trajectory. In this case, the 
transmitter’s and the receiver’s slant ranges at the points of closest approach will be equal 
for any point target: 0 0 0R TR R R= ≅ . Besides that, velocities are equal too: T Rv v v= = . The 
transmitter’s and the receiver’s azimuth times of closest approach will be also equal in the 
monostatic case: 0 0R Tτ τ= . Hence, the bistatic parameters related to the monostatic case can 
be easily determined; they have simple and constant values. According to what was defined 
in (3.93), we have 0 0a = , 2 1a =  for the monostatic case, which will simplify the expression 
of the bistatic Doppler centroid given in (4.14): 

( ) ( ) 2
0 0

0

2Bist
dc c

R

f f f v
cRτ τ τ= ⋅ + ⋅ − ⋅  (4.19) 

Comparing the expression for the monostatic Doppler centroid given in (4.19) with that 
one given in (4.17), we observe that they are nearly equivalent. The only difference is that in 
(4.19) we have a slant range at the PCA, and in (4.17) the slant range is taken at the center of 
the footprint. Taking into account the complexity of our derivations and approximations, this 
small difference is acceptable. In SAR derivations, the slant range very often is exchanged 
with the slant range at the PCA. 

Analogously, we calculate the monostatic Doppler bandwidth with the formula for the 
bistatic Doppler bandwidth given in (4.16). After the simplifications we have: 

20

0

2Bist
az az

R

f fB v
R c

τ +
= ⋅ ⋅  (4.20) 

We still observe the equivalency between the (4.20) and (4.18). This was another test for 
our bistatic approach.  
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4.2.2 Simulation Results 
The formulas derived for the bistatic Doppler centroid and the bistatic Doppler 

bandwidth were used often for our bistatic processing. They gave reasonable results. As a 
sign of that, we show here the results of two simulations: one spaceborne and one airborne. 

First, we consider the spaceborne case. The parameters of the spaceborne simulation are 
given in Table 4.2. Because of the high squint angle, we should expect high Doppler 
centroids. The PRF was intentionally selected very high in order to observe the full range of 
Doppler frequencies without an aliasing effect. 

 
Table 4.2. Parameters of the spaceborne bistatic simulation 

Parameter Transmitter Receiver 
Speed of Satellites 7300 m/s 7500 m/s 
Pulse Duration 37.1us 
Carrier Frequency 5.5 GHz 
Bandwidth 3 MHz 
PRF 7300 Hz 
Squint Angle 0.3° 0.3° 
Off Nadir 45° 45° 
Opening angle in azimuth direction 1° 1° 
Opening angle in elevation 5° 5° 
Max Distance with Satellites 3080 m 
Min Distance with Satellites 3000 m 

 
These parameters were used for the bistatic simulation in order to generate the raw data. 

We then applied the Fourier transformation to these raw data. The upper plot of Figure 4.4 
shows the obtained Fourier spectra of the raw data. The spectrum on the plot is a slice at the 
zero range frequency: 
 

 
Figure 4.4. Azimuth spectrum generated from the simulated raw data 
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We then calculated the values of the Doppler centroid and the Doppler bandwidth using 

(4.14) and (4.16). For the Doppler centroid we have 1444,9Bist
dcf Hzτ = , and for the Doppler 

bandwidth we have 3409.2Bist
azB Hz= . We have generated the rectangular window with the 

calculated Doppler frequency and Doppler bandwidth parameters, which are shown on the 
lower plot of Figure 4.4. We compare the plots given in Figure 4.4, and it is obvious that the 
calculated values are giving good approximations. 

 
Now we consider the airborne case, the parameters are given in Table 4.3: 

 
Table 4.3 Parameters of the airborne bistatic simulation 

Parameter Transmitter Receiver 
Speed of airplanes 98m/s 98m/s 
Pulse duration 3μs 
Carrier Frequency 10.17GHz 
Bandwidth 20MHz 
PRF 1250Hz 
Squint angle 0° 1° 
Off Nadir angle 42° 52° 
Opening angle in azimuth direction 6° 6° 
Opening angle in elevation 12° 12° 
Max distance between airplanes 1029m 
Min distance between airplanes 1000m 

 
The upper plot of Figure 4.5 shows a slice of the azimuth spectra for the airborne 
experiment: 
 

 
Figure 4.5. Azimuth spectrum generated from the simulated raw data 
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Using (4.14) and (4.16) again, we have a Doppler centroid of 605,5Bist
dcf Hzτ =  and a 

Doppler bandwidth of 50.9Bist
azB Hz= . As the lower plot of Figure 4.5, we gave the 

rectangular window with calculated Doppler frequency parameters. Looking at Figure 4.5, 
we easily find that calculated values are in accordance with the plots. 
 

4.3 Particular Cases of the Bistatic Point Target Reference Spectrum 
Here we consider some particular configurations where the bistatic point target reference 

spectrum is simplified. We will follow the classification of the bistatic configuration given in 
section 2.3. 

 

4.3.1 Identical Velocity Values 0r Tv v v= =  

By letting the velocities be equal in amplitude 0r Tv v v= = , but not in direction R Tv v≠
G G , 

some simplifications become possible. 
 

4.3.1.1 Monostatic Term 
Now the quasi-monostatic term considerably simplifies and seems almost monostatic: 

MOje− Ψ , where: 

( ) ( ) ( )

( )

0 0

2
2 20 0

0 2
0

, , , 2
2

4
2 4

R T
MO T T R R

R T

f f f f f

R R cf f f
c v

τ τ τ τ

τ

τ τφ τ φ τ π

π

+
Ψ = + = ⋅ +

+
+ ⋅ ⋅ + −

� �
 (4.21)

which is very similar to the monostatic expression. ( )cbw τ τ−  denotes the time extent and 
the center of the cut-out from the monostatic range history. But because 0TR  and 0RR  have 
non-linear dependences over azimuth time, we cannot think about a monostatic imaging 
located at the position 0 0 0 0,

2 2
R T R TR Rτ τ+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

. Let’s make a coordinate transformation and go 

to the central coordinates ( ) 0 0 0 0
0 0, ,

2 2
R T R T

C C
R RR τ ττ + +⎛ ⎞≅ ⎜ ⎟

⎝ ⎠
. As we know, the receiver’s 

parameters are chosen as the coordinates in our bistatic processing 0RR , 0Rτ , and these 
coordinates are determined as ( ) ( )0 0 0 0 0 0, 2 , 2R R C T C TR R Rτ τ τ= − − . We have non-linear 
dependencies between 0RR  and 0TR , so the dependency between 0RR  over 0CR  will be non-
linear as well, so we will not simplify the task at all.  

The discussion above means that we cannot do bistatic processing by imagining the 
equivalent monostatic trajectory. Prof. Bamler came to the same conclusion in his 
publication [35]. He calculated the numerical transfer functions to correct the bistatic 
deformation. The simulations he made prove that the equivalent monostatic trajectory gives 
a wrong approximation in most of the bistatic configurations. 
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4.3.1.2 Bistatic Deformation Term 

The bistatic deformation term is now reduced to 
1
2 BIj

e
− Ψ

, with: 

( )
( )

( ) ( )
3

2 2 2´0
2

0 00

,2, TR
BI T R

R T

F f fvf f
c R Rf f

τ
τ

π τ τΨ = ⋅ ⋅ ⋅ −
++

� �  

where: ( )
( )

2

2 0 0
0 0 2

02 ,
T R

T R T R
TR

R Rcf
v F f f

τ
τ

τ τ τ τ
⎡ ⎤−⎢ ⎥− = − − ⋅ ⋅
⎢ ⎥⎣ ⎦

� �  

(4.22) 

( ) ( )
2

2 2
, 0 2

0

,
4T R
cF f f f f f
vτ τ= + −  (4.23) 

Again, the inverse Fourier transformation turns out to be an elliptic arc in the range-
azimuth time domain. As in the preceding case, this generalized ‘Smile’ changes over slant 
range and azimuth time, since the difference between 0TR  and 0RR  is azimuth time variant. 
Since for constant velocities the difference changes linearly over time, Chirp Scaling 
strategies to equalize the bistatic deformation term (comparable to equalize the range 
migration) might be thought of. 

Again ignoring the convolution with the range chirp, we note that in this case the bistatic 
point target response can be modeled as a double convolution, the point target response of an 
equivalent monostatic sensor is convolved with the generalized azimuth and range varying 
‘Smile’. 

 

4.3.1.3 Amplitude Term 
In the general bistatic case the amplitude term is given in (3.135). In the particular case 

when 0r Tv v v= = , amplitude terms simplify as:  

( ) 0
0 3

4
0

0 0

, ,
1 1

R

R T

f f
Amp f f R

F v c
R R

τ

+
=

⎛ ⎞
⋅ ⋅ ⋅ +⎜ ⎟

⎝ ⎠

 
(4.24) 

 

4.3.2 Identical velocity vectors T Rv v=
G G  

Another interesting situation occurs when the transmitter and the receiver move parallel 
with equal velocities. This case is called the translationally invariant configuration [29].  

 

4.3.2.1 Monostatic Term 
The first phasor remains unchanged.  
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4.3.2.2 Bistatic deformation term 
The bistatic deformation term essentially remains the same, except that it now is constant 

with respect to the azimuth time, but still range variant: 
1
2 BIj

e
− Ψ

, with: 
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( )

( ) ( )
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τ
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� �  

(4.25) 

0 0 0T Ra τ τ= −  is the bistatic parameter given in (3.93), constant for the complete scene; 
parameter 2a  is still range variant. As indicated before, the compensation can be 
accomplished in range blocks.  

Again ignoring the convolution with the range chirp, we note that in this case the bistatic 
point target response can be modeled as a double convolution: the point target response of a 
monostatic equivalent sensor is convolved with the bistatic deformation term. 

 

4.3.2.3 Amplitude Term 
The amplitude term has same expression as (4.24). 

 

4.3.3 Constant Offset Configuration – Tandem Case 
This is the case when the transmitter and the receiver follow each other with a fixed 

offset and the same velocity vectors. We call this a Tandem configuration. It was first 
considered in [27], where it was named ‘Constant Offset Configuration’. 

In this case, the transmitter’s and the receiver’s velocities are equal, and so are their slant 
ranges, at the point of closest approach for any point target, which will cause considerable 
simplifications to be discussed in the following. 

 

4.3.3.1 Quasi Monostatic Term 
 In Tandem Case the quasi-monostatic term becomes truly monostatic: 

( ) ( ) ( )

( ) ( )
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2 2
0 0 0 0 2

0

, , ,
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QM T T R R
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f f f f

cf a R f f f
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� �
 (4.26) 

0a  expresses the difference between the azimuth times at the points of closest approach 
of the transmitter, and the receiver defined in (3.93). In this particular configuration, it is 
constant. We see from (4.26) that in this case the quasi-monostatic term is exactly a 
monostatic phase term. This means that in this case the focusing can be carried out by a 
conventional monostatic processing approach, after compensating the bistatic deformation 
term. 
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4.3.3.2 Bistatic Term 
The bistatic term is also relatively simple: 

( )
( )

( ) ( )
3

2 2 2´0
2

00

,
, TR

BI T R
R

F f fvf f
c Rf f

τ
τ

π τ τΨ = ⋅ ⋅ ⋅ −
+

� �  

where: ( )2 2
0T R aτ τ− =� �  

(4.27) 
 

( ) ( )
2

2 2
0 2

0

,
4TR
cF f f f f f
vτ τ= + −  (4.28) 

In the Tandem case, the baseline between the transmitter and the receiver remains 
constant and is equal to: 

0 0d v a=  (4.29) 

Substituting (4.29) in (4.27), we get: 

( ) ( )
( )

3
2

2
2

0 0

,
,BI

R

F f f
f f d

c f f R
τ

τ
π

Ψ = ⋅ ⋅
+

 where: ( )2 2
0T R aτ τ− =� �  (4.30) 

 

4.3.3.3 Amplitude Term 
The amplitude term given in (3.135) for general case simplifies considerably: 

( ) 0 0
0 3

4
0

, ,
2R

f f RAmp f f R
c

F v
τ

+
= ⋅

⋅
 (4.31) 

where 0 0 0T RR R R= =  for the Tandem case. 
  

4.3.3.4 Rocca’s Smile and Point Target Reference Spectrum 
Here we compare two different bistatic approaches: our bistatic approach and one of the 

first bistatic approaches described in [28], [29]. For the Tandem configuration, the 
equivalence between both approaches will be proven. The final result of both approaches 
will show that the bistatic processing can be converted to quasi-monostatic by initially 
convolving the range-compressed raw data with the bistatic deformation term.  

 

4.3.3.4.1 Rocca’s Smile Expressed in our Bistatic Notation 
Fabio Rocca was the first to offer a very elegant solution for the bistatic problem [27]. It 

was initially done for the Tandem configuration, referred to in the original paper as the 
‘Stationary Offset Configuration’. To transform bistatic surveys into monostatic ones, the 
initial data set is first convolved with the ‘Smile’ operator. This ‘Smile’ operator has 
similarity with the Dip Move Out-(DMO) operator known in seismic literature. The ‘Smile’ 
was first derived with geometrical considerations and then expressed in SAR microwave 
terms. The term corresponding to the ‘Smile’ operator [27] is given as: 
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 ( ) ( )
2 24 cos, , exp 1 10 2 2b b

b

hH k t j t
t c

ϑω ω ω
⎛ ⎞⎛ ⎞⋅⎜ ⎟⎜ ⎟= + ⋅ ⋅ − −⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 (4.32) 

• bt  is the bistatic range time of down converted data. 

• ω  is the corresponding angular frequency. 

• 0ω  is the central angular frequency. 

• h  is the half of the baseline between the transmitter and the receiver. 

• ϑ  is a dipping angle of the reflector, somehow equivalent to the squint angle of a 
monostatic survey. 

• k  is the azimuth wavenumber. 

 

It was shown in [27] that the following relation is valid: 

( )
( )

2 2
2

2
0

cos 1
4

k cϑ
ω ω

⋅
= −

+
 (4.33) 

We substitute (4.33) into (4.32) and get: 
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 (4.34) 

Here we use the approximation: 

1 1
2
xx− = −  (4.35) 

Of course, the approximation is correct for small values of x . We consider the fraction 
2 2

2
2

0
2 2

4 1
4( )

b
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t c
ω ω

⎛ ⎞
⋅ −⎜ ⎟+⎝ ⎠  given in the square root expression of (4.34). It is clear that because 

carrier frequencies in SAR are normally chosen to be much higher then their corresponding 

Doppler frequencies, the flowing relation is valid: 
( )

2 2

2
0

1
4

k c
ω ω+

� . It is clear also that / 2bt c  

is the bistatic half slant range history and that it is much bigger than the baseline size. Hence, 

the term 
22

2 2

4
/ 2b b

h h
t c t c

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 is much smaller than 1. The approximation 1 1

2
xx− = −  is 

therefore applicable. 
Considering the wavenumber definition, we write: 

2 fk
v

τπ
=  (4.36) 
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• v  is the velocity of the transmitter and the receiver (equal in Tandem Case).  
• fτ  is the azimuth (Doppler) frequency. We take the symbol used for Doppler 

frequencies in our bistatic processing approach. 
• 2h  is a baseline (the distance between the transmitter and the receiver). In our 

approach we are naming it as d . 
• bt  is the bistatic range time, and in our approach it shows the variance of the 

‘Smile’ operator over the different positions of the point target. As we know, the 
Tandem Case is azimuth time invariant and it varies only in range direction. The 
variance in range is expressed in our coordinates with the receiver’s slant range 

of closest approach. So, we substitute bt  with 02 RR
c

 (in the Tandem case 

0 0R TR R= , where 0RR  is the receiver slant range). 
 

After this change of variables, (4.34) is transformed to: 
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( )

( )

2 2
2

0 2
2

0 0

4, , exp
2b

R

f cf f
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ω π
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⎝ ⎠

 (4.37) 

This is the ‘Rocca’s Smile’ expressed in the coordinates and the parameters of our 
bistatic approach. 

 

4.3.3.4.2 Our Approach – Bistatic Term of the Bistatic Point Target Reference Spectrum 
We return to the bistatic point target reference spectrum (BPTRS). The bistatic 

deformation term is given by (4.2), and it is noticeably simplified in the Tandem 
configuration. The transmitter’s and the receiver’s slant ranges are equal. The same holds for 
their velocities, because they move parallel with a constant offset. So, we have 

0 0 ,R T T RR R v v v= = ≅ . Therefore, according to the symbols defined in (3.60), we get 

T RF F F= ≅ . Additionally, one of the bistatic parameters given in (3.7) is easily determined: 

2 1a = . The other bistatic parameter, 0a , expresses the azimuth time difference between the 
transmitter’s and the receiver’s points of closest approach and in our current configuration is 
constant and equal to the baseline: 2 ( )a v const d baseline= ≡ . 

After these simplifications, we have: 

( )
( )

3
2

2
0 2

0 0

, , exp
2

R
R

FH f f R j d
R c f f

τ π
⎛ ⎞
⎜ ⎟= − ⋅⎜ ⎟⋅ ⋅ +⎜ ⎟
⎝ ⎠

 (4.38) 

Since 0f f+  is a decisive value in (3.60), we use the approximation 

( )
3 1
2 2

0F F F F f f= ⋅ ≈ ⋅ + . After substituting it in (4.38), we obtain: 
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( )
( )

( )

2 2
2

0 2
2

0
0 0

4, , exp
2R

R

f cf f
vH f f R j d

R c f f

τ

τ π

⎛ ⎞
+ −⎜ ⎟

= − ⋅⎜ ⎟
⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

 (4.39) 

This is the expression of the bistatic deformation term for the Tandem configuration 
derived from our approach. If we now compare (4.37) and (4.39), we see that they are 
absolutely identical. This proves the equivalency of the ‘Rocca’s Smile’ and our ‘Bistatic 
Deformation Term’ Tandem (‘Stationary Offset Configuration’). This is not an absolute 
proof that both approaches are correct, but we can say for certain that if one of them fails, 
then the same will happen to other one. 
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5  Constraints of Validity 
The Method of the Stationary Phase (MSP) has been crucial for our derivations. Both the 

phase histories of the transmitter and the receiver have been expanded in a second order 
Taylor series around their individual points of stationary phase (MSP). Both expansions are 
individually valid in the vicinity of the corresponding PSP, but since the bistatic phase 
history is the superposition of the transmitter’s and the receiver’s phase histories, the natural 
question arise whether the superposition of the individually valid second-order Taylor series 
expansions is still a valid approximation of the full phase history, especially if the individual 
points of stationary phase are distant with respect to the azimuth time. To put it another way, 
the central question is: how far may the individual points of stationary phase be separated in 
time, so that the superposition of the two second-order Taylor series expansions around these 
distant points of stationary phase still remains valid?  
 

5.1 Strong Terms of Validity 
The first work about the bistatic constraints was given in [1].  
In the derivation of the bistatic point target reference spectrum we have done the 

expansion of the transmitter and the receiver phase terms using Taylor series later we 
truncated the series after the 2nd order term. Therefore the bistatic constraints are in relation 
with the error introduced by these truncations. Taylor series expansion of the transmitter and 
the receiver slant ranges can be written as: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2(1) (2)
, , , , , , , , ,

3 4(3) (4)
, , , , , ,

1
2!

1 1
3! 4!

T R T R T R T R T R T R T R T R T R

T R T R T R T R T R T R

R R R R

R R

τ τ τ τ τ τ τ τ

τ τ τ ξ τ τ

= + ⋅ − + ⋅ − +

+ ⋅ − + ⋅ ⋅ −

� � � � �

� � �
 (5.1) 

where the dependencies on 0TR  and 0RR , 0Tτ  and 0Rτ  have been omitted for convenience. 

,T Rτ�  are the individual points of stationary phase of the transmitter (T) and the receiver (R). 
The last term in (5.1) is Lagrange form of the reminder, which sums up the higher order 
terms (of transmitter and receiver) according to the mean value theorem. ,T Rξ  are two 

different points within the intervals ( ), ,T Rτ τ� . 
The range rate errors (corresponding to the instantaneous frequency errors) of the Taylor 

series expansions of the transmitter (index T) and the receiver (index R) are given by: 

( ) ( ) ( ) ( ) ( )2 3(3) (4)
, , , , , , ,

1 1
2! 3!T R T R T R T R T R T R T Re R Rτ τ τ τ ξ τ τ= ⋅ − + ⋅ ⋅ −� � �  (5.2) 

Now we require that the range rate error in the common PSP is negligible against the 
nominal value: 

( ) ( ) ( ) ( )
( )

2(3) (4)
!, , , , , ,

(2)
, ,

1 1
2! 3! 1

T R T R T R T R T R T R

T R T R

R R

R

τ τ τ ξ τ τ

τ

⋅ − + ⋅ ⋅ −
<<

� � � � �

�
 (5.3) 

which can be guaranteed if: 



Constraints of Validity 73 
 

 

( ) ( )
( )

(3) !, , ,
(2)

, ,

2T R T R T R

T R T R

R
R

τ τ τ
τ
⋅ −

<<
� � �

�
 (5.4) 

and if the quadratic term in (5.3) is again a small denominator, then the linear term: 

( ) ( )
( )

2(4) !, , ,
(2)

, ,

3!T R T R T R

T R T R

R
R

ξ τ τ
τ
⋅ −

<<
� �
�

 (5.5) 

The conditions (5.4) and (5.5) are mathematically strong. If they are fulfilled, then the 
formula of bistatic point target reference spectrum will be valid too. However, there can be 
some situations when they are not holding, but the formula of bistatic point target reference 
spectrum is still working properly. In this sense, (5.4) and (5.5) form sufficient, but not 
necessary, condition. 
 

5.2 Derivatives of the Slant Range at the Point of Stationary Phase 
One derivative of the receiver’s slant range at the point of the stationary phase is already 

known from (3.69). For the second derivative, we use the expression in (3.46): 

( )
( )

( ) ( )
4 2

2
0 0 03

0 00 0

, ,
, ,, ,

R R
R R R R

R R RR R R

v vR R
R RR R

τ τ τ τ
τ ττ τ

= − ⋅ − +��  (5.6) 

Evaluating the above on the receiver’s point of stationary phase (PSP), we get: 

( )
( )

( ) ( )( )
2

2 22
0 0 0 0 0 0 0 03

0 0 0

, , , ,
, ,

R
R R R R R R R R R R R

R R R R

vR R v R R
R R

τ τ τ τ τ τ
τ τ

= ⋅ − − +�� � � �
�

 (5.7) 

Now we exploit (3.54) and obtain the following expression for the receiver’s second-order 
derivative at the PSP:  

( )
( )

2 2
0

3
R R

R R
R R

v RR
R

τ
τ
⋅

=�� �
�

 (5.8) 

Since the bistatic configuration is symmetric, the same arguments must also hold for the 
transmitter, and we may also write: 

( )
( )

2 2
0

3
T T

T T
T T

v RR
R

τ
τ
⋅

=�� �
�

 (5.9) 

Note that we have again used the shorthand slant range notation: 

( ) ( ) ( ) ( )0 0 0 0, , , , ,R R R R R R T T T T T TR R R R R Rτ τ τ τ τ τ≅ ≅� � � �  (5.10) 

For constraints given in (5.4) and (5.5), we need to determine the fourth-order derivatives 
of the slant ranges. 

We start with (3.3) and write: 

( ) ( ) ( )
( ) ( ) ( )

2
0

2
0

R R R R

T T T T

R R v

R R v

τ τ τ τ

τ τ τ τ

⋅ = ⋅ −

⋅ = ⋅ −

�

�  (5.11) 

We differentiate the above equations again and get: 
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( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

R R R R

T T T T

R R R v

R R R v

τ τ τ

τ τ τ

+ ⋅ =

+ ⋅ =

� ��

� ��
 (5.12) 

From the above we determine the second-order derivatives of the slant ranges, but this 
was already done in (5.9). 

For the third-order term, we differentiate (5.12) again: 

( ) ( ) ( ) ( ) ( ) ( )2 0R R R R R RR R R R R Rτ τ τ τ τ τ⋅ + ⋅ + ⋅ =� �� � �� ���  (5.13) 

Reordering it, we get: 

( ) ( ) ( )
( )

3 R R
R

R

R R
R

R
τ τ

τ
τ
⋅

= −
� ��

���  (5.14) 

Here we substitute the expressions of ( )RR τ��  and ( )RR τ�  from (5.6) and (5.11), 
respectively, and obtain: 

( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( )( )

2 4 2
20

02 3
0 00 0

4
2 20 2

0 0 05

3
, ,, ,

3 , ,

R R R R
R R

R R RR R R R

R R
R R R R R

R

v v vR
R RR R R

v
v R R

R

τ τ
τ τ τ

τ ττ τ τ

τ τ
τ τ τ τ

τ

⎛ ⎞⋅ −
⎜ ⎟= − ⋅ − ⋅ − +
⎜ ⎟
⎝ ⎠

⋅ −
= − ⋅ − ⋅ − +

���

 (5.15) 

We evaluate the result at the receiver’s PSP and obtain: 

( )
( )

( ) ( )
( )

4 2
0 02 0

2 5

3
3 R R R RR R

R R R R R
R R R R

v R
R v R

R R

τ ττ ττ τ
τ τ

⋅ − ⋅−
= − ⋅ ⋅ = −

����� ��� �
� �

 (5.16) 

For the transmitter, we have a similar expression: 

( ) ( )
( )

4 2
0 0

5

3 T T T T
T T

T T

v R
R

R

τ τ
τ

τ

⋅ − ⋅
= −

���� �
�

 (5.17) 

For the fourth-order derivative, we differentiate (5.13) again:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3R R R R R R R RR R R R R R R Rτ τ τ τ τ τ τ τ⋅ + ⋅ = − ⋅ − ⋅� ��� ���� �� �� � ���  
(5.18) 

Collecting and reordering terms, we get the expression of ( )RR τ���� : 

( ) ( ) ( ) ( )
( )

23 4R R R
R

R

R R R
R

R
τ τ τ

τ
τ

− − ⋅
=

�� � ���
����  (5.19) 

In (5.19) we now substitute the known lower-order derivatives, and we obtain: 

( )
( )

( )( )
4 2

22 20
0 07

3 4R R
R R R R

R

v RR R v
R

τ τ τ
τ

= − ⋅ − −����  (5.20) 

Evaluating this expression at the PSP, we get: 
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22 20
0 07

3 4R R
R R R R R R
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v RR R v
R

τ τ τ
τ
⋅
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 (5.21) 

A similar expression is found for the transmitter: 

( )
( )

( )( )
4 2

22 20
0 07

3 4T T
T T T T T T

T T

v RR R v
R

τ τ τ
τ

= − ⋅ − ⋅ −���� � �
�

 (5.22) 

 

5.3 Derivation of Constraints 
Now that we have determined all needed slant range derivatives at the points of 

stationary phase, we can go further and determine the constraints. We start with constraint 
(5.5). The values of the derivatives (5.8) and (5.20) are substituted in (5.5), producing: 

( )
( )( ) ( )

( )

4 2
2 22 20

0 07

2 2
0
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3 4
1 1
6

T T
T T T T T

T T

T T

T T

v R R v
R

v R
R

ξ τ τ τ
ξ

τ

⋅
⋅ − ⋅ − ⋅ −

⋅

� �

�

�

 (5.23) 

( )7
T TR ξ  is factorized as ( ) ( ) ( )2 3 2

T T T T T TR R Rξ ξ ξ⋅ ⋅  and substituted in (5.23). We 
obtain: 

( )( ) ( )
( ) ( )

2 22 2 2
0 0

2 2

41 1
2

T T T T T T

T T T T

v R v

R R

ξ τ τ τ

ξ ξ

⋅ − − ⋅ −

⋅

� �
�  (5.24) 

The expressions of ( )2
TR τ given in (3.3) are evaluated at Tξ  and substituted in (5.24), 

obtaining: 

( )

( ) ( )
( )
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222

02
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0
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1

T T T
T

T T
T
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T
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τ τ
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⎜ ⎟⋅ −
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⎝ ⎠ ⋅ ⋅ −
⎛ ⎞⋅ −
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⎜ ⎟
⎝ ⎠

� � �  (5.25) 

After canceling and reordering some terms, we get: 

( )

( )

( )
( )

22
0
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2 0

2 22
0

2
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1
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4
1

T T T

T TT
T

TT T T
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R
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ξ

τ τ
ξ τ

−
+

− ⋅ ⋅
−

−

� � �  (5.26) 

Normally in SAR, the slant range itself is much bigger than its variation. We assume that 
slant ranges at Tξ  and 0Tτ  are equal. Hence, in (5.26) we have further simplifications: 
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Normally ( )22
0

2
0

1T T T

T

v
R

ξ τ−
� , and the same holds for the term in the denominator: 

( )22
0

2
0

4
1T T T

T

v
R
ξ τ−

� . Thus, we get for the transmitter: 

( )
2

2 0
22 T

T
T

R
v

τ τ− ⋅� � �  (5.28) 

We take the square root from both sides and obtain: 

02 T
T

T

R
v

τ τ− ⋅� � �  (5.29) 

Because of symmetry of transmitter and receiver sides, we have a similar expression for the 
receiver: 

02 R
R

R

R
v

τ τ− ⋅� � �  (5.30) 

Now we continue with the second constraint given in (5.4). Using (5.4) and substituting 
in it the second- (5.9) and the third-order (5.17) derivatives of the slant range histories, we 
get:  
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 (5.31) 

By canceling the some terms in the above expression, we obtain: 

( )2

0 2

2
3
T T

T T T
T

R
v
τ

τ τ τ τ− ⋅ − <<
�

� � �  (5.32) 

We calculate ( )2
T TR τ�  by evaluating the expression given in (3.3) at Tτ� . We then substitute 

it into (5.32) to obtain: 

( ) ( )
22 2 2

20 0 0
0 02 2

22 2
3 3 3

T T T T T
T T T T T

T T

R v R
v v

τ τ
τ τ τ τ τ τ

+ −
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�
� � � ��  (5.33) 

A similar expression for the receiver is also determined: 

( ) ( )
22 2 2! 20 0 0

0 02 2

22 2
3 3 3

R R R R R
R R R R R

R R

R v R
v v
τ τ

τ τ τ τ τ τ
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� � � �  (5.34) 
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5.4 Constraints Expressed in Bistatic Parameters and Bandwidths 
We have derived the constraints of validity for the given bistatic point target reference 

spectrum (BPTRS). The constraints are given in (5.29), (5.30), (5.33), (5.34). These 
constraints are very important for any bistatic mission planning and more importantly, for a 
given mission they allow us to analyze whether or not the BPTRS is applicable. Yet, since 
the stationary points expressed in equations (5.29), (5.30), (5.33), (5.34) depend on geometry 
and Doppler parameters, we must rewrite the constraints in terms of bandwidths and bistatic 
mission specific parameters. Thus, we will express the constraints given in (5.29), (5.30), 
(5.33), (5.34) in terms of the transmitter’s and the receiver’s local parameters: velocities, 
slant ranges and range-azimuth frequency bandwidths. 

We will do the derivations for the transmitter’s side. We start with (5.29) and determine 
Tτ τ−� � . Here, τ�  is the common bistatic point of stationary phase (PSP). It has been 

calculated in (3.132). We substitute it into (5.29) and modify as follows: 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( )
1

T T T R R R R R R R R T R T
T T

T T R R T T R R T T

R R

φ τ τ φ τ τ φ τ τ φ τ τ τ ττ τ τ
φ τ φ τ φ τ φ τ φ τ

φ τ

⋅ + ⋅ ⋅ − ⋅ −
− = − = =

+ +
+

�� �� �� ��� � � � � � � � � �� � ��� �� �� �� ��� � � � �
�� �

 (5.35) 

( )T Tφ τ�� � , ( )R Rφ τ�� �  are the second-order derivatives of the transmitter’s and the receiver’s 
phase terms at their individual points of stationary phase, given in (3.72) for the receiver and 
in (3.117) for the transmitter. 

In the further constraint derivations we use the approximations: 

( ) ( ) ( )

( ) ( ) ( )
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f cF f f f f f f
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f cF f f f f f f
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τ
τ

= + − ≈ +

= + − +�
 (5.36) 

We assume that carrier frequency 0f  is much bigger then range frequency bandwidth f . 
Hence, 0f f+  is positive. Furthermore, the expressions of the receiver’s and the 
transmitter’s points of stationary phase are given in (3.66) and (3.107), respectively. We thus 
obtain the following for the numerator of (5.35): 

( )
0 0

0 0 2 2
02

R T
R T T R

R T

f c R R
f f v v

ττ τ τ τ
⎛ ⎞
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For the denominator, after using the approximation given in (5.36), we obtain: 
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1 1T T T R

R R R T
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φ τ
φ τ

⋅
+ = +

⋅
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 (5.38) 

Now we insert the numerator and the denominator in (5.35): 
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We substitute (5.39) into (5.29) and get: 
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In the denominator of (5.40), we factor our 0
2

T

T

R
v

 and obtain: 
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We multiply both sides of (5.41) with 
2

0

T

T
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R

 and get: 
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We can get similar inequality for the receiver: 
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Now we continue with the constraint given in (5.33). We divide both sides by 0T Tτ τ−�  
and get: 
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 (5.44) 

On the right side of (5.44), we have the variable 0T Tτ τ−� . This is the modulus of the 
azimuth time difference between the receiver’s point of closet approach and PSP. This time 
difference can be determined from (3.107) as: 
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Substituting (5.45) and (5.39) into (5.44), we obtain: 
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Now we multiply both side of (5.46) with 
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 and get: 
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Because of the symmetry of transmitter and receiver sides, we have a similar inequality 
for the receiver: 
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In the left sides of inequalities (5.42), (5.47), we have same term. Therefore, the question 
naturally arises as to whether we can change these two constraints into one. To answer this 
question we should consider the ratio: 
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If the TRatio  always stays bigger or smaller than 1 for a given bistatic mission, then we 
can change the two inequalities (5.42) and (5.47) with one inequality. We have done 
research in this respect and found out that this is not a case. For example, we calculate 

TRatio  with the following parameters: 
 

Table 5.1. Parameters for bistatic scenario  
Parameter Transmitter 
Speed of airplane Tv   98m/s 
Frequency 0 0f f f+ ≈   1:10GHz 
Doppler frequency range 200:1200Hz 

 
The change of TRatio  with respect to Range and Doppler frequency is shown on the left 

side of Figure 5.1. Please note that TRatio  is bigger than 1 at some regions, and at some 
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regions is smaller than 1. It is better visible on the right side of Figure 5.1, where we have 
shown a cutout of the plot on the left for the range frequency 1GHz. We are therefore 
obliged to keep both constraints (5.42), (5.47) for the transmitter. It is obvious that that the 
same is valid for the receiver. In summary, we have two inequalities (5.42), (5.47) for the 
transmitter and two inequalities (5.43) and (5.48) for the receiver.  

Now, to make it better visible, we divide all four inequalities (5.42), (5.47), (5.43), (5.48) 
with their individual right sides. Everywhere on the right side we get 1. Everywhere in the 

inequalities we will have .... 1<< . We have done many simulations and observed that .... 1<<  
could be changed to ... 0.4< , forming a properly sufficient condition for bistatic constraints. 

 

 
Figure 5.1, TRatio with respect to Range and Doppler frequencies on the left plot; cutout of 

the plot on the left at the fixed range frequency 1GHz; 
 
Summarizing, we collect all four constraints together: 
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0 0T Rτ τ−  is the azimuth time difference at the transmitter’s and the receiver’ points of 
closest approach. It was determined by using vectorial calculations and is given in (3.93). fτ  
is the azimuth frequency, determining the azimuth frequency range. 0f f+  is the range 
frequency, determining the actual range frequency interval. In addition to the above 
constraints we have the velocities and slant ranges of the transmitter and the receiver. In 
order to process the bistatic raw data, we should carefully select the frequency bands, bistatic 
geometry and bistatic parameters. 

 

5.5 Interpreting the Bistatic Constraints  
For the validity of the bistatic point target reference spectrum (BPTRS), we have derived 

the four constraints given in (5.50). The constraints bind together the transmitter’s and the 
receiver’s velocities, their slant ranges and range and Doppler frequencies. Here we consider 
the result of these constraints using parameters used in conventional SAR missions.  

First we consider the Tandem configuration. In the Tandem case, 0 0 0R TR R R= ≅  and 

0 0 0R Tv v v= ≅ . The constraints given in (5.50) are further simplified: 
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(5.51) 

Now we evaluate above for airborne case with parameters given in Table 5.2. 
 

Table 5.2. Parameters for airborne simulation  
Parameter Transmitter/Receiver 
Speed of airplane v   100m/s 
Slant Range 0R  5000m 
Carrier Frequency 0 0f f f+ ≈   1GHz 
Doppler frequency range -1200Hz : 1200Hz 

 
We have evaluated both constraints for the transmitter and the receiver and observed that 

for this particular case the constraint 1 1T RL L=  is stronger than 2 2T RL L= .  
The dependency of 0 0 0T R aτ τ− =  with respect to fτ  is shown on the left side of Figure 

5.2. We can observe that 0a  should be selected at less than 10s. In the Tandem case, the 

time separation of 10s corresponds to the baseline 0 10 *100 / 1000d a v s m s m= ⋅ = = . If the 
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carrier frequency increases, then the baseline calculated from the constraint becomes also 
bigger.  

Now we consider spaceborne case with parameters given in Table 5.3. 
 

Table 5.3. Parameters for spaceborne simulation  
Parameter Transmitter/Receiver 
Speed of satellite v   8000m/s 
Slant Range 0R  200km 
Carrier Frequency

0 0f f f+ ≈   1GHz 

Doppler frequency range -2200Hz : 2200Hz 
 
The results are shown in the right side of Figure 5.2. It is obvious that 0a  should be less 

than 100s. Time separation of 100s in a spaceborne Tandem case corresponds to the baseline 
100 *8000 / 800d s m s km= = . 

 
Figure 5.2. Tandem case 0 0 0T R aτ τ− =  with respect to fτ  

 

5.6 Numerical Values of the Bistatic Constraints for Different 
Simulations 

5.6.1 Translationally Invariant Case 
Now we consider a particular airborne translationally invariant SAR configuration with 

parameters given in Table 5.4. We simulated this configuration using the parameters similar 
to the real bistatic experiment described in section 8.3.4.  

The airplanes move with equal velocities on parallel tracks in a way such that 
0 0 0 0T R aτ τ− = = . We simplify the bistatic constraints given in (5.50) and obtain: 
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Table 5.4. Parameters of airborne translationally invariant case 
Parameter Transmitter Receiver 
Speed of airplanes 110m/s 110m/s 
Pulse duration 3.0μs 
Carrier Frequency 10.13GHz 
Bandwidth 100MHz 
Squint angle 0° 0° 
Off Nadir angle 55° 57° 
Opening angle in azimuth direction 1.8° 1.8° 
Opening angle in elevation 8° 8° 
PRF 1250Hz 
Distance between airplanes (constant) 1000m 

 
Bistatic constraints given in (5.50) are strongly dependent on the Doppler bandwidth. 

Opposite to range frequency, azimuth frequency range depends on the particular bistatic 
geometry and on the position of the bistatic point target. In the general bistatic case, it is 
azimuth time variant. The derivation of the bistatic Doppler centroid and the Doppler 
bandwidth was performed in section 4.2 (derivations are based on the work given in [2]). 

As mentioned above, 0 0 0 0T R aτ τ− = = . Additionally, because the squint angles of the 
transmitter and the receiver are zero, 0Rτ  coincides with the azimuth time at the center of the 
bistatic footprint cbτ . Therefore, using (4.16), we obtain: 
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(5.53) 

We have generated the scene consisting of 5 point targets allocated in azimuth direction with 
distance separation of 100m. By calculating the Doppler bandwidths using (5.53) we obtain 
the results given in Table 5.5. We use the Doppler bandwidths given in Table 5.5 and 
evaluate the bistatic constraints given in (5.52) for each point target. On the left side of 
Figure 5.3 the parameter 1 1T RL L=  with respect to the estimated Doppler frequency range is 
shown for each point target. Both constraint parameters are much less than one. 

 
Table 5.5. Doppler bandwidths for 5 point targets 

Point Target Doppler Bandwidth 
PT1 219.09Hz 
PT2 219.34Hz 
PT3 219.49Hz 
PT4 219.74Hz 
PT5 219.88Hz 
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Figure 5.3. Bistatic constraints for translationally invariant case: left with have 1 1T RL L=  

constraint parameter and 2 2T RL L= on right side 
 
The validity of the constraints is demonstrated by focusing the scene with BPTRS, 

matching it to different point targets.  

 
Figure 5.4. Focused scene with bistatic point target reference spectrum matched to 5th and 

2nd point targets 
 

The left side of Figure 5.4 shows the focusing result for the 5th point target, and on the 
right we have the result for the 2nd PT.  

 

5.6.2 Hybrid Bistatic Experiment 
In the next simulation we consider very extreme bistatic configuration. This is the hybrid 

bistatic experiment. It uses a satellite as the transmitter and an airplane as the receiver. It was 
described in detail in section 2.4.1. The parameters of this experiment are given in Table 5.6.  

In this experiment, we have a big difference between the transmitter and the receiver 
velocities and the slant ranges. The velocity of the transmitter is 76 times bigger than for the 
receiver, and the altitudes differ by a magnitude of about 170. Because of these factors, we 
have a bistatic mission where the focusing is a big challenge. In the case of the hybrid 
mission, the complete integration time is 3s. The azimuth time difference 0 0 0T Ra τ τ= − , 
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constant in translationally invariant configurations, changes in this case very quickly along 
the azimuth direction.  

 
Table 5.6. Parameters of hybrid bistatic experiment 

Parameter Transmitter Receiver 
Speed  7600m/s 100m/s 
Pulse duration 3.0μs 
Carrier Frequency 9.65GHz 
Bandwidth 100MHz 
PRF 2500Hz 
Altitude 514km ≈3000m 

 
If we fix the satellite and the airplane antenna steering angles constant, we will have a 

very small bistatic scene extension. To solve this problem, we propose using the azimuth 
variant angle steering for both transmitting and receiving antennas. The steering allows us to 
increase the bistatic scene in azimuth direction till 1200m. 

We have generated the scene with 7x7 point targets with 200m separation in azimuth 
direction (parallel to the trajectories of the transmitter and the receiver) and 100m separation 
in range direction. This kind of allocation practically covers the almost whole bistatic swath.  

We have generated the hybrid simulation and calculated different parameters used in 
bistatic constraints. Doppler frequencies and different bistatic parameters are shown in the 
following tables. Doppler centroids are given in Table 5.7 and Doppler bandwidths in Table 
5.8. They were calculated using (4.16). Even though Doppler bandwidths are nearly the 
same, because of the big variation of the Doppler centroids, we have complete azimuth 
bandwidth close to 6KHz. 

 
Table 5.7. Doppler centroids of 7x7 point targets 

    2651.8    1668.5    685.3   0.0   -610.0   -1220.1   -1830.1 
    2577.4    1621.7    666.1   0.7   -592.2   -1185.9   -1778.8 
    2511.1    1580.4    649.0   0.7   -577.9   -1155.8   -1734.4 
    2451.3    1542.3    634.1   0.7   -564.1   -1129.7   -1694.5 
    2395.7    1508.2    620.6   0.7   -552.3   -1105.5   -1658.6 
    2344.4    1476.4    608.5   0.7   -541.2   -1083.1   -1625.8 
    2296.4    1446.3    597.0   1.4   -531.3   -1063.5   -1595.6 

 
 

Table 5.8. Doppler bandwidths of 7x7 point targets 

    768.4    762.5    761.0    761.7    767.7    775.8    788.4 
    758.0    757.2    758.7    764.6    773.5    786.0    802.3 
    749.8    752.0    757.2    766.8    779.3    794.8    813.3 
    742.5    747.6    756.5    768.3    783.8    802.2    824.3 
    735.9    744.0    755.1    769.8    788.2    808.8    833.2 
    729.4    741.2    754.4    771.3    791.2    814.8    840.5 
    725.1    738.3    753.8    772.9    794.2    820.0    847.9 

 
 

Table 5.9. 0a  - parameters of 7x7 point targets 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
   -2.8   -0.8    1.1   0.0   -1.9   -3.9   -5.9 
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Table 5.10. 2a  - bistatic parameters of 7x7 point targets 

    188.0    188.0    188.0    188.0    188.0    188.0    188.0 
    182.8    182.8    182.8    182.8    182.8    182.8    182.8 
    177.8    177.8    177.8    177.8    177.8    177.8    177.8 
    173.1    173.1    173.1    173.1    173.1    173.1    173.1 
    168.6    168.6    168.6    168.6    168.6    168.6    168.6 
    164.4    164.4    164.4    164.4    164.4    164.4    164.4 
    160.3    160.3    160.3    160.3    160.3    160.3    160.3 

 
 

Table 5.11. 0RR - receiver slant ranges of 7x7 point targets 

    3450.0    3450.0    3450.0    3450.0    3450.0    3450.0    3450.0 
    3550.0    3550.0    3550.0    3550.0    3550.0    3550.0    3550.0 
    3650.0    3650.0    3650.0    3650.0    3650.0    3650.0    3650.0 
    3750.0    3750.0    3750.0    3750.0    3750.0    3750.0    3750.0 
    3850.0    3850.0    3850.0    3850.0    3850.0    3850.0    3850.0 
    3950.0    3950.0    3950.0    3950.0    3950.0    3950.0    3950.0 
    4050.0    4050.0    4050.0    4050.0    4050.0    4050.0    4050.0 

 
 

Table 5.12. 0TR - transmitter slant ranges of 7x7 point targets 

    648911.02    648911.02    648911.02    648911.02    648911.02    648911.02    648911.02 
    649029.67    649029.67    649029.67    649029.67    649029.67    649029.67    649029.67 
    649140.22    649140.22    649140.22    649140.22    649140.22    649140.22    649140.22 
    649244.64    649244.64    649244.64    649244.64    649244.64    649244.64    649244.64 
    649344.22    649344.22    649344.22    649344.22    649344.22    649344.22    649344.22 
    649439.90    649439.90    649439.90    649439.90    649439.90    649439.90    649439.90 
    649532.34    649532.34    649532.34    649532.34    649532.34    649532.34    649532.34 

 
 
Bistatic parameters 0a  and 2a  are given in Table 5.9  and Table 5.10 correspondingly. 

The transmitter and the receiver slant ranges at the point of closest approach are given in 
Table 5.11 and Table 5.12. 

Now we calculate the bistatic constraints according to (5.50). The transmitter constraint 
1TL  for the point targets 7x7 (totally 49) is shown in Figure 5.5 on axis ‘Z’.  

On the ‘X’ axis, the numerical value of each row is depicted. It changes from 0 to 6, 
which corresponds to the first 1-7 rows. Different columns are shown on different plots of 
Figure 5.5. Because of space, we have plotted only 1-6 columns. On the ‘Y’ axis, the 
Doppler frequency is given. For point targets located in the same column, the Doppler 
frequency does not change too much. However, during a move from one column to another, 
the azimuth frequency bandwidth has a big variation. The change of the Doppler frequency 
for columns and rows is shown in Figure 5.6.  
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Figure 5.5. 1TL bistatic constraint parameter of 7x6 point targets 

 
 

 
Figure 5.6. Real Doppler frequency range of 7x6 point targets 

 
In Figure 5.5, we observe that the values of 1TL  are much smaller than 1. So, this 

particular bistatic constraint holds. Next we calculate the 2TL  parameter, shown in Figure 
5.7. We can observe that the values of 2TL  also do not violate the bistatic constraints, 
because they are less than one. 
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Figure 5.7. 2TL bistatic constraint parameter for 7x6 point targets 

 
We now perform the calculations for the receiver. The values of the 1RL  and 2RL  

parameters are shown respectively in Figure 5.8 and in Figure 5.9.  
 

 
Figure 5.8. 1RL bistatic constraint parameter of 7x6 point targets 
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Figure 5.9. 2RL bistatic constraint parameter of 7x6 point targets 

 
The parameters 1RL  and 2RL  for some point targets are bigger than 1, which breaks our 

bistatic constraints. As mentioned in the beginning, our bistatic constraints are sufficient, but 
not necessary, conditions. Therefore, we cannot claim that the bistatic point target reference 
spectrum fails for the hybrid case. In the scope of this thesis we could not perfectly focus the 
simulated scene for a hybrid mission using the BPTRS. Work in this area is going on. 
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6 Checking the Validity of the Bistatic Point Target Reference 
Spectrum by Simulations 

We derived the bistatic point target reference spectrum (BPTRS) in chapter 3. The 
Method of the Stationary Phase (MSP) was applied for the derivation, a necessary step in 
order to transform the point target response from azimuth time to the Fourier domain. This 
method is thoroughly explained in Appendix A. MSP itself is an approximation, and we 
additionally expanded the bistatic phase terms in second order Taylor expansion. These 
approximations limit the validity of the point target reference spectrum. In chapter 4 we gave 
the constraints of validity for the BPTRS. In total, we have derived three constraints: two 
separate constraints for the transmitter and for the receiver parameters, and one additional 
constraint binding the transmitter’s and the receiver’s slant ranges and velocities. 

The best way of verifying the suitability of the BPTRS is by showing the focusing 
results, which we will do in this chapter, using simulated bistatic raw data. 

6.1 Checking the Validity for Single Point Target 
The bistatic simulator was implemented in IDL1. We can use different parameters 

(typical for bistatic configurations) in the simulator: trajectories of the remote sensors, their 
velocities, positions of the point targets and the steering angles of the transmitter and the 
receiver beams. Any type of signal can be selected as the transmitted signal. In SAR, a linear 
frequency-modulated signal (chirp signal) is normally used. With the simulation we generate 
the bistatic raw data for different configurations. In addition, all parameters (such as slant 
ranges, values of the parameters 0 2,a a  given in (3.93) and necessary for our bistatic 
approach, etc.) are determined from the simulator. The simulation principle realized by the 
IDL program is shown in Figure 6.2.  

The trajectories of the transmitter and the receiver are assumed here to be straight lines. 
It is also possible for the simulator to generate arbitrary trajectories. 

In the first approximation, the footprints are quadrilaterals2. The vertexes of the 
footprints are determined by calculating the offset with the half of the opening angles in the 
range and azimuth direction. The beam center direction is determined with the squint and the 
off-nadir angles. 

 We follow the conventional definition of squint and off-nadir angle. The definitions can 
be visualized by taking the transmitter’s movement as an example. Supposing a situation 
where the remote sensor (in this case, the transmitter) moves across a straight line with a 
constant velocity vector TvG  (as shown in Figure 6.1), the coordinates of the point target are 
described with the receiver’s coordinates 0 , 0R RR τ . The line A-PT is parallel to the sensor’s 
trajectory crossing the point target. Point B is the instantaneous position of the sensor, and O 
is the projection of the point B onto the illuminated scene. The line A-B is perpendicular to 
the trajectory of the sensor. The resulting angle O-B-A is called the off-nadir angle and is 
denoted with β , and the angle A-B-PT is called the squint angle and is denoted with Ψ . 

                                                 
1 Interactive Data Language 
2 In geometry, a quadrilateral is a polygon with four sides and four vertices 
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Figure 6.1. Geometry of the sensor’s illumination 

 
The simulation principle realized by the bistatic simulator is shown in Figure 6.2. The 

footprint of the transmitter is given in green, and that of the receiver is in red. The 
intersection of all footprints gives the common bistatic footprint. For each time instant, we 
determine whether or not the point target is within the common bistatic footprint. For this 
purpose, we measure the common azimuth window (the time when the PT is seen 
transmitting and receiving sensor). 
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Figure 6.2. Simulation Principle  

 
 

At each time instant we determine whether the PT is inside the common bistatic 
footprint. We check if the PT is within the footprint of the transmitter and the receiver 
simultaneously. This is done using vectors. The footprint of the transmitter with the PT 
inside is given in Figure 6.3. For the vectors A

G
 and B

G
, the inner product is defined as:  

cosA B A B β⋅ = ⋅ ⋅
G GG G

 (6.1) 

where β  is the angle between these two vectors. The quadrilateral footprints are just an 
approximation of the real footprint, which are of more or less elliptical shape. We have 
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selected this representation only for simplicity in order to generate the correct steering of the 
beam. Because the quadrilaterals are approximations of the real footprint, we can assume 
that all four angles are smaller than 180° ( 0 180β≤ < ° ). If we then take two vectors that 
coincide with two neighboring sides, the angle between them can be uniquely determined 
from (6.1). First we check whether the PT is within the angle 2-1-4. This is done by 
calculating the angles 2-1-PT and PT-1-4 and comparing them with 2-1-4. The angles are 
calculated by determining the corresponding vectors and by using (6.1). If both the 2-1-PT 
and PT-1-4 angles are smaller than 2-1-4, then PT is inside the 2-1-4 angle. Similarly, we 
check to see if the PT is inside the angle 1-2-3 at the same time; if this is the case, we 
conclude that the PT is inside the quadrilateral 1-2-3-4. 
 

 
 

Figure 6.3. Point target inside of the transmitter’s footprint 
 

For each time instant we check whether the PT is inside of the transmitter and the 
receiver footprints. We also calculate the instantaneous positions of the transmitting and 
receiving sensors and determine their slant ranges. The sum of the transmitter’s and the 
receiver’s slant ranges corresponds to the signal travel time necessary to cover the path from 
transmitter-point to target-receiver. Then, the azimuth time variant delay is calculated as: 

( )0 0 0, , R T
R R

R Rt R
c

τ τ +
=  (6.2) 

Finally, we determine the bistatic point target response for a single PT by means of:  

( ) ( ) ( ) ( )( ) ( )0 0 0 02 , ,
0 0 0 0 0 0 0, , , , , , R Rj f t R

l R R R R cb l R Rg t R R w s t t R e π τ ττ τ σ τ τ τ τ τ − ⋅= ⋅ − ⋅ − ⋅  (6.3) 

 
• t  is the range time,τ  is the azimuth time. 
• 0 0,R RR τ  are the receiver coordinates. 
• ( )0 0,R RRσ τ  is the backscattering coefficient, which is assumed to be real. 

• ( )cbw τ τ−  is the common bistatic azimuth time window. 
• ls  is the transmitted chirp signal in the low-pass domain. 
• 0f  is the carrier frequency. 
• ( )0 0 0, ,R Rt Rτ τ  is the complete bistatic time delay including both delay times: from the 

transmitter to the PT and from PT to the receiver. It depends on the location of PT 
and on the azimuth time. 

• cbτ  is the bistatic azimuth window center. We know the footprints of the transmitter 
and the receiver. We therefore determine the start and end time of their intersection.  
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We later distribute groups of PTs at different locations in the scene. We determine their 

individual responses and add them together. In this way we obtain the raw SAR data of the 
complete scene. 

 

6.1.1 Airborne Case 
We demonstrate the functionality of the bistatic simulator by one particular simulation, 

an airborne bistatic experiment with parameters given on Table 6.1:  
 

Table 6.1. Parameters of the airborne simulation 
Parameter Transmitter Receiver 
Speed of airplanes 98 m/s 98 m/s 
Pulse duration 3 μs 
Carrier Frequency 10.17 GHz 
Bandwidth 20 MHz 
PRF 1250 Hz 
Squint angle 0° 0° 
Off Nadir angle 42° 52° 
 Opening angle in azimuth direction 6° 6° 
 Opening angle in elevation 12° 12° 
Max distance between airplanes 1029 m 
Min distance between airplanes 1000 m 
Distance of closest approach 3893 m 4603 m 

 

The transmitter and the receiver move with equal velocities, but their tracks are not 
parallel. The fact that the tracks are not parallel is obvious from Table 6.1, since the distance 
between the transmitter and the receiver changes during flight time.  

 
Figure 6.4. 3D view of the airborne simulation 

 
Figure 6.4 shows the 3D view of the simulation. The transmitter’s path and its footprint 

are given in green, and the receiver’s path and its footprint are in red. The point target is 
indicated in blue. We check whether the PT is simultaneously within the footprints of the 
transmitter and the receiver. In this way we find the common bistatic window that 
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determines the azimuth bandwidth. As a first test, SAR raw data set corresponding to a 
single PT was simulated and focused by means of the BPTRS. Since in this case we are 
talking only about a single PT, the focusing can be understood as correlation of the raw data 
with the bistatic point target response. The correlation is implemented by FFT techniques. 
We transform the raw data for the single PT into the Fourier domain. The real parts of the 
response and the spectrum for the simulated PT are displayed in Figure 6.5: 

 

Figure 6.5. Time domain response (top) and the spectrum (bottom) of the single point target 
 

The point target reference spectrum is generated with the expression given in (3.136). 
We then multiply the spectrum corresponding to the raw data by the complex conjugate of 
the BPTRS. The result is back-transformed to the time domain, and we obtain the focused 
result for the single PT. 

Initially, to be sure that our simulation is running correctly, we only compared two 
different spectra: one generated by the expression of the BPTRS, and another corresponding 
to the raw data.  

In Figure 6.6, we can see the absolute values of the spectrum generated by a single PT 
corresponding to the raw data (lower plot) and to the point target reference spectrum (upper 
plot). Both results are given in the range frequency direction, and the cut of the 2D spectrum 
was taken at the zero Doppler frequency. The results are very similar, since they have the 
same frequency range and are equivalent to the bandwidth given in Table 6.1.  
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Figure 6.6. Comparison of the range spectra – upper plot: generated by the point target 
reference spectrum; lower plot: created by the raw data 

 
A similar cut of the 2D spectrum was made in the azimuth direction. This case is always 

more interesting, because we often have in the azimuth direction an offset corresponding to a 
Doppler centroid. 

 

 
Figure 6.7. Comparison of the Doppler spectra – upper plot: generated by the bistatic point 

target reference spectrum; lower plot: created from the raw data 
 
Figure 6.7 represents the absolute value of the spectrum generated from the BPTRS 

(lower plot) and the spectrum created using our bistatic formula (upper plot). We observe 
that both plots show the same bandwidth in the azimuth direction and have the same small 
negative frequency offset (bistatic Doppler centroid). 

In Figure 6.8 we show the focusing result for a single PT. The left column is the focusing 
result obtained with the BPTRS. /A/ shows a closer look, and /B/ is the result for the 
complete scene. For comparison, we also tried to focus the raw data with the monostatic 
point target reference spectrum given in (6.4): 
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 (6.4) 

 
The symbols have the following meanings: 
• cf  is the monostatic Doppler centroid frequency. 
• azB  is the monostatic Doppler bandwidth. 
• ( )cR τ  is the slant range at the footprint center. 
• 0f  is the carrier frequency. 
• v  is the sensor velocity in the monostatic case. 
 
The result is shown on the right column of the same image. /C/ presents a closer view of 

the focusing result with the monostatic point target reference spectrum, and /D/ is the result 
of the complete scene. By means of the bistatic formula, we have a clearly focused result, 
whereas when we apply the monostatic formula we get a result blurred both in range and 
azimuth directions.  

 

  Azimuth
  Azimuth

  Azimuth
  Azimuth

 Range  Range

 Range
 Range

A C

B D

 

Figure 6.8. Left side: focusing with the bistatic formula, magnitude of the focusing result - 
/A/: a closer look and /B/: the complete scene; right: focusing with the monostatic formula – 

/C/: a closer look and /D/: the complete scene 
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6.1.2 Spaceborne Case 
Next, we perform a spaceborne experiment. The satellites move at different velocities, 

and their tracks are not parallel. Table 6.2 shows the parameters of the simulation: 
 

Table 6.2. Parameters of the spaceborne bistatic simulation 
Parameter Transmitter Receiver 
Speed of Satellites 7300 m/s 7500 m/s 
Pulse Duration 37.1 us 
Carrier Frequency 5.5 GHz 
Bandwidth 3 MHz 
PRF 7300 Hz 
Squint Angle 0.3° 0.3° 
Off Nadir 45° 45° 
Opening angle in azimuth direction 1° 1° 
Opening angle in elevation 5° 5° 
Max Distance between Satellites 3080 m 
Min Distance between Satellites 3000m 
Distance of Closest Approach 284 km 286 km 

 
The distance between satellites is changing, so we are dealing with a typical general case 

(the definition is given in section 2.3). The top part of Figure 6.9 shows the real part of the 
point target response; the bottom part displays the real part of the spectrum. We can observe 
a considerable Doppler shift, corresponding to the squint angles of the satellites: 
 

 
Figure 6.9. Real part of the response (top) and real part of the spectrum (bottom) 

 
As in the airborne case, we have compared the spectral components for the signals 

generated from the BPTRS with those created directly from the simulated raw data. Figure 
6.10 shows the result of this comparison. The upper plot shows the spectrum generated from 
the BPTRS, and the lower plot shows the spectra corresponding to the simulated data. Both 
plots are in the range frequency direction. The observable bandwidth of the signal is around 
3MHz, which corresponds to the bandwidth given in Table 6.2. 
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Figure 6.10. Comparison of the range spectra – upper plot: generated by the point target 

reference spectrum; lower plot: created from the raw data 
 

The same kind of comparison is done in the Doppler frequency direction. The results are 
shown in Figure 6.11. The upper plot shows the absolute value of the spectrum obtained 
from the BPTRS, and the lower plot shows the spectrum created from the simulated raw 
data. The results are very similar, and they are in agreement with the parameters of the 
simulation. We have obtained a Doppler frequency offset of around 1000 Hz, which 
corresponds to the satellite’s squint angle of 0.3°. The azimuth bandwidth is around 2500 
Hz.  

 

 
Figure 6.11. Comparison of the Doppler spectra – upper plot: generated by the bistatic point 

target reference spectrum; lower plot: created from the raw data 
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In Figure 6.12, we visualize the results of the focusing of a single PT, but this time for the 
spaceborne case. /A/ gives a closer look and /B/ the complete scene. Processing results using 
the monostatic formula are shown on /C/ and /D/, where /C/ is a closer look and /D/ is the 
complete scene. Various configurations were considered, all of them showing extremely well-
focused results.  

  Azimuth
  Azimuth

  Azimuth
  Azimuth

 Range  Range

 Range
 Range

A C

B D

 
 Figure 6.12. Focusing with the bistatic formula – /A/ close look and /B/ complete 

scene; focusing with monostatic formula – /C/ close look and /D/ complete scene 
 

6.2 Focusing Groups of Point Targets with the Bistatic Point Target 
Reference Spectrum 

It is not possible to apply the bistatic point target reference spectrum (BPTRS) directly to 
focus the complete scene, as was done for a single point target. In principle, the range 
migration curve is different for the different PTs, and therefore the focusing should be done 
by taking into account the individual location of each PT. But in some configurations (for 
example in Tandem and translationally invariant configurations) the PTs across the line 
parallel to the azimuth direction will experience the constant range hyperbolas and can be 
focused with the same reference function.  

 

6.2.1 Point Targets along the Azimuth Direction  
As a start, we consider the translationally invariant case (airplanes flying on parallel 

trajectories with equal velocities). On the illuminated area, four PTs in azimuth direction are 
located parallel to the flight path, and the separation between them is 100 m. 
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Figure 6.13 shows the location of the target point, the receiver’s and the transmitter’s 
trajectories and their footprints on the ground plane: 

 

Figure 6.13. Translationally invariant case, PTs are located across the azimuth direction 
 
This is an airborne experiment, the parameters for are shown in Table 6.3. 
 

Table 6.3. Parameters of the translationally invariant configuration, airborne case 
Parameter Transmitter Receiver 
Speed of Satellites 98 m/s 98 m/s 
Pulse Duration 3 us 
Carrier Frequency 10.17 GHz 
Bandwidth 20 MHz 
PRF 1250 Hz 
Squint Angle 90° 90° 
Off Nadir Angle 52° 42° 
Opening angle in azimuth direction 6° 6° 
Opening angle in elevation 12° 12° 
Distance of Closest Approach 4599 m 3893 m 
a0 0 s 
a2 1.18 

 

The SAR raw data were generated by simulation. The bistatic reference function is 
azimuth time invariant, and it is the same for all four PTs since the slant ranges of these PTs 
are identical. So, instead of applying the complete focusing approach, we focus all PTs in the 
same way as it was done for a single PT. The raw data spectrum is multiplied with the 
complex conjugate of the first PT spectrum; this is another way to check the reference 
function’s validity concerning distributed targets in the azimuth direction. It should be noted 
that verifying the reference function’s validity has a crucial importance, since it will be the 
basis for the development of the processing algorithms for complete scenes in the next 
chapters.  
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Figure 6.14 shows the focusing results. /A/ and /B/ are the result obtained with the 
bistatic reference function, /A/ showing the complete scene and /B/ presenting a closer look. 
For comparison, we have done the processing with the monostatic reference function, shown 
as /C/ and /D/. /C/ is the complete scene and /D/ shows the corresponding closer look. For 
the simulation above, we measured the distances between the PTs and got a value of 100 m, 
which corresponds with the reality. We may thus note that the approach has not only focused 
the PTs correctly, but that it also locates the focusing results in the correct positions. 

 

Azimuth Azimuth

Azimuth
Azimuth

Range

Range
Range

100m

A C

D
B

 
Figure 6.14. Focusing with the bistatic reference function – /A/ complete scene, /B/ closer 

look for only two point targets; Focusing with the monostatic reference function – /C/ 
complete scene, /D/ close look only for two point targets 

 

6.2.2 Point Targets Distributed in the Range Direction 
The next test will have the same airborne parameters given in 6.2.1, but in this case, the 

point targets are deployed in range direction with a separation of 100m. Of course now the 
PTs, because of their different location, have different reference functions (due to the 
different range curvatures); hence, we cannot expect the focusing with one reference function 
to be successful. It will be interesting to see how the focusing quality will be degraded by the 
mismatch of the reference function: 

 

Figure 6.15. Focusing with BPTRS tuned to 1st PT (left) and to 3rd PT (right) 
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First, we performed the focusing by multiplying the complex spectrum with the complex 

conjugate of the bistatic reference spectrum tuned to the first PT. The result is shown on the 
left side of Figure 6.15: 1st PT is correctly focused, but other PTs are defocused, which is to 
be expected. For each focused PT, we have calculated the location of the range line. We 
observed that all range lines correspond to the location of PTs. The reference function range 
is then adjusted to the 3rd PT, and the focusing is carried out again. This result is shown on the 
right side of Figure 6.15. The reference function is still valid and works properly if it is tuned 
to the correct reference range. Nevertheless, it is obvious that the focusing of complete scenes 
implies dealing with the range dependent value of the reference function.  
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7 Extension to Focusing of Complete Scenes 
Until now we have mainly considered the focusing of individual point targets (PT) and 

groups of spatially separated PTs. The validity of the bistatic reference function was 
demonstrated by means of simulated raw data. We saw that, by using the bistatic reference 
function tuned to a given range, we can focus all PTs at that range, while all other PTs with 
different ranges are defocused. 

Now we extend the focusing ability from a single and a group of PTs to the focusing of 
complete scenes.  
 

7.1  Monostatic Focusing Approach 
Our bistatic processor will use the modules from the monostatic processor. Therefore we 

first explain the steps of monostatic approach developed at ZESS [3],[4]. 
In the last two decades, algorithms in the frequency domain have become quite popular. 

The reason is that they only use forward and backward FFTs and chirp multiplications, thus 
avoiding any interpolation. These features increase the processing efficiency and quality. 
Our monostatic processor based on the Inverse Scaling (IS) FFT is one of the kind of 
algorithms mentioned above, first developed in [3]. The Inverse Scaling processor will be 
considered in more detail later. 
 

7.2 Monostatic Point Target Reference Spectrum  
In the monostatic case, the transmitter and the receiver are located on the same moving 

platform. The received backscattered signal is described with a range-dependent delay: 

( ) ( )0 0
0 0

2 , ,
, ,v

R R
t R

c
τ τ

τ τ =  (7.1) 

0R  is the slant range at the point of closest approach, and 0τ  is the azimuth time when this 
point is reached.  

The received signal is:  

( ) ( ) ( ) ( )( ) ( )0 0 02 , ,
0 0 0 0 0 0, , , , , , vj f t R

l c l vg t R R w s t t R e π τ ττ τ σ τ τ τ τ τ − ⋅= ⋅ − ⋅ −  (7.2) 

For determining the backscattering coefficient spectrum, we need to take the Fourier 
transform twice for both fast and slow time variables: 

( ) ( ){ }0 0 0 0, , , , , ,l t lG f f R g t Rτ ττ τ τ= FF  (7.3) 

The expression above works to solve the double integral: 
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=

⋅ − ⋅ − ⋅ ⋅ ⋅∫ ∫
 (7.4) 

After solving the integral, the 2D point target reference spectrum of the received signal 
scattered at the location ( )0 0,R τ  is obtained. In [4] it was shown that this spectrum is given 
by: 
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• cf  is the monostatic Doppler centroid frequency. 
• azB  is the monostatic Doppler bandwidth. 
• 0R  is the slant range at the point of closest approach. 
• 0f  is the carrier frequency. 
• v  is the sensor velocity. 
 
The detailed derivation of this formula is given in [24].  
 
If the locations of the transmitting and the receiving sensors coincide, then the bistatic 

configuration converges to a monostatic constellation. Indeed, it was shown in section 3.9 
that the monostatic reference spectrum is a special case of the bistatic point target reference 
spectrum. 

 

7.3 Spectrum of the Complete Scene 
The expression (7.5) indicates the monostatic point target reference spectrum.  

The backscattering coefficient for the whole scene can be represented as the convolution 
of the scene brightness distribution with the Dirac function. as follows: 

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , , , ,R R R R R R dR dσ τ σ τ δ τ σ τ δ τ τ τ
∞ ∞

−∞ −∞

= ∗∗ = ⋅ − −∫ ∫  (7.6) 

 The point target (PT) located at ( )0 0,R τ  and having a backscattering coefficient of 

( ) ( )0 0 0 0, ,R R Rσ τ δ τ τ⋅ − −  produces the reference spectrum ( )0 0, , ,MO
lG f f Rτ τ  given in 

(7.5). Hence the backscattering coefficient for the whole scene ( ),Rσ τ  will have the 
following correspondence: 

( ) ( )0 0 0 0, , , ,MO
lR SAR scene G f f R dR dτσ τ τ τ

∞ ∞

−∞ −∞

→ → ∫ ∫  (7.7) 

To determine the spectrum of the complete scene, the monostatic point target reference 
spectrum must be integrated over all point targets illuminated by the antenna: 

( ) ( )0 0 0 0, , , ,MO
lW f f G f f R dR dτ τ τ τ= ∫ ∫  (7.8) 



Extension to Focusing of Complete Scenes 105 
 

 

We do the range compression, assuming that ( ) ( )l l
r

fS f S f rect
B

∗ ⎛ ⎞
⋅ = ⎜ ⎟

⎝ ⎠
 and compensate 
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The integration over 0τ  is equivalent to the Fourier transform, which is straightforward 
for this variable. 

The slant range is substituted by the minimum distance plus the extension: 

0 0(min)R R r= +  (7.10) 

In addition, we approximate in inner amplitude factor 0 0(min)R R≈ . This can be done 
because the change of the slant range compared to the slant range itself is very small. After 
the substitution in the integral, we obtain: 
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Here we introduce the notation: 
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This shorthand notation is inserted into (7.11), and we get: 
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The integral given in (7.13) is a Fourier integral. Using the shifting property of the Fourier 
transformation, we obtain: 
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The result is meaningful as follows: the complete spectrum contains the spectrum of the 
backscattering coefficient, but this backscattering spectrum is not the one we are looking for. 
It is a scaled replica of the backscattering spectrum, where the scaling of the range frequency 
is given in terms of square root expression in (7.12).  

 

7.4 First Compression Transfer Function 
Here we introduce the first compression function. It contains the complex conjugate of the 

chirp signal spectrum and the inverted amplitude term. Therefore, it performs the range 
compression and the amplitude term compensation.  
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(7.15) 

After applying this transfer function to the raw data spectrum (7.8), we have: 
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The result given in (7.16) is very important. We multiply the spectrum of the raw data 
with ( )1 0 0, , ,H f f Rτ τ , and the resulting spectrum is the scaled replica of the backscattering 
coefficient spectrum. Our aim is to compensate this scaling and to determine the 
backscattering coefficient ( )0 0,Rσ τ  for the whole scene. At a first look we could think that 
this task is very trivial, and that we would only need to perform the backtransformation of 

( )( ), ,rf f f fτ τσ  into the time domain.  

The problem is that ( )( ) ( )
2 2

2
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⎛ ⎞

= + −⎜ ⎟
⎜ ⎟
⎝ ⎠

 is a backscattering 

spectrum containing nonlinear range frequency scaling. The next step will be, then, the 
azimuth compression in order to return to the normal range frequency. 

 

7.5 Statement of the Nonlinear Frequency Scaling Problem 
The spectrum of a point target depends directly on its position. Thus the compression 

function for each point target (PT) is different. A PT located at a distance 01R  has to be 
compressed with a different transfer function than one located at a distance 02R . If we do 
focusing of the complete scene with the same transfer function, then only the PTs located at 
the correct distance will be focused correctly; all other PTs will be blurred at different levels. 
The received signal in SAR is the superposition of infinitely many PTs within the antenna 
footprint. Each PT of the SAR scene has its own slant range at the point of closest approach 

0R  and thus creates a location-dependant contribution in the 2D total spectrum. To compress 
the SAR scene correctly, it is necessary to take care of each PT individually. However, this 
care should be done with an analytical solution.  
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In section 7.4, we showed that after the first transfer function ( )1 0 0, , ,H f f Rτ τ , we got 

the spectrum of the backscattering coefficient ( )( ), ,rf f f fτ τσ , which is still scaled in range 
frequency direction. The aim is to cancel the scaling and obtain the backscattering coefficient 
spectrum ( ),f fτσ . The problem is the type of scaling we experience here. Range frequency 
depends nonlinearly on range and azimuth frequencies: 
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7.6 Scaled Spectrum  
First we consider the trivial case in which we have the scaling of the spectrum with a 

constant scaling factor.  

Let’s consider the scaled spectrum ( )G f , which is the scaled version of the ( )S f  
spectrum:  

( ) ( )G f S a f= ⋅  (7.18) 

The backtransformation is implemented by a Fourier integral: 
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Here we introduce the substitution f a f′ = ⋅ , and we get: 
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This means that the signal corresponding to the scaled spectrum is an inversely scaled 
time signal. In monostatic SAR processing (discussed above), we have to compensate the 
frequency scaling so that we obtain the signal in the time domain without any scaling. 
Papoulis proposed a method to solve the scaling problem [34]. His algorithm uses chirp 
multiplications and forward and inverse Fourier transformations. The result of the algorithm 
is a scaling compensated spectrum. Rather than removing the scaling and then transforming 
back from frequency to space domain, we will develop a direct approach, where the scaling is 
removed as a part of back transformation. 

We reconsider the result of (7.19), but now multiply the scaled spectrum by a factor of 
2j afte π  instead of  2j fte π . We then proceed with the integration and get a different result: 

( ) ( ) 2j a f tg t S a f e dfπ
∞

⋅ ⋅

−∞

′ = ⋅ ⋅∫  (7.21) 

By introducing the change f a f′ = ⋅ , we have: 
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( ) ( ) ( )21 1j f tg t S f e df s t
a a

π
∞

′⋅

−∞

′ ′ ′= ⋅ ⋅ = ⋅∫  (7.22) 

With the result above, we can use the following expression to solve the problem of the 
scaled spectrum: 

( ) ( ) 2j a f ts t a S a f e dfπ
∞

⋅ ⋅

−∞

= ⋅ ⋅ ⋅∫  (7.23) 

 

7.7 Inverse Scaled Fourier Transformation 
(7.23) looks similar to the Fourier integral, but it has an additional scaling coefficient in 

the phasor. We can expand this phasor as: 

( )22 22 2 2 j a t fj a f t j a t j a fe e e e ππ π π − ⋅ −⋅ ⋅ ⋅ ⋅= ⋅ ⋅  (7.24) 

After the expansion, we obtain the following: 

( ) ( ) ( )22 2 j a t fj at j afs t a S a f e e e dfππ π
∞

− ⋅ −

−∞

= ⋅ ⋅ ⋅ ⋅ ⋅∫  (7.25) 

 We take the phasor 
2j ate π out of the integral, since it is invariant with regard to f : 

( ) ( ) ( )22 2 j a t fj a t j a fs t a e S a f e e dfππ π
∞

− ⋅ −⋅ ⋅

−∞

= ⋅ ⋅ ⋅ ⋅ ⋅∫  (7.26) 

The integral above can be understood as the convolution of two signals: ( ) 2j a fS a f e π ⋅⋅ ⋅  

and 
2j a fe π ⋅ .  

The final result is rewritten as: 

( ) ( ){ }( )2 2 2j at j af j a fs t a e S a f e eπ π π ⋅= ⋅ ⋅ ⋅ ⋅ ∗  (7.27) 

The very surprising result of the equation above is that the desired scaling compensated 
signal in the time domain can be achieved by first multiplying the scaled spectrum with 

2j a fe π ⋅ , then performing the convolution in the frequency domain and finally multiplying the 
result with the time chirp 

2j a ta e π ⋅⋅ .  

The whole transformation is known as the Scaled Inverse (SI) Fourier transformation. It 
was first introduced by R. Lanari in [63]. In the discrete implementation, we need the direct 
and the inverse FFTs and the chirp multiplications, so the implementation is straightforward: 
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Figure 7.1. Inverse Scaled Fourier Transformation 
 

The implementation above works for continuous signals, but in discrete implementation 
it is necessary to introduce some normalization factors. f  and t  could be any variable, but 
in our case they are time and frequency, respectively, and their corresponding dimensions 
are (s) and (Hz). In [4], the following implementation for the normalization is proposed: 

( ) ( ) ( ) ( )
2 2 2

2 u u u u u uu u
u u u uu u

t f t ff t j a f t ja f t j a f tj a f t
t f t ff te e e e

π ππ
⎡ ⎤ ⎡ ⎤ ⎛ ⎞

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ −⋅ ⋅ ⋅ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎝ ⎠=  

(7.28) 

The frequency and time sampling units are expressed as uf  and ut , respectively. For the 
continuous case, the integral implementation (7.27) is the integration of continuous signals.  

Furthermore, we know that the scaling coefficient of the chirp signal determines the 
bandwidth by means of the expression B a T= ⋅ , where a  is the scaling coefficient and T  is 
the duration of the signal. Therefore, a long-term signal will have a higher bandwidth and 
may suffer an undersampling problem in the Fourier domain during the discrete 
implementation.  

Another important factor to be taken into account is the extension of the signal in both 
time and frequency domains. The convolution in Fourier domain is equivalent to the 
multiplication in time domain, and vice versa. The convolution extends the duration of the 
resulting signal, which has to be taken into account by performing appropriate zero padding.  
 

7.8 Approximation of the Scaled Range Frequency Term 
We discussed in section 7.7 how to perform the scaling. The solution is only known for 

the linear case, but the backscattering coefficient given in (7.17) is a nonlinearly scaled 
spectrum. The range frequency depends nonlinearly on the range and azimuth frequencies. 

As an approximation, we linearize the problem by means of a Taylor expansion: 

( ) ( ) ( ) ( ) ( ) ( )2
0 0 0 0 0

1 ..
2

f x f x f x x x f x x x= + ⋅ − + ⋅ − +� ��  (7.29) 

We do a second-order Taylor expansion for ( ) ( )
2 2

2
0 2

2,
4r
f cf f f f f

c v
τ

τ = + −  with 

respect to the range frequency. But before we do that, a small modification of ( ),rf f fτ  is 
done by taking 0f  out of the square root: 

( ) ( )
22 2 2 2

2
0 02 2 2

0 0

2 2, 1
4 4r
f c f cff f f f f f

c v c f v f
τ τ

τ

⎛ ⎞
= + − = + −⎜ ⎟

⎝ ⎠
 (7.30) 

The zero-order term of the Taylor expansion is calculated as: 
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( )
2 2

0 2 2
0

20, 1
4r
f cf f f f

c v f
τ

τ= = −  (7.31) 

We then have for the first-order term: 

( ) 0 0
0 2 2 22 2

2 22 2
00 0 0

11
2 2 1,

11 44

r

f

f
f f

f f f f
c c f cf cf

v ff v f

τ

ττ

=

⎛ ⎞
+⎜ ⎟

⎝ ⎠= =
⎛ ⎞ −+ −⎜ ⎟
⎝ ⎠

�  (7.32) 

Hence, the square root frequency term is expressed as: 

( ) ( )
2 2 2 2

2
0 02 2 2 2 2

0
2 2

0

2 2 2, 1
4 4

1
4

r
f c f c ff f f f f f

c v c v f c f c
v f

τ τ
τ

τ

= + − = − +

−

 (7.33) 

The nonlinear frequency term is linearized with respect to the range frequency f . Here, 
the following abbreviations are introduced: 

( )
2 2

2 2
0

2 1

1
4

a f
c f c

v f

τ

τ

=

−

 (7.34) 

and 

( )
2 2

2 2
0

2 1
4
f cb f

c v f
τ

τ = −  (7.35) 

With these notations, we can rewrite the term ( ),rf f fτ  as: 

( ) ( ) ( ) ( )
2 2

2
0 02

2,
4r
f cf f f f f a f f b f f

c v
τ

τ τ τ= ⋅ + − ≅ ⋅ + ⋅  (7.36) 

Now, we insert (7.35) into (7.17). The nonlinear scaled backscattering spectrum is converted 
to a linear scaled one, as follows: 

( ) ( ) ( ) ( )( )
2 2

2
0 02

2, , ,
4r
f cf f f f f a f f b f f f

c v
τ

τ τ τ τ τσ σ σ
⎛ ⎞

= ⋅ + − = ⋅ + ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7.37) 

We already know from section 7.7 how to perform the scaling of a linear spectrum with 
the Inverse Scaling approach. The only problem left is the constant shift of the frequency, 
which is easy to compensate and will be addressed next. 
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7.9 Compensation of the Initial Time Delay 
In SAR, the scattered signal comes with a delay 0t , which is why the data are recorded 

after this delay. Because of the shifting property of the Fourier transformation, the delay in 
the time domain is equivalent to a multiplication by the phasor ( )0 02j f f te π− + ⋅ : 

( ) ( ) ( ) ( ) ( )( )0 02
0, , ,j f f tW f f W f f e a f f b f f fπ

τ τ τ τ τσ− + ⋅′′ ′= = ⋅ + ⋅  (7.38) 

 

7.10 Transformation into the Range Distance Domain 
The expression (7.38) shows the backscattering spectrum scaled in the frequency 

domain. This scaling in the frequency domain implies an inverse scaling in the time domain. 
After getting rid of the scaling, we will obtain the result in the range time - azimuth time 
which should be rescaled into the range distance - azimuth distance coordinates. We 
represent the whole slant range as the sum of the minimum slant range distance 0 (min)R , 
plus a change varable: 

0 0(min)R R r= +  (7.39) 

As an initial point, we take the point target backscattering spectrum, which is scaled and 
shifted in the range direction ( ) ( )( )0 ,a f f b f f fτ τ τσ ⋅ + ⋅ . We notice that we do not have 
scaling in the azimuth direction. Hence, we write: 

( ) ( )( ) ( ) ( ) ( )( )02 ,
0 , , j a f f b f f f

fa f f b f f f r e drτ τ τ

τ

πσ
τ τ τ τσ σ τ

+∞
− ⋅ + ⋅

→
−∞

⎧ ⎫⎪ ⎪+ = ⎨ ⎬
⎪ ⎪⎩ ⎭
∫F  (7.40) 

To simplify the derivations, we only consider the 1D case, fixing the value of the 
azimuth frequency fτ . For the given azimuth frequency, the range scaling coefficient and the 
shift are constant: 

( ) ( )( ) ( )0 0, fa f f b f f f a f b f
ττ τ τσ σ⋅ + ⋅ = ⋅ + ⋅  (7.41) 

The backscattering coefficient in the slant range is determined as the inverse Fourier 
integral: 

( ) ( ){ } ( ) 021
0

j v R
f f fR f v e dv
τ τ τ

πσ σ σ
∞

⋅−

−∞

= = ⋅∫F  (7.42) 

Here we introduce the substitution av u= : 

( ) ( ) 02
0

j a u R
f fR a a u e du
τ τ

πσ σ
∞

⋅ ⋅

−∞

= ⋅ ⋅ ⋅∫  (7.43) 

With the further substitution 0
bu x f
a

= + , we get: 

( ) ( ) ( )0 02
0 0

j a x b f R
f fR a a x b f e dx
τ τ

πσ σ
∞

⋅ + ⋅ ⋅

−∞

= ⋅ ⋅ + ⋅ ⋅∫  (7.44) 

We factor out the invariant phasor from the integral: 
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( ) ( )0 0 02 2
0 0

j bf R j a x R
f fR a e a x b f e dx
τ τ

π πσ σ
∞

⋅ ⋅

−∞

= ⋅ ⋅ ⋅ + ⋅ ⋅∫  (7.45) 

Here, we make a new substitution f x=  and get: 

( ) ( )0 0 02 2
0 0

j bf R j a f R
f fR a e a f b f e df
τ τ

π πσ σ
∞

⋅ ⋅

−∞

= ⋅ ⋅ ⋅ + ⋅ ⋅∫  (7.46) 

The desired backscattering expression for the range distance - azimuth frequency domain 
is then given as: 

( ) ( ) ( ) ( ) ( )( ) ( )0 0 02 2
0 0, j b f f R j a f f R

fR f a f e a f f b f f e dfτ τ

τ

π π
τ τ τ τσ σ

∞
⋅ ⋅ ⋅

−∞

= ⋅ ⋅ ⋅ + ⋅ ⋅∫  (7.47) 

The equation above is valid for the complete slant range. We represent the slant range as 
0 0(min)R r R= + . 0(min)R  is the minimal slant range. We insert the new value of 0R  in (7.47) 

and obtain: 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

0 0(min)

0(min)

2
0(min)

2
0

, j b f f R r

j a f f R r
f

R r f a f e

a f f b f f e df

τ

τ

τ

π
τ τ

π
τ τ

σ

σ

⋅ ⋅ +

∞
⋅ ⋅ +

−∞

+ = ⋅ ⋅

⋅ ⋅ + ⋅∫
 (7.48) 

 

7.11 Representation of the Complete Processor 
As already discussed in section 7.9, the raw data needs to be shifted with an initial time 

delay according to (7.38). In the Fourier domain, this delay is equivalent to the phasor 
( )0 02j f f te π− + . 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

0 0(min)

0(min)0 0

2
0(min)

22
0

, j b f f R r

j a f f R rj f f t
f

R r f a f e

a f f b f f e e df

τ

τ

τ

π
τ τ

ππ
τ τ

σ

σ

⋅ ⋅ +

∞
⋅ ⋅ ⋅ ++

−∞

+ = ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅∫
 (7.49) 

We reorder the above integral and take out the terms that are invariant with the range 
frequency: 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

0(min) 0 0 0

0(min)0

2 2
0(min)

22
0

, j b f R r f j f t

j a f f R rj ft
f

R r f a f e e

a f f b f f e e df

τ

τ

τ

π π
τ τ

ππ
τ τ

σ

σ

⋅ ⋅ + −

∞
⋅ ⋅ ⋅ +−

−∞

+ = ⋅ ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅∫
 (7.50) 

Because 0t  is the minimal delay, it has a direct connection to the slant range with relation 

0(min)
0

2R
t

c
= . We insert this relation into (7.50) and get: 
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( ) ( ) ( )

( ) ( )

0 0(min)
0

0(min)

22 ( ) 2
0(min)

22 ( ) 2

,

,

j f R b f j f b fc

j f a f R j a f f rc

R r f a f e e

W f f e e df

τ
τ

τ
τ

π π
τ τ

π π
τ

σ
⎛ ⎞⋅ ⋅ −⎜ ⎟ − ⋅⎝ ⎠

⎛ ⎞∞ − ⋅ − ⋅⎜ ⎟ ⋅ ⋅ ⋅⎝ ⎠

−∞

+ = ⋅ ⋅ ⋅

′⋅ ⋅ ⋅∫
 (7.51) 

( ),W f fτ′  is the ranged compressed raw data given in (7.9). Here we introduce two 
important transfer functions: 

( )
( ) 0(min)

22

2 ,
j f a f R

cH f f e
τπ

τ

⎛ ⎞− ⋅ − ⋅⎜ ⎟
⎝ ⎠=  (7.52) 

( )
( ) ( ) ( ) ( ) ( )0 0(min) 0(min) 00 0 0

22 22 2
3 ,

j f R b f j b f R r fj f b f j f tcH f f e e a f e e
τ

ττ
π ππ π

τ τ

⎛ ⎞⋅ −⎜ ⎟ ⋅ ⋅ + ⋅− ⋅ − ⋅⎝ ⎠= ⋅ = ⋅ ⋅  (7.53) 

Substituting these notations into (7.51) we obtain: 

( ) ( ) ( ) ( ) ( )2
0(min) 3 2, , , , j a f f rR r f H f f W f f H f f e dfτπ

τ τ τ τσ
∞

⋅ ⋅ ⋅

−∞

′+ = ⋅ ⋅ ⋅∫  (7.54) 

Equation (7.54) is the final expression that represents the principal algorithm to perform 
monostatic processing. 
 

 
Figure 7.2. Monostatic algorithm based on the Inverse Scaling 

 
The algorithm is presented in Figure 7.2. The initial raw data is first transformed into the 

range frequency - azimuth frequency domain. It is then range-compressed. The secondary 
range compression is done only if necessary. The compensation of the amplitude term is 
done with the transfer function ( )1 0(min), ,H f f Rτ . The results are multiplied by the 

( )2 ,H f fτ  function. The next block is the Inverse Scaling module. It performs the inverse 
scaling of range frequency by means of the Inverse Scaling FFT algorithm. The outcome 
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signal is given in the range distance - Doppler frequency domain, and it is multiplied by the 
( )3 ,H r fτ  transfer function. The last IFFT for the azimuth frequency brings us the desired 

result: the backscattering coefficient in the range distance azimuth time domain. 
 

7.12 Inverse Scaling Approach - from Continuous to Discrete 
Implementation 

7.12.1 Discrete Implementation of Inverse Scaling FFT 
One of the most important modules of the Inverse Scaling monostatic processor is the 

one where the range frequency dependency on the azimuth frequency is compensated. In [3], 
the discrete implementation of the Inverse Scaling was given, and it is done according to the 
following diagram: 
 

 
Figure 7.3. Discrete implementation of the Inverse Scaling approach 

 

In the diagram the new symbol 0a  was used, which is defined as ( )0 2
ca a fτ= ⋅ . N  is the 

amount of samples of the signal, and m  is the sample number. This kind of implementation 
is very efficient and relatively easy, but it does not take into account the extensions of the 
signals in the time and frequency domains at different stages of the algorithm. This causes an 
erroneous result of the algorithm when the scaling coefficient strongly deviates from 1. This 
is often the case in SAR, especially in an airborne configuration. We observed that the 
scaling coefficient in the range frequency direction sometimes reaches 1.03. In the following 
section, we will consider the novel solution of these problems developed in the scope of this 
work. 
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7.12.2 Some Ideas about a Correct Implementation of Inverse Scaling 
Approach 

We redraw the diagram given in Figure 7.1 by adding some intermediate annotation: 
 

 
Figure 7.4. Continuous implementation of the Inverse Scaling approach with some notations 
 

It is well known that any convolution extends the duration of the obtained signals. The 
first step is the multiplication in the frequency domain, which can be understood as the 
convolution in the time domain. After the first step, the bandwidth should not change, but the 
time duration will be extended. This extension must be determined. 

To resolve this, we introduce the appropriate parameters of all three chips and then 
analyze the algorithm given in Figure 7.5 more carefully. As opposed to Figure 7.4, in 
Figure 7.5 we realized the convolution using the FFT technique. We bring two components 
of the convolution into the time domain, multiply them and then do the Fourier 
transformation: 

 

 
Figure 7.5. Schematic diagram of the discrete implementation of the Inverse Scaling 

algorithm 
 

The following symbols are used in the subsequent figures: 
fΔ  is the bandwidth of the input signal. 

0T  is the time extent (duration) of the input signal. 

1,2,3cB  are the bandwidths of the corresponding chirps ( )1,2,3C f . 

1,2,3cT  are the time durations of the corresponding chirps ( )1,2,3c t . 

1 ,2 ,3ext ext extT  are the time extensions at each step of the algorithm. 

1 ,2 ,3ext ext extf  are the bandwidth extensions at each step of the algorithm. 

1,2,3T  are the complete time extent after the corresponding step. 

1,2,3fΔ  are the complete signal bandwidths after the corresponding step. 
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Step 1 

The first chirp multiplication is done in the frequency domain. It keeps the frequency 
bandwidth unchanged. Hence, the bandwidth of the chirp and the output signal after step 1 
are equal to the bandwidth of the input signal ( )S a f⋅ . Therefore, we write: 

1c
B f= Δ  (7.55) 

First we calculate the duration of the chirp ( )1C f . Generally for the time and frequency 
chirps the following relation is valid: 

2j attrect e
T

π⎛ ⎞ ⋅⎜ ⎟
⎝ ⎠

D
21

41 j f j
afrect e e

aTa

ππ−⎛ ⎞• ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

 (7.56) 

According to (7.56), we can determine the time chirp corresponding to the 1( )C f  frequency 
chirp as: 

( )
2

0

1

1 1
1

j t
a

c

tc t c rect e
T

π−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (7.57) 

1cT  is the time duration of the chirp ( )1c t . It will be equal to the size of the time 
extension 1extT  at step 1. 

The bandwidth of the first chirp is known from (7.55), and it has a direct relation with 
the time duration. Hence, we calculate the duration of the first chirp as: 

1 1

1
c cT B f

a
⋅ = = Δ  (7.58) 

Now we determine 1extT  from (7.58) as: 

1 11ext c cT T a B a f= = ⋅ = ⋅ Δ  (7.59) 

 
Step 2 

Now we calculate the necessary time and frequency extensions after the step 2 in Figure 
7.4. 

After step 2, we have: ( ) ( ) ( )2 1 2s t s t c t= ⋅ . This operation is performed in the time 
domain, so it will not change the time duration, but it extends the frequency bandwidth of the 
result. For time duration at the end of step 2, we can write: 

2 0 1 0extT T T T f a= + = + Δ ⋅  (7.60) 

where 0T  is the time duration of the input signal. 
For the frequency bandwidth of the second chirp 2 ( )C f , we have:  

( )
2

0
2 0

1 1
c

TB T T f a f
a a a

= ⋅ = ⋅ + Δ ⋅ = + Δ  (7.61) 

It represents the size of the frequency extension after step 2. Hence, we have 
22ext cf B= . The 

complete frequency bandwidth after step 2 is obtained as: 
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0 0
2 2 2ext

T Tf f f f f f
a a

Δ = + Δ = + Δ + Δ = + Δ  (7.62) 

 
Step 3 

The last step is multiplication with the chirp in the frequency domain. It keeps the 
frequency bandwidth unchanged, but it extends the time duration of the outcoming signal. 

The parameters of the last chirp are the bandwidth: 

3

0
2 2c

TB f f
a

= Δ = + Δ  (7.63) 

and the time extension (calculated as the time duration of the last chirp 3

3

c
c

T
B

a
= ): 

33 0 2ext cT T T f a= = + Δ ⋅  (7.64) 

The complete time duration after step 3 is: 

3 2 3 0 0 02 2 3extT T T T f a T f a T f a= + = + Δ ⋅ + + Δ ⋅ = + Δ ⋅  (7.65) 

 

7.12.3 The Corrected Discrete Implementation of the Inverse Scaling FFT 
Algorithm 

In the previous section, we discussed the ideas about the correct discrete implementation 
of the Inverse Scaling approach. Here, we perform more detailed calculations of the time and 
the frequency extensions done at the different steps. 

We assume that at the input we have a scaled signal ( )S a f⋅  with a bandwidth fΔ  and 
time duration 0T . The initial signal consists of 0N  samples. In Figure 7.4, the discrete 
implementation of the Inverse Scaling algorithm is shown. The first step is the multiplication 
with the frequency domain chirp. We denote the time extension as 1extT .  

In the Inverse Scaling algorithm, t  and f  can be any variables, but when we consider 
them as time and the frequency, we should take into account their dimensions (s) and (Hz). 
Standardization is therefore necessary. In [4], standardization was implemented according to 
(7.28). That kind of normalization can be used only when the time and the bandwidth 
extensions of the signals at the different steps of the algorithm are not taken into account. In 
the previous section, we showed that all three steps of the Inverse Scaling algorithm cause 
either time or frequency extension. Here, we propose a different solution: 

 
Step 1 

We fix the scaling coefficient during the whole processing as.  

0 0
e

e

ta a
f

= ⋅�  (7.66) 

et  is the initial sampling time, with measuring unit [ ]et s= ; 

ef  is the corresponding initial frequency sample width, with unit [ ]ef Hz= ;  
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The first frequency chirp has a shape: 

( ) 2
0

1

1
j a f

c

fc f rect e
B

π
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

�  (7.67) 

Because we need to extend the time duration after step 1, we generate the first chirp in 
the time domain. We extend it with the size of the initial time extent of the input signal and 
finally apply FFT. 

The first chirp in time domain is given as: 

( )
2

2
0

0

1
1

1 0 0
1 1

e

e

j ttj t a
a f

ext ext

t tc t a rect e a rect e
T T

π
π

− ⋅
− ⋅ ⋅⎛ ⎞ ⎛ ⎞

= ⋅ ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�� �  (7.68) 

We observe that, because of the new scaling coefficient (7.55), the chirps are 
dimensionless in both the time and the frequency domains. This is a necessary condition for 
the correct implementation of the algorithm. 

We calculate the necessary time extension according to (7.58) as:  

0

1

1

ext

a
T f

=
Δ

�
 (7.69) 

1extT  is found from the above as: 

1 0 0 0 0 0 0
e

ext e
e

tT a f a f a T a t N
f

= ⋅Δ = ⋅ ⋅Δ = ⋅ = ⋅ ⋅�  (7.70) 

In the time domain, zero padding is done with size 1extT . The corresponding number of 
the extended samples is determined as: 

( )1 0 1 0 01extN N N N a= + = ⋅ +  (7.71) 

where 1N  is the number of the total time samples after the first time extension. 
 
Step 2 

In the next step, we do the convolution in the frequency domain, which extends the 
frequency bandwidth but keeps the time extent unchanged. We generate a chirp in frequency 
domain and extend it with the bandwidth of the convolution partner 1( )S f  according to 
Figure 7.4. We then apply IFFT, multiply with ( )1s t  as shown in Figure 7.5 and do forward 
FFT. In this way we realize the convolution with FFT techniques. 

The second chip in the frequency domain is given as:  

( ) 2
0

2

2
j a f

c

fc f rect e
B

π− ⋅
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

�  (7.72) 

The bandwidth extension is calculated from (7.61): 

( )
2

0 10 11
2

0

e extext
ext c

e e

t N NT TTf B
t t a

⋅ ++
= = = =

�
 (7.73) 

Using (7.73), we determine the bandwidth of ( )2S f  after step 2: 
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2 2extf f f= + Δ  (7.74) 

The extension in the frequency domain causes the extension of the number of the samples: 

2 1 2extN N N= +  (7.75) 

The change of the number of the samples in the frequency domain from 1N  to 2N  causes the 

change of time sampling with ratio 1

2

N
N

. 

 
Step 3 

As a last step, we multiply 2 ( )S f with the frequency chirp: 

( ) 2 2
0 0

3

3
2

j a f j a f

c

f fc f rect e rect e
B f

π π⋅ ⋅
⎛ ⎞ ⎛ ⎞

= ⋅ = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ⎝ ⎠⎝ ⎠

� �  (7.76) 

This extends the time signal. At the end of step 2, we ended with FFT. Therefore, if it 
was continuous implementation, we would think that we are in frequency domain. Since we 
are realizing a discrete algorithm, we look to the outcome as a time signal.  

We observed that the time extension in the last step caused different focusing problems. 
Hence, we keep the time duration at step 3 unchanged, equal to the outcome from step 2.  

We generate the last chirp in the time domain according to Figure 7.5 and then convert it 
into the frequency domain. The corresponding chirp in the time domain is:  

( )
2

0

1

3 0
1

j t
atc t a rect e

T

π− ⋅⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
��  (7.77) 

Now we need to find out the effect of the algorithm on the input signal. We consider the 
point target initially located at the position et n . The new location of this PT after the end of 
the algorithm can be calculated as: 

2 0e e newt n f n a⋅ = ⋅ ⋅ �  (7.78) 

2ef  is the frequency unit width at the end of the algorithm, calculated as:  

2

0

1
e e

Nf f
N

= ⋅  (7.79) 

newn  is the new location of the PT. We substitute the expressions of (7.66) and (7.78) into 
(7.79) and obtain: 

0 0
0 0

1 1

e
e new e new e

e

N t Nt n n f a n a t
N f N

⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  (7.80) 

The actual scaling factor is the ratio of the original and the new location of PT. We 
therefore write: 

0 0 0 0 0

1 0 0 0 01act
new

N a N a ana
n N N N a a

⋅ ⋅
= = = =

+ ⋅ +
 (7.81) 
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acta  is the actual scaling coefficient. Since 0a  is a positive number, the actual scaling 
factor will always be smaller than 1. Therefore, scaling implementation given in (7.81) is not 
always useful.  

We propose a different solution: in SAR, scaling factor 0a  is normally close to 1. 
Therefore, instead of extending the signal after the first step with 0aT , we extend it with 0bT , 
where b  is some fixed factor (close to1). After this modification, we recalculate the final 
scaling factor as: 

0 0 0

0 0 1act
N a aa

N N b b
⋅

= =
+ ⋅ +

 (7.82) 

If the scaling with a factor acta  is desired, we start the algorithm with the initial factor 
calculated as: 

( )0 1acta a b= ⋅ +  (7.83) 

For example, in case of requiring a scaling of 0.9, we modify the scaling coefficient at 
the input as ( )0 0.9 1 1 1.8a = ⋅ + = . 

The modified algorithm works better when the values of b  and 0a  are close to each 
other. In our applications, we used the values of b  in the range (1.0:1.5), producing correct 
results. 

 

7.12.4 Inverse Scaling Algorithm – Simulated Result 
Now we will demonstrate the performance of the corrected Inverse Scaling algorithm. 

We have generated a 2D signal. In one direction, we have sampling with a frequency of 
1250Hz. We distributed the point targets in this direction with a separation of 500, 1000, 
1500, 2000 and 2500 samples. By increasing the distance, the magnitude was increased as 
well; this was done intentionally to distinguish the correct direction at the end of the 
algorithm. We see the initial allocation of all PTs in Figure 7.6: 

 
Figure 7.6. Original scene: 5 point targets in one direction with a separation of 500 samples 
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We desire to perform the frequency scaling with factor 1.1, but only in one direction. We 
keep the second direction of the 2D signal unchanged. If we compensate the scaling with the 
normal Inverse Scaling algorithm, without taking into account time and frequency 
extensions, we end up with a wrong result shown in Figure 7.7. The PTs are reallocated at 
wrong places and, furthermore, they are duplicated.  

 
Figure 7.7. Wrong result after the normal Inverse Scaling algorithm 

 
We have completely different results after performing the scaling with the modified 

Inverse Scaling algorithm described in 7.12.3. The result is shown in Figure 7.8: 

 
Figure 7.8. Result after the correct Inverse Scaling algorithm 

 
Now all PTs are well focused and correctly located. For example, the 5th PT was initially 

located at sample number 2500. After the scaling, the new location of the 5th PT becomes 
2272, as seen in Figure 7.8. Hence, the algorithm does correct scaling according to the actual 
scaling factor 2500 /1.1 2272≈ . 
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7.13 Chirp Scaling Algorithm 
In section 7.12, we developed the Inverse Scaling algorithm. In this algorithm (see 

Figure 7.1), the final result is in time domain. Very often we have a situation requiring the 
result in frequency domain. Remarking the task, we have a scaled spectrum at the input, and 
we would like to have a scaling compensated spectrum at the output.  

We have experienced this situation during the processing of the bistatic general case, 
where the bistatic processing becomes truly azimuth time dependent [9]. This dependency is 
the cause of the azimuth frequency scaling in addition to range scaling. In the initial 
implementations, we used the Inverse Scaling algorithm. It was later substituted with the 
Chirp Scaling (CS) approach. With the Chirp Scaling algorithm, after compensating the 
range frequency scaling, we still stay in range frequency domain; that is a benefit, because 
we save extra FFT as compared with the Inverse Scaling algorithm.  

Originally, the Chirp Scaling algorithm was derived in [34]. In [4] a duality between the 
Chirp Scaling and the Inverse Scaling approaches was proven. The detailed derivation of the 
Chirp Scaling algorithm, including the discrete implementation, is given in Appendix B. We 
should note that both Inverse Scaling and Chirp Scaling algorithms can be easily reversed 
from the given to the inverse domains. For example, if we apply the inverse Fourier 
transformation to the Inverse Scaling algorithm shown in Figure 7.1, then all multiplications 
will be changed with the convolutions (but in the opposite domain), and all convolutions 
with the multiplications. Finally, we will get the scaled time signal as the input and the 
scaled spectrum as the output. Similar reversion is possible for the Chirp Scaling algorithm. 
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8 Processing for different Bistatic SAR Configurations 
In the previous chapters, we derived the bistatic point target reference spectrum. We 

demonstrated the validity of this bistatic point target reference spectrum on a single point 
target and on a group of point targets. In this chapter, we extend the processing solution to 
complete SAR scenes. We develop the bistatic processing algorithms for configurations with 
an increasing complexity, such as the Tandem case, the translationally invariant case and the 
general case. 

The bistatic formula is the key instruction for our bistatic processing: for bistatic 
processing, the raw data has to be initially convolved with the bistatic deformation term, the 
behavior of which was analyzed in section 3.6. The simulations show that the variation of 
the bistatic phase term with respect to the range is small in comparison to the monostatic 
phase term. Hence, we may compensate it in range blocks.  

 

8.1 Aim of the Bistatic Processing 
In the previous chapters, we derived the bistatic point target reference spectrum 

(BPTRS), giving its constraints of validity. Its correctness was demonstrated with the result 
of different simulations on a single point target and on a group of point targets.  

We later detailed our monostatic focusing approach. It is based on the Inverse Scaling 
and the Chirp Scaling approaches. We used some modules of the monostatic processor for 
the bistatic processing, so this description was necessary. 

Our aim is to develop the bistatic processing algorithm, which will be analytical and able 
to process the complete scene.  

The raw data in SAR is a sum of reflected signals from all PTs. Hence, the spectrum of the 
raw data can be expressed as a double integral:  

( ) ( )0 0 0 0, , , ,l R R R RW f f G f f R dR dτ τ τ τ= ∫ ∫  (8.1) 

( )0 0, , ,l R RG f f Rτ τ  is the BPTRS for the PT at the position 0 0,R RR τ . The focusing should 
invert the integral given in (8.1) and extract the bistatic backscattering coefficient for the 
whole scene ( )0 0,R RRσ τ . 

From the BPTRS spectrum given in (3.136), it is clear for the general case that the BPTRS 
is range as well as azimuth time variant. This makes the bistatic focusing for arbitrary 
configurations a problem that is not trivial. Furthermore, all time variant parameters in the 
BPTRS need to be expressed in terms of the receiver’s relative coordinates ( )0 0,R RR τ , 0RR  
being receiver’s slant range at the point of closest approach, and 0Rτ  the azimuth time at the 
point of closest approach.  

In the following, we consider some particular bistatic configurations and give the 
appropriate processing solutions. 
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8.2 Tandem Configuration 

8.2.1 Theoretical Derivation of the Processing Algorithm 
In the Tandem case, the transmitter and the receiver follow each other on the same track 

with a constant offset. This case was described in detail in section 2.3. The quasi-monostatic 
term given in (4.1) becomes a monostatic term and is given as: 

( ) ( ) 1/ 2
0 0 0

4, 2QM R Rf f a f R F
cτ τ
ππ τΨ = + ⋅ + ⋅  (8.2) 

The bistatic term given in (4.2) also experience simplifications as in (4.30): 

( ) ( )
( )

3
2 2

2
0 0

,
,BI

R

d F f f
f f

c f f R
τ

τ

π ⋅
Ψ =

+ ⋅
 (8.3) 

where:  
• 0 0 0T Ra τ τ= −  is a bistatic parameter, expressing the azimuth time difference of the 

point of closest approach (PCA). 
• d  is a baseline between transmitter and receiver, constant in Tandem case. 

( )
1
2 ,F f fτ  has following expression: 

 

( ) ( )
1 2 2

22
0 2,

4
f cF f f f f

v
τ

τ = + −  (8.4) 

which is a particular case of ( )
1
2

, ,R TF f fτ  given in (3.60) for equal velocities T Rv v v= = . 
The bistatic deformation term strongly depends on d . Both bistatic and monostatic 

terms vary only with respect to slant range and are invariant with respect to azimuth time. 
Based on that observation, for the spaceborne case, we can linearize (8.3): 

2
0 0 (min) 0 (min)

1 1

R R R

r
R R R

≈ −  where: 0 0 (min)R RR R r= +  (8.5) 

After the previous modification, we combine the bistatic and the monostatic phase terms. 
In the airborne case, the bistatic deformation term is simply averaged and compensated 
blockwise in the range direction. The number of blocks that are necessary to perform a 
correct compensation of the bistatic term depends on the speed of change of the bistatic 
deformation. This question was considered in detail in section 3.6. After the compensation, 
the bistatic focusing task is transformed to a modified monostatic processor.  

The spectrum of received bistatic SAR raw data can be calculated as the double integral 
over the individual BPTRS: 

( ) ( )0 0 0 0, , , ,l R R R RW f f G f f R dR dτ τ τ τ= ∫ ∫  (8.6) 

lG  is the BPTRS given in (3.136). We substitute (3.136) inside (8.6) and use the 
monostatic and the bistatic phase term descriptions from (8.2), (8.3) and obtain: 
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( ) ( ) ( ) ( )
( ) ( )
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( )
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�� ��� �

 (8.7) 

For each block, the bistatic term and the amplitude terms are substituted by their averaged 
values in the range block. Amplitude term for the Tandem case was calculated in (4.31). We 

use an approximation in ( ) ( )
1 2 2

22
0 2,

4
f cF f f f f

v
τ

τ = + − , ignoring 
2 2

24
f c

v
τ , and obtain 

( )
1
2

0,F f f f fτ = + . We substitute it inside (4.31) and get: 

( ) 0 0 0
0 3

04

1, ,
2 2

R R
R

f f R RAmp f f R
c v c f f

F v
τ

+
= ⋅ = ⋅

+
⋅

 (8.8) 

The averaged value of ( )0, , RAmp f f Rτ  in the slant range block is abbreviated as 

( ),
aver

Amp f fτ . 

( ) 0 ( )

0 0

1,
2

R aver
aver

R
Amp f f

v c f fτ = ⋅
+

 (8.9) 

0( )averR  is the averaged value of receiver slant range in each range block.  

Similarly, we do averaging of bistatic phase terms given in (8.3) and obtain the transfer 
function to compensate the bistatic deformation: 

( )
( )

( )

3
2 2

2
0 0 ( )

,

2
1 , R aver

d F f f
j

c f f RH f f e
τπ

τ

⋅

+ ⋅=  
(8.10) 

The averaged bistatic term and amplitude term do not depend on 0RR . Hence, they are 
factored out of the integral (8.7). Then, we compensate the terms outside the integral by 
multiplying them with their complex conjugates. Range chirp spectrum is also factored out 
because it only depends on f . We obtain the following simplifications:  

( )
1/ 2

0
0 0

4
2

0 0 0 0'( , ) , R
R

j R Fj f j f a c
R R R RW f f R e e e dR dτ τ

π
π τ π

τ σ τ τ
−− −= ⋅ ⋅ ⋅∫ ∫  (8.11) 

where: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
** *

1

, ,
' , ,l l

aver aver

W f f S f BistaticTerm W f f S f
W f f H f f

Amp Amp
τ τ

τ τ

⋅ ⋅ ⋅
= = ⋅  (8.12) 

  

In the Tandem case, 0 0 0T R a constτ τ− = = . We take the constant phasor containing 0a  out of 
the integral (8.11) and obtain: 
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( ) ( )
1/ 2

0
0

4
2

0 0 0 0, , R
R

j R Fj f c
R R R RW f f R e e dR dτ

π
π τ

τ σ τ τ
− ⋅−′′ = ⋅ ⋅∫ ∫  (8.13) 

where: 

( ) ( ) 0, , j f aW f f W f f e τπ
τ τ

′′′ = ⋅  (8.14) 

We make an additional abbreviation: 

( ) 0
2

j f aH f e τπ
τ

⋅=  (8.15) 

In chapter 7, we solved an integral similar to (8.13), where we considered monostatic 
processing. We have solved it with the Inverse Scaling algorithm.  

Here we introduce two extra transfer functions: 

( ) ( )( )0 0 (min)2
3 , Rj f t a f RH f f e τπ

τ
− ⋅ − ⋅=  (8.16) 

( ) ( ) ( ) ( )0 0 (min) 0 0
2 2

4 , Rj f r R b f j f tH r f a f e eτπ π
τ τ

⋅ + ⋅ − ⋅= ⋅  (8.17) 

In the above two notations are introduced: 

( ) ( )
2 2

2 22 2
0

2 2
0

2 1 2, 1
4

1
4

f ca f b f
c c v ff c

v f

τ
τ τ

τ

= ⋅ = ⋅ −

−

 
(8.18) 

The block diagram of the processing algorithm for Tandem case is shown in Figure 8.1. 
 
Major blocks of the processor given in Figure 8.1 could be explained in a following way: 

1) 2D signal is transformed into the range frequency azimuth frequency domain by 
double directional FFT. 

2) This module performs range compression. It is done by convolving the raw data with 
the complex conjugate of the transmitted chirp. This convolution is implemented by 
the FFT techniques. 

3) The amplitude term is compensated by averaging it in the range blocks and dividing 
the signal on averaged value of ( ),averAmp f fτ , given in (8.9). 

4) In this module we compensate the bistatic term given in (8.10). We average it in 
respect to slant range and compensate it by multiplying the 2D signal with the 1H  
function.  

5) Here we do a multiplication with 2H  transfer functions. The 2H  function compensates 
the time shift corresponding to 0 0 0T R aτ τ− = .  

6) We multiply the signal with 3H , given in (8.16). It brings our processing reference 
range to the minimal receiver slant range 0 (min)RR .  

7) This module performs the range frequency inverse scaling. Hence, it eliminates the 
azimuth frequency dependent range scaling. The detailed derivation of the correct 
discrete implementation of the Inverse Scaling algorithm is given in section 7.12. 
After the step 8, the result is in slant range - azimuth frequency domain; 

8) We multiply the result with transfer function 4H , given in (8.17); 
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Figure 8.1. Tandem configuration processor 

 
9) This step is the last step of the Tandem case processor. It performs one-dimensional 

IFFT onto the azimuth frequency. The final result is in slant range - azimuth time 
domains.  

We should note that the Tandem case is the only bistatic configuration that can be 
processed using a monostatic algorithm, but only after compensating the bistatic deformation 
term. The rest of the configurations require more complicated processors. 

 

8.2.2 Spaceborne Simulation 
We will demonstrate the validity of our processor for the Tandem configuration by 

means of some simulations.  
 

Table 8.1. Spaceborne Tandem case 
Parameter Transmitter Receiver 
Speed of satellites 7000 m/s 7000 m/s 
Pulse duration 8.5 μs 
Carrier Frequency 5.16 GHz 
Bandwidth 40 MHz 
PRF 2500 Hz 
Squint angle 0.1° -0.1° 
Off-Nadir angle 45° 45° 
Opening angle in azimuth direction 0.5° 0.5° 
Opening angle in elevation 5° 5° 
Distance between satellites (constant) 1000 m 
Distance of closest approach of PT1/PT2 315 km/325 km 
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Table 8.1 shows the parameters of particular spaceborne simulation, and Figure 8.2 

presents the corresponding focusing results. The scene consists of 2 PTs separated by 10 km 
in range direction. 

The magnitudes of the 1st PT and 2nd PT were deliberately chosen different to distinguish 
the correct positions after the processing. The distance between the focused peaks is in 
accordance with the simulated placement.  

 
 

 
Figure 8.2. Results of the focusing for the spaceborne Tandem case 

 

8.2.3 Airborne Simulation 
Next we proceed with an airborne simulation, with the parameters given in Table 8.2. 

The airplanes follow each other with a constant baseline of 500 m. The scene consists of 10 
point targets located on the vertexes of a 2x5 matrix (where 2 is the number of range 
columns and 5 is the number of azimuth rows). They have a separation in the azimuth 
direction of 10 m (resolution is 0.3 m), while the separation in the range direction is 100 m 
(with a resolution of 1.5 m). 

 
Table 8.2. Airborne Tandem Case 

Parameter Transmitter Receiver 
Speed of airplanes 98 m/s 98 m/s 
Pulse duration 3 μs 
Carrier Frequency 10.13 GHz 
Bandwidth 100 MHz 
PRF 125 0Hz 
Squint angle 2° -2° 
Off-Nadir angle 55° 55° 
Opening angle in azimuth direction 3° 3° 
Opening angle in elevation 7° 7° 
Distance between airplanes (constant) 500 m 

Distance of closest approach of PT1-PT5(m) 

6519.2 
6319.2 
6119.2     
5919.2 
5719.2 
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The focusing result for this particular configuration is shown in Figure 8.3. The PTs are 
correctly focused, and the distances calculated from the focused result are identical to initial 
given values. 

 
Figure 8.3. Results of the focusing for the airborne Tandem case 

 

8.3 Translationally Invariant Configuration 

8.3.1 Theoretical Derivation of the Processing Algorithm 
Another very important bistatic constellation is the translationally invariant (TI) 

configuration, where the transmitter and the receiver move on parallel tracks with equal 
velocities. This constellation was described in section 2.3. The bistatic point target reference 
spectrum (BPTRS) still only depends on the slant range and is invariant with respect to the 
azimuth time. After some rearrangements in (4.1) and (4.2), we end up with the BPTRS that 
shows quasi-monostatic and a bistatic phase terms, given in (8.19) and (8.20) respectively:  

( ) ( )
1

0 0 2
0 0

4, 2
2

R T
QM R

R Rf f a f F
cτ τ
ππ τ +

Ψ = + ⋅ + ⋅  (8.19) 
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2,
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R Rv F cf f a f
c R R vf f F

τ τ
π ⎛ ⎞−⎜ ⎟Ψ = ⋅ ⋅ −

⎜ ⎟++ ⎝ ⎠
 (8.20) 

Careful observation of (8.19) and (8.20) makes it clear that basically two problems must 
be solved: the compensation of bistatic term and expression of 0TR  in terms of 0RR . 

While in the Tandem case the bistatic acquisition can be understood as a monostatic one 
located at the middle of the baseline, the situation is different for the translationally invariant 
case. This can be easily seen from (8.19), where the phases are expressed in terms of 
( )0 0 / 2R TR R+ , and not in terms of 0RR . We propose a range blockwise processing leading 
to a modified translationally invariant Inverse Scaling algorithm.  

Again, the spectrum of the received bistatic SAR raw data can be calculated as the 
double integral over the individual BPTRS: 

( ) ( )0 0 0 0, , , ,l R R R RW f f G f f R dR dτ τ τ τ= ∫ ∫  (8.21) 
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lG  is the BPTRS given in (3.136). The bistatic preprocessing is done in range blocks. For 
each block, the bistatic term and the amplitude correction factors are substituted by their 
averaged values over the range block.  

Amplitude term for translationally invariant case was calculated in (4.24). Amplitude 
term is not as vital as other terms of BPTRS. Hence, we use approximation in 

( ) ( )
1 2 2

22
0 2,

4
f cF f f f f

v
τ

τ = + −  and ignore 
2 2

24
f c

v
τ  inside the square root, obtaining 

( )
1
2

0,F f f f fτ = + . We substitute this simple form of F  inside (4.24) and get: 
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(8.22) 

We use averaged value of ( )0, , RAmp f f Rτ  over the slant range 0RR  and abbreviate it as 

( ),
aver

Amp f fτ : 
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⎝ ⎠

 
(8.23) 

where 0RaverR ,( 0T averR ) is the averaged value of the receiver (transmitter) slant range in each 
block. The same kind of averaging is done for bistatic phase term given in (8.20), and we 
obtain the transfer function to compensate the bistatic term: 

( ) ( ) ( )
( ) 2

2 3 / 2 0 ( ) 0 ( )
02 2 1/ 2

0 0 0 ( )
2

1 ,
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T R aver

c R Rv Fj a f
c v Ff f R RH f f e
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⎜ ⎟+ ⋅ + ⎝ ⎠=  

(8.24) 

Since these terms are invariant over the integrands 0RR , 0Rτ , they are taken out of the 
integral given in (8.21). The range chirp spectrum is also factored out, because it only 
depends on f . We compensate the terms outside the integral by multiplying them with their 
complex conjugates. We end up with following simplifications: 

( ) ( ) ( )
1
2

0 00 0

2

0 0 0 0'( , ) , R TR T
j R R Fj f c

R R R RW f f R e e dR dτ

π
π τ τ

τ σ τ τ
− +− += ⋅ ⋅∫ ∫  (8.25) 

where: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
** *

1

, _ ,
' , ,l l

aver aver

W f f S f Bistatic term W f f S f
W f f H f f

Amp Amp
τ τ

τ τ

⋅ ⋅ ⋅
= = ⋅  (8.26) 

In the translationally invariant case, the time interval between the transmitter’s and the 
receiver’s individual points of closest approach is constant, so we have: 

0 0 0T R a constτ τ− = =  (8.27) 

We take the constant phasor containing 0a  out of the integral in (8.25), thus obtaining: 
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( ) ( ) ( )
1
2

0 0
0

2
2

0 0 0 0, , R T
R

j R R Fj f c
R R R RW f f R e e dR dτ

π
π τ

τ σ τ τ
− + ⋅− ⋅′′ = ⋅ ⋅∫ ∫  (8.28) 

where: 

( ) ( ) 0, , j f aW f f W f f e τπ
τ τ

⋅′′′ = ⋅  (8.29) 

We make an abbreviation: 

( ) 0
2

j f aH f e τπ
τ

⋅=  (8.30) 

Now we do the integration in (8.28) over 0Rτ . It is a Fourier integral with respect to the slow 
time, and we obtain: 

( ) ( )
1
2

0 0
2

0 0( , ) , R Tj R R F
c

R RW f f R f e dR
π

τ τσ
− + ⋅

′′ = ⋅∫  (8.31) 

In order to solve the remaining integral, we need to express 0TR  in terms of 0RR . To 
interpret this as a Fourier integral, as a first approximation we express 0TR  over 0RR  by 
means of a linear regression: 

0 0T RR b a R= + ⋅  (8.32) 

This result is substituted in (8.31). Because b  is a constant of the linear regression, the 

term 
1
24

2 T
bj F

ce
π

−
 is also factored out of the integral.  

We obtain: 

( ) ( ) ( )
1 1
2 2

0
4 2 1

2
0 0, , R

bj F j R a F
c c

R RW f f e R f e dR
π π

τ τσ
− − +

′′ = ⋅∫  (8.33) 

We make further abbreviation: 

( )
1 1
2 2

*
4 2

2
3 ,

bj F j b F
c cH f f e e
π π

τ

− ⋅ ⋅⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 (8.34) 

By using this abbreviation in (8.33), we get: 

( ) ( ) ( )
1
2

0
2 1

0 0, , Rj R a F
c

R RW f f R f e dR
π

τ τσ
− ⋅ + ⋅

′′′ = ⋅∫  (8.35) 

where: 

( ) ( ) ( )3, , ,W f f W f f H f fτ τ τ′′′ ′′= ⋅  (8.36) 

Integral (8.35) looks like Fourier integral with respect to 0RR , but the 

( ) ( )
2 2

2
0 0 2

1 1
4R
f cR a f f

c v
τ+ ⋅ + −  factor in the phasor causes the scaling of range frequency. 

The difficulty of the integral (8.35) is the non-linear nature of the scaling. We solved a similar 

problem in section 7.1. There, 
1
2F  containing a nonlinear dependency over the range 

frequency f  is expanded in a first order Taylor series. We bring only the result: 
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1 2 2
2

0 2 22 2
0

2 2
0

1
4

1
4

f cfF f
v ff c

v f

τ

τ

= + ⋅ −

−

 
(8.37) 

We substitute the expression above into the integral expression given in (8.35), thus 
obtaining: 

( ) ( ) ( ) ( )( )0 02
0 0, , Rj R a f f b f f

R RW f f R f e dRτ τπ
τ τσ − ⋅ + ⋅′′′ = ⋅∫  (8.38) 

 In the above, the following shorthand notation is introduced: 

( ) ( ) ( ) ( )
2 2

2 22 2
0

2 2
0

1 1 11 , 1 1
4

1
4

f ca f a b f a
c c v ff c

v f

τ
τ τ

τ

= + ⋅ = + ⋅ −

−

 
(8.39) 

(8.38) shows a Fourier integral over the slant range 0RR . The integration gives the 
backscattering coefficient spectrum scaled in range direction. But now the scaling is linear: 

( ) ( ) ( )( )0, ,W f f a f f b f f fτ τ τ τσ′′′ = ⋅ + ⋅  (8.40) 

The relation above is very promising. It connects the spectrum of the raw data (which is 
known) with the backscattering coefficient spectrum. We only need to convert the 
backscattering coefficient to the space domain and obtain ( )0 0,R RRσ τ . The expression of the 

backscattering coefficient spectrum ( ) ( )( )0 ,a f f b f f fτ τ τσ ⋅ + ⋅  is scaled. ( )a fτ  is the range 

scaling factor, and ( )b fτ  is the range frequency shift. Both depend on the azimuth frequency 
fτ . 

In section 7.7, we already considered a similar task and compensated the range scaling 
by means of:  

( ) ( ) ( ) ( ) ( )( ) ( )0 0 02 2
0 0, ,R Rj b f f R j a f f R

RR f a f e a f f f b f f e dfτ τπ π
τ τ τ τ τσ σ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ + ⋅ ⋅∫  (8.41)

We represent the slant range as: 

0 0 (min)R RR R r= +  (8.42) 

Now we shift (8.41) to the minimal slant range distance 0 (min)RR  and obtain: 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

0 (min) 0

0 (min)

2
0 (min)

2
0

,

,

R

R

j r R b f f
R

j a f f r R

r R f a f e

a f f f b f f e df

τ

τ

π
τ τ

π
τ τ τ

σ

σ

+ ⋅

⋅ ⋅ +

+ = ⋅ ⋅

⋅ + ⋅∫
 (8.43) 

Real SAR data come with some delay 0t , so the acquisition starts after this delay. The 
shift in the time domain is equivalent to the rotation of the signal in the frequency domain 

with the term 0 02 ( )j f f te π− + , where 
( )0 0 (min)

0
R TR R

t
c

+
= . 
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After inserting this phase term in (8.43), and doing some reordering, we obtain:  

( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

0 0 (min) 0 0

0 0 (min)

2 2
0 (min)

2 2
0

,

,

R

R

j f b f r R j f t
R

j f t a f R j r f a f

r R f a f e e

a f f f b f f e e df

τ

τ τ

π π
τ τ

π π
τ τ τ

σ

σ

⋅ ⋅ + −

− − ⋅ ⋅ ⋅

+ = ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅∫
 (8.44) 

We introduce here two additional transfer functions: 

( ) ( )( )0 0 (min)2
4 , Rj f t a f RH f f e τπ

τ
− ⋅ − ⋅=  (8.45) 

( ) ( ) ( ) ( )0 0 (min) 0 0
2 2

5 , Rj f r R b f j f tH r f a f e eτπ π
τ τ

⋅ + ⋅ − ⋅= ⋅  (8.46) 

0 (min)RR , ( 0 (min)TR ) is the smallest value of the receiver (transmitter) slant range in the 
particular range block; 

With these abbreviations, we rewrite (8.44) as: 

( ) ( ) ( ) ( ) 2
0 (min) 3 0 2, , , , raj r f a

R ra rar R f H r f a f f b f H f f e dfπ
τ τ τ τσ σ ⋅ ⋅+ = ⋅ ⋅ + ⋅ ⋅ ⋅∫  (8.47) 

(8.47) instructs how to carry out the bistatic processing algorithm in the translationally 
invariant case. 

The important modules of the translationally invariant algorithm are presented in Figure 
8.4: 

 
Figure 8.4. Block diagram of modified translationally invariant Inverse Scaled algorithm 
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The bistatic processor for translationally invariant case consists of the following blocks: 
 

1) In this module, we generate the range blocks and we perform a linearization of the 
transmitter slant range 0TR  in respect with 0RR  in each block. 

2) The 2D signal is transformed into the range frequency azimuth frequency domains by 
the double directional FFT. 

3) We do a range compression;  
4) The amplitude term is compensated by averaging it in each range block and dividing 

the signal on the averaged term ( ),averAmp f fτ , given in (8.23). 
5) In this module, we compensate the bistatic deformation. It is done by canceling the 

bistatic term given in (8.24). In the translationally invariant case, the bistatic term is 
azimuth time invariant. In addition, 0 0 0T R aτ τ− =  is constant along the whole scene. 
We average the bistatic term with respect to slant ranges and compensate the bistatic 
term by multiplying the 2D signal with 1H  function. 

6) We do a multiplication with 2H  and 3H  transfer functions. The 2H  function 
compensates a time shift of 0 0 0T R aτ τ− = , and the 3H  function is the product of 
parameter b , coming from the linear regression. 

7) We multiply the signal with 4H , given in (8.47), which brings our processing 
reference range to the minimal receiver slant range 0 (min)RR .  

8) This module performs the range frequency inverse scaling. Hence, it eliminates the 
azimuth frequency dependent range scaling. The detailed derivation of the correct 
discrete implementation of Inverse Scaling algorithm is given in section 7.12 . After 
step 8, the result is in slant range - azimuth frequency domains; 

9) We multiply the result with the transfer function 5H  given in (8.46); 
10) The last step performs one-dimensional IFFT on azimuth frequency. The final result is 

on slant range - azimuth time domains.  
Actually, the modules containing the multiplications with 1H , 2H , 3H  and 4H  could be 

combined as one single step. We separate them to better understand the steps of the 
processor. Additionally, we still have the freedom of creating the range blocks with a size 
smaller than the size of the blocks, where the processing is done, and thus performing a finer 
compensation of the bistatic term. This can be quite useful in the airborne case, as was 
shown in section 4.1.2.1.  

The bistatic processor has been applied to both simulated and real bistatic SAR data. 
 

8.3.2 Results Obtained with Simulated Raw Data – Spaceborne Case 
Starting with simulated raw data, we consider a spaceborne experiment. For the 

simulation, we consider a scene consisting of 5 PTs with a separation of 1 km in the range 
direction. The magnitude of the PTs is weighted (the brightness varies linearly over the slant 
range).  

Some of the parameters are given in Table 8.3. The satellites move parallel with equal 
velocities and with a baseline of 1 km. the amplitudes of the point targets were deliberately 
chosen independently in order to better observe the positions of PTs. Figure 8.5 shows the 
focusing result after applying the bistatic algorithm. Each PT is correctly focused and 
correctly located. 
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Table 8.3. Spaceborne translationally invariant case 

Parameter Transmitter Receiver 
Speed of satellites 7000 m/s 7000 m/s 
Pulse duration 8.5 μs 
Carrier Frequency 5.16 GHz 
Bandwidth 40 MHz 
PRF 2500 Hz 
Squint angle 0.0° 0.0° 
Off-Nadir angle 45° 45° 
Opening angle in azimuth direction 0.5° 0.5° 
Opening angle in elevation 6° 6° 
Distance between satellites (constant) 1000 m 

Distance of closest approach of PT1-PT5 (km)

321.7 
322.7 
323.7 
324.7 
325.7 

321.0 
322.0 
323.0 
324.0 
325.0 

 

 
Figure 8.5. Results of the focusing for the spaceborne translationally invariant case  

 

8.3.3 Results Obtained with Simulated Raw Data – Airborne Case 
The next test we perform is an airborne experiment. The SAR scene consists of 20 point 
targets allocated at a 2x5 matrix (where 2 is the number of range columns and 5 is the 

number of azimuth rows). The separation between the PTs is 10 m in azimuth direction and 
100 m in range direction. The parameters of the simulation are given in  

Table 8.4. In the airborne case, as compared to the spaceborne case, the scaling 
coefficient strongly differs from 1. The maximum value of the scaling coefficient in the 
spaceborne case is 1.001, while in the airborne configuration the scaling factor approaches 
1.03.  

 
Table 8.4. Airborne translationally invariant case 

Parameter Transmitter Receiver 
Speed of satellites 110 m/s 110 m/s 
Pulse duration 3.0 μs 
Carrier Frequency 10.13 GHz 
Bandwidth 100 MHz 
PRF 1250 Hz 
Squint angle 0.0° 0.0° 
Off-Nadir angle 57° 55° 
Opening angle in azimuth direction 1.8° 1.8° 
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Opening angle in elevation 8° 8° 
Distance between satellites (constant) 1000 m 

 
After doing the processing by using the short version of the Inverse Scaling approach 

given in section 7.12.1 (it does not take into account the time and the frequency extension), 
we obtain an erroneous focusing result as shown in Figure 8.6. 

 

 
Figure 8.6. Results of the focusing for the airborne translationally invariant case – focusing 

with the short Inverse Scaling module 
 

We observe that in the range direction we get 10 PTs instead of 5. This kind of wrong 
result was predicted already in section 7.12.2. The source of the error was the wrong 
implementation of the Inverse Scaling algorithm (it does not take into account the extensions 
of the signal at the different steps of the algorithm).  

After applying the corrected Inverse Scaling module developed in section 7.12.2, we 
obtain correct focusing result, as shown in Figure 8.7. 

A closer view of this result is displayed in Figure 8.8 , where the upper part shows the 
azimuth direction and the lower part shows the range direction. The distance between the 
range columns is calculated from the simulation result and has a value of 10 m. It 
corresponds to the initial allocation of the PTs. The distance between the first and the last 
azimuth row is equal to 400 m, which is also true. 
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Figure 8.7. Results of the focusing for the airborne translationally invariant case – Focusing 

with the corrected Inverse Scaling module 
 

Azimuth (m)

Range (m)

10m

400m

 
Figure 8.8. Closer look of the previous results: the upper part represents the azimuth 

direction; the lower part represents the range direction 
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8.3.4 Results Obtained with Real Bistatic SAR Data 
As the next step, we applied our bistatic processor to raw data of a real bistatic 

experiment. The detailed description of the experiment and the obtained results can be found 
in [19]-[21]. The data were acquired by FGAN1’s PAMIR (mounted on a Transall C-160) 
and AER-II (mounted on a Do-228), shown in Figure 8.9. The data were provided as part of 
our collaboration in bistatic SAR. The SAR sensors operate in the X-band sharing a common 
bandwidth of 300 MHz. 

Because of wind and some other reasons, it was not possible to maintain an exact parallel 
track of the airplanes. Hence, this experiment cannot be considered as a purely 
translationally invariant configuration. The bistatic parameter turned out to be crucial for the 
bistatic processing [19]-[21]. 

 

Figure 8.9 FGAN’s transmitter on Do-228 (left) and receiver on Transall-C160 (right)  
 
The positions of the airplanes were estimated with the Kalman filter by fusing GPS2 with 

INS3 measurements. The bistatic parameter estimation ( 0 2, , ,T Ra a v v ) improved the image 
quality considerably, as we can see in Figure 8.9 in a cut-out of the focused result, which 
shows the city of Oberndorf (Lech), Germany.    

  
 

                                                 
1 German research establishment for applied natural sciences 
2 Global Positioning and Navigation System 
3 Inertial Navigation System 
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Figure 8.10. Bistatic SAR image of Oberndorf (Lech), vertically – azimuth direction  

 

8.4 Focusing for General Case 

8.4.1 Theoretical Derivation of the Processing Algorithm 
The general case (GC) is given when transmitter and receiver are mounted on different 

platforms and move on non-parallel trajectories with different velocities. The processing 
becomes additionally azimuth time dependent. Compared with the bistatic configurations we 
have seen until now, this azimuth time variance is an additional problem, and it is the cause 
of the high processing complexity. We will see in the following that the azimuth time 
dependency causes a scaling of the azimuth frequency. The problem will be solved using the 
2D Inverse Scaling algorithm. 

 The spectrum of the received raw data is given in form of the following integral: 

( ) ( )0 0 0 0, , , ,l R R R RW f f G f f R dR dτ τ τ τ= ⋅∫ ∫  (8.48) 

lG  is the bistatic point target reference spectrum given in (3.136).  

The quasi-monostatic term for the general case according to (4.1) has the following form: 

( ) ( )
1 1

0 02 2
0 0, 2 2R T

QM R T R T
R Rf f f F F
c cτ τπ τ τ π πΨ = + + ⋅ + ⋅  (8.49) 
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The bistatic pre-processing is done blockwise in the range-azimuth blocks. For each 
block, the amplitude correction factors are substituted by averaged values over range and 
azimuth time.  

Amplitude term for the general case was calculated in (3.135). We additionally use 

approximation in ( ) ( )
1 2 2

22
0 2,

4
f cF f f f f

v
τ

τ = + − , ignoring 
2 2

24
f c

v
τ .  

( )
1
2

0,F f f f fτ = +  (8.50) 

We substitute F  inside (3.135) and obtain: 

( ) 0
0 0 3 3

2 22 2

0 0

, , ,R R

R R T T

R T

f f
Amp f f R

F v F vc
R R

τ τ
+

=
⎛ ⎞

⋅ ⋅⎜ ⎟⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

 

(8.51) 

The average value of ( )0, , RAmp f f Rτ  over the slant range 0RR  is abbreviated as 

( ),
aver

Amp f fτ : 

( ) 0
2 2

0 ( ) 0 ( )

,aver

R T

R aver T aver

f fAmp f f
v vc

R R

τ
+

=
⎛ ⎞

⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

 
(8.52) 

The averaged amplitude term is invariant over the integrands 0RR  and 0Rτ , and we take 
them out of the integral in (8.48). We do same for the bistatic term. It is averaged for the 
transmitter and receiver slant ranges and additionally for parameter 0a . 

( )

( ) ( )

( ) ( )

1
0 ( ) 0 ( )

3 3
2 22 2

2

0 ( ) 0 ( )
0( ) 1 1

2 22 2

1, exp

, ,

2
, ,

R aver T aver

R R T T

T aver R aver
aver

T T R R

H f f j R Rc

F f f v F f f v

R Rf ca
v F f f v F f f

τ

τ τ

τ

τ τ

π

⎧
⎪
⎪

= − ⋅ ⋅⎨
⎪ +
⎪ ⋅ ⋅⎩

⎫⎡ ⎤⎡ ⎤ ⎪⎢ ⎥ ⎪⎢ ⎥⋅ − ⋅ − ⎬⎢ ⎥⎢ ⎥
⎪⎢ ⎥⎢ ⎥⋅ ⋅⎣ ⎦⎣ ⎦ ⎪⎭

 (8.53) 

The range chirp spectrum is also factored out because it only depends on f . This 
integral then takes on the simple form: 

( ) ( )
1 1

0 02 2
0 0

2 2

0 0 0 0' , ( , )
R T

R TR T

R Rj F j Fj f c c
R R R RW f f R e e dR dτ

π ππ τ τ
τ σ τ τ

− ⋅ − ⋅− ⋅ += ⋅ ⋅∫ ∫  (8.54) 

where: 
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( ) ( ) ( ) ( ) ( )
( ) ( )

* * *

1
( )

, ( _ ) ,
' , ,

_ ,
l l

aver

W f f S f Bistatic term W f f S f
W f f H f f

Amplitude term Amp f f
τ τ

τ τ
τ

⋅ ⋅ ⋅
= = ⋅  (8.55) 

In order to solve the integral (8.54), we must express the pair 0 0( , )T TR τ  in terms of 

0 0( , )R RR τ . Generally these relations are not linear, but as a first approximation, we express 

0TR  and 0Tτ  over 0RR  and 0Rτ  in terms of bilinear regressions: 

0 11 12 0 13 0

0 21 22 0 23 0

T R R

T R R

h h R h
R h h R h
τ τ

τ
= + ⋅ + ⋅
= + ⋅ + ⋅

 (8.56) 

We substitute these results in (8.54). Because 11h  and 21h  are linear regression constants, 

the terms 11j f he τπ−  and 
1
2

21
2

Tj h F
ce
π

−
 are also factored out of the integral. Thus equation (8.54) is 

further simplified: 

( ) ( )

1 1 1
13 23 12222 2 2

0 0

1 2

1 12 2
2 2

0 0 0 0'' , ,

R T R R T

bracket bracket

h h f hhj f F j R F F
c c c

R R R RW f f R e e dR d

τ
τπτ π

τ σ τ τ

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟− + ⋅ − + ⋅ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ⋅ ⋅∫ ∫
����	���
 �����	����


 
(8.57) 

where: 

( ) ( ) ( )
1
2

21
11

*
2*

'' , ' , Tj h Fj f h cW f f W f f e eτ

π
π

τ τ

− ⋅−
⎛ ⎞
⎜ ⎟= ⋅ ⋅
⎜ ⎟
⎝ ⎠

 (8.58) 

We make an abbreviation: 

( ) ( )
1 1
2 2

21 11 21
11

*
2 2*

2 , T Tj h F j f h j h Fj f h c cH f f e e e τ
τ

π πππ
τ

− ⋅ − ⋅ − ⋅− ⋅
⎛ ⎞
⎜ ⎟= ⋅ ⋅ =
⎜ ⎟
⎝ ⎠

 (8.59) 

 
We substitute (8.59) into (8.58) and obtain: 

( ) ( ) ( )2'' , ' , ,W f f W f f H f fτ τ τ= ⋅  (8.60) 

The next idea in the course of our derivation is to express the integral (8.57) term 
1
2

TF  
(bracket 1) in linear terms of fτ  . The expansions are done by the Taylor series. 

Considering the first exponential bracket in (8.545), we truncate the Taylor series 
expansion after the linear term: 

( ) ( ) ( )

1 1 1
2 2 2

0 0,T T Tf fF f f F F f
fτ ττ τ
τ

= =

∂
≈ + ⋅

∂
 (8.61) 

Using the definition given at (3.60), we expand ( ) ( )
1 2

22
0 2,

4T
R

f cF f f f f
v
τ

τ = + −  with 

respect to fτ . At first we determine the zero order term ( )

1
2

0T fF
τ =  of the Taylor series:  
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( )
1
2

00T f
F f f f

τ
τ =

= +  (8.62) 

The first order derivative of 
1
2

TF  at zero Doppler vanishes: 

( )
1
2

0

0T

f

F f
f

τ

τ

τ =

∂
=

∂
 (8.63) 

We therefore determine the 
1
2

TF  term as a first-order Taylor expansion: 

( )
1
2

0TF f f fτ ≈ +  (8.64) 

We see that ( )
1
2

TF fτ  given in (8.64) is invariant with respect to Doppler frequency fτ .  

Next we express 
1
2

TF , 
1
2

RF  (bracket 2) in linear terms over f . Analogously, we expand 
1
2

TF  and 
1
2

RF  in the second bracket, but now with respect to f . We have already 
accomplished this in section 7.8. Here we give the final result: 

1 2 2
2

, 0 2 22 2
, 0

2 2
, 0

1
4

1
4

R T
R T

R T

f cfF f
v ff c

v f

τ

τ

≈ + ⋅ −

−

 
(8.65) 

(8.64) and (8.65) are substituted in (8.57). After reorganizing, we have: 

( ) ( ) ( ) ( )0 0 02 2
0 0 0 0'' , , R az az R ra raj a f b j R a f b f

R R R RW f f R e e dR dτπτ π
τ σ τ τ− ⋅ + − ⋅ += ⋅ ⋅∫ ∫  (8.66) 

In the above, the following shorthand notation was used: 

( )13 23
0

1222 22
0 0 0 0

0

2 2

0 , 0 , 2 22 2
, 0

2 2
, 0

1 ,
2

1 1,
2

1 , 1
4

1
4

az az

ra R T ra R T

R T R T
R T

R T

h ha b f f
c

f hh ha a a b b b
c c c c f

f ca b
v ff c

v f

τ

τ

τ

+
= = ⋅ +

= + ⋅ = + ⋅ +

= = −

−

 
(8.67) 

Now the 2D Fourier integral interpretation of (8.66) leads to a backscattering coefficient 
spectrum that is scaled and shifted in both the range and the azimuth frequency directions: 

( ) ( )0'' , ,ra ra az azW f f a f b f a f bτ τσ= ⋅ + ⋅ ⋅ +  (8.68) 

raa  and aza  are scaling factors in range and azimuth frequency direction, respectively. rab  
and azb  are range and azimuth frequency shifts. 
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The final aim is to express the backscattering coefficient ( ),rσ τ , compensating the 
scaling and the shifting factors for both directions.   

From (8.67) it is interesting to note that: 

• The scaling factor and the shifting of the range frequency depend on the azimuth 
frequency fτ . 

• The scaling factor of the azimuth frequency in the first-order approximation is 
constant, but the shift depends on the range frequency f . 

 
These observations allow us to separate the scaling compensation steps. First, we 

compensate the scaling and the shifting with respect to range, and then the constant azimuth 
scaling and range frequency dependent shifts are corrected. We use Inverse Scaling (section 
7.12) or Chirp Scaling approaches (Appendix B) to eliminate the scaling in both directions.  

First, the compensation of the scaling in range direction is performed. We introduce the 
abbreviation: 

az azf a f bτ τ= ⋅ +�  (8.69) 

We have already discussed in section 7.11 how to compensate the range frequency 
scaling: 

( ) ( )0 0 02 2
0 0, ,ra R ra Rj b f R j a f R

R ra ra raR f a e a f f b f e dfπ π
τ τσ σ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ + ⋅∫� �  (8.70) 

Now we let: 

0 0 (min)R RR R r= +  (8.71) 

We shift (8.70) to the minimal slant range distance 0 (min)RR . This shift is realized in the 
following way: 

( ) ( ) ( ) ( )0 (min) 0 0 (min)2 2
0 (min) 0, ,R ra ra Rj r R b f j a f r R

R ra ra rar R f a e a f f b f e dfπ π
τ τσ σ+ ⋅ ⋅ ⋅ ⋅ ++ = ⋅ ⋅ ⋅ + ⋅ ⋅∫� �  (8.72) 

Real SAR data come with some delay 0t , so acquisition starts after this time. This delay 
needs compensation. The shifting in the time domain is equivalent to a rotation of the signal 

in the frequency domain with the term: ( )0 02j f f te π− + ⋅ , where 
( )0 0 (min)

0
R TR R

t
c

+
= . 

We insert this phase term in (8.72), and after reordering obtain:  

( ) ( )

( ) ( )

0 0 (min) 0 0

0 0 (min)

2 2
0 (min)

2 2
0

,

,

ra R

ra R ra

j f b r R j f t
R ra

j f t a R j rf a
ra ra

r R f a e e

a f f b f e e df

π π
τ

π π
τ

σ

σ

⋅ + − ⋅

− − ⋅ ⋅

+ = ⋅ ⋅ ⋅

⋅ ⋅ + ⋅ ⋅∫

�

�
 (8.73) 

At this stage, we introduce some further notations: 

( ) ( )

( ) ( )

0 0 (min)

0 0 (min) 0 0

2
3

2 2
4

,

,

ra R

ra R

j f t a R
ra

j f b r R j f t
ra ra

H f f e

H f a e e

π
τ

π πτ

− ⋅ −

⋅ + −

=

= ⋅ ⋅
 (8.74) 

With these notations, we can rewrite (8.73) as: 
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( ) ( )
( ) ( )

0 (min) 4

2
0 3

, ,

, , ra

R ra

j rf a
ra ra ra

r R f H r f

a f f b f H f f e df

τ τ

π
τ τ

σ

σ ⋅

+ = ⋅

⋅ ⋅ + ⋅ ⋅ ⋅∫

� �

� �
 (8.75) 

Equation (8.75) suggests the implementation of the range scaling algorithm. First, the 
scaled spectrum is multiplied by ( )3 ,raH f fτ

� . Then, the scaling factor is taken out from the 

range frequency and the overall result is multiplied by ( )4 ,raH r fτ
� . At this stage, the 2D 

signal is slant range - scaled azimuth frequency domains.  

In the next step, we compensate the scaling and the shifting in the azimuth direction. As a 
preprocessing, the signal is converted from slant range to range frequency domain. This is 
necessary because Inverse Scaling algorithm requires 2D signal in range frequency - azimuth 
frequency domains at the input. 

 ( ) ( )0 02 2
0, ,R az az Rj b j a f

R az az azf a e f a f b e dfτπτ π τ
τ τσ τ σ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ + ⋅∫  (8.76) 

The azimuth time is expressed as the sum of the initial time stτ  in each block and a 
remainder: 

0R stτ τ τ= +  (8.77) 

Therefore, after shifting (8.76), we have: 

( ) ( ) ( ) ( )2 2, ,st az az stj b j a f
st az az azf a e f a f b e dfτπ τ τ π τ τ

τ τσ τ τ σ⋅ + ⋅ ⋅ ⋅ ++ = ⋅ ⋅ ⋅ + ⋅∫  (8.78) 

Since the acquisition starts at 0τ , we have an additional phasor inside the integral:  

( ) ( )

( ) ( ) 0

2

2 2

,

,

st az

az st

j b
st az

j a f j f
az az

f a e

f a f b e e dfτ τ

π τ τ

π τ τ π τ
τ τ

σ τ τ

σ

⋅ + ⋅

⋅ ⋅ + − ⋅

+ = ⋅ ⋅

⋅ ⋅ + ⋅ ⋅∫
 (8.79) 

We regroup the phase terms inside the integral and obtain: 

( ) ( )

( ) ( )0

2

2 2

,

,

st az

az st

j b
st az

j f a j f
az az

f a e

f a f b e e dfτ τ

π τ τ

π τ τ π τ
τ τ

σ τ τ

σ

⋅ + ⋅

⋅ ⋅ − ⋅

+ = ⋅ ⋅

⋅ ⋅ + ⋅ ⋅∫
 (8.80) 

Here we introduce some further abbreviations: 

( ) ( )

( ) ( )

02
3

2
4

,

,

az st

az st

j f a
az

j b
az az

H f f e

H f a e

τπ τ τ
τ

π τ ττ

⋅ ⋅ ⋅ −

⋅ ⋅ +

=

= ⋅
 (8.81) 

And therefore get: 

( ) ( ) 2
4 3, , j f

st az az az azf H f a f b H e dfτπ τ
τ τσ τ τ σ ⋅+ = ⋅ ⋅ + ⋅ ⋅∫  (8.82) 

The scaling in azimuth direction is performed similarly to the scaling in range direction: 
the azimuth scaled spectrum is first multiplied by ( )3 ,azH f fτ , the scaling is then 
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compensated with Inverse Scaling approach and the outcoming result is multiplied by 
( )4 ,azH f τ .  

Focusing the algorithm for a general case is shown in Figure 8.11. The processor uses 
some modules from the translationally invariant algorithm given in Figure 8.4.  

1) In this module, we divide the bistatic scene on range-azimuth blocks. The processing 
is made in each block separately. The translationally invariant case scene was divided 
only on range blocks. As compared with the translationally invariant case, case 
processing is in general azimuth time variant. Therefore, division also in azimuth 
direction is necessary. In each block, bilinear regression is made according to (8.56). 

The regression coefficients 11 12 13

21 22 23

, ,
, ,

h h h
h h h

 depend on particular bistatic geometry and stay 

constant during the block processing.  
2) The 2D signal is transformed into the range frequency - azimuth frequency domain by 

double directional FFT. 
3) In this module, range compression is realized.  
4) The amplitude term is compensated by averaging it in the range - azimuth blocks and 

dividing the signal by the averaged term of ( ),averAmp f fτ , given in (8.52). 
5) We compensate the bistatic term. We average it with respect to slant ranges and 

azimuth times of the closest approach for the transmitter and the receiver and 
compensate it by multiplying with the 1H  function given in (8.53).  

6) We multiply with the transfer function 2H . 
7) We do a multiplication with 3raH , which brings our processing reference range to the 

minimal receiver slant range 0 (min)RR .  
8) In this block we perform a range frequency scaling with Inverse Scaling approach. It 

eliminates the azimuth frequency dependent range scaling. In Figure 8.11, to save a 
space, we didn’t display steps of the Inverse Scaling algorithm. It is given in detail in 
section 7.12.  

9) We multiply with the transfer function 4raH  given in (8.74); 
10) The signal after step 9 is in slant range - azimuth frequency domains. In the range 

direction, the scaling is already taken out. The remaining scaling is in the azimuth 
frequency direction. Steps 11, 12, 13 solve this problem. In 10, we convert slant range 
into the range frequency domain. 

11) We multiply the 2D spectrum with 3azH . 
12) We cancel scaling in azimuth frequency direction. 
13) We multiply the signal with 4azH . 
14) We perform a one-dimensional IFFT of azimuth frequency. The final result is slant 

range - azimuth time domains.  
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Figure 8.11. General case processing block diagram 

 

8.4.2 Simulation Results 
To demonstrate the validity of the general bistatic algorithm, we conducted a further 

simulation with the spaceborne parameters given in Table 8.5. The satellites have different 
velocity vectors (the absolute values are different and they move on non-parallel tracks). 

The scene consisted of 15 PTs located on the vertexes of a 5x3 matrix (where 5 is the 
number of range columns and 3 is the number of azimuth rows), with a separation in each 
direction of 1 km. 

After compensating the range scaling and the shifting, the PTs seem correctly focused 
(Figure 8.12), but a closer look shows incorrect displacements (Figure 8.13, Stage 1). In 
observing Figure 8.12, it should be kept in mind that the azimuth scaling factors still have not 
been compensated. The figure also shows a closer view of the first azimuth row. At the 
azimuth distance of 5 km, the PTs show a range walk of 35 m (the range resolution is 7 m). 
So, we experience a wrong range positioning due to the uncompensated azimuth shifts. 
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Table 8.5. Parameters of spaceborne general case 
Parameter Transmitter Receiver 
Speed of satellites 7000 m/s 7100 m/s 
Pulse duration 8.5 μs 
Carrier Frequency 5.16 GHz 
Bandwidth 20 MHz 
PRF 1800 Hz 
Squint angle 0.0° 0.0° 
Off-Nadir angle 45° 45° 
Max distance between satellites 4874 m 
Min distance between satellites 5100 m 

 
 

 
Figure 8.12. Focusing of 15 PTs after compensating the range scaling 

 
Furthermore, as a drawback of the still uncompensated azimuth scaling, the PTs are 

incorrectly located with respect to the azimuth direction: the distance between the PT11 (first 
row, first column) and PT15 (first row, fifth column) is 3966 m instead of 4000 m (the 
expected value). 

As the next step, the azimuth scaling and the shifting are compensated. After getting rid of 
the azimuth scaling, the PTs look as shown in Figure 8.13, Stage 2. Finally, we cancel the 
azimuth shifting. Now all PTs move to their correct positions, as displayed in Figure 8.13, 
Stage 3. Figure 8.14 shows the final result of the 2D range-azimuth bistatic focusing together 
with the first azimuth row and the first range column. 

Analyzing the first range column and the first azimuth row of Figure 8.14, we see that 
now all PTs are arranged in perfectly straight lines. There is no more range or azimuth walk 
present. Furthermore, all the PTs are quite nicely focused, finally demonstrating the validity 
of the approach. 
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PT11

PT11

PT11

Schematic look of all PTs 
Stage 1

Stage 3

Stage 2

PT15 PT15

PT15

 
Figure 8.13. Location of all PTs at different stages of the processing: Stage 1 – result after 

compensating range frequency scaling and shifts; Stage 2 – result after compensating 
additionally azimuth frequency scaling; Stage 3 – final result after additionally compensating 

azimuth frequency shifts 
 
 
 

  Azimuth
 Range PT11

PT15

Stage 3

1st range column, 3PTs

1st azimuth raw, 5PTs  
Figure 8.14. Final result of the bistatic focusing for the general case 
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9 Processing Quality Measurements 
In this chapter, we evaluate our bistatic processing algorithms. Different SAR algorithms 

perform the processing with different techniques and accuracy. The resolution obtained from 
one algorithm can be different from the resolution from one to other.  

In addition, in any particular algorithm the range migration curve changes according to 
the positions of the point targets, therefore the precision of the algorithm is position 
dependent. In our conventional monostatic approach, the reference point has a minimal slant 
range. We should then expect the best focusing result for the point targets located at the 
minimal slant range. The same holds in the bistatic case. 

In the Chirp Scaling algorithm [41], the reference point is located at the center of the 
swath. Therefore, the PTs located at this center are better focused. 

To check the quality of our processor, we generate the PTs at different locations on the 
scene. We analyze the focusing quality of these PTs after the end of the bistatic processing 
algorithm. For the focused PTs, we measure parameters such as the impulse response width 
(resolution), maximum peak, Peak Side Lobe Ratio (PSLR), Integrated Side Lobe Ratio 
(ISLR), etc. To calculate these parameters, we need to make a correct cut of the 2D focused 
point target. 

 

9.1 Directions of the Azimuth and the Range Lines 
In the monostatic strip mode case, the azimuth direction is directly related to the flight 

path. Therefore, the definition of the azimuth and the range directions is well known for the 
monostatic case. In the bistatic case, the analogous definition of the range and the azimuth 
directions is not valid, because they depend on the trajectories of the transmitter and the 
receiver, which normally not coincide. Hence, the direction in the bistatic case can be 
arbitrary, depending on the bistatic modeling and on the individual processor. In [33], some 
work to define the bistatic azimuth and range directions was made, and the appropriate 
resolution estimates were calculated. Instead of the azimuth direction, the ‘lateral’ direction 
was used for the bistatic case. 

In the following, we do not derive the theoretical azimuth and the range resolutions; we 
measure them directly from the processing result. We tried different methods to determine 
the directions of the 2D point spread function, but the best results were obtained by using the 
Radon transformation. For a description and theoretical derivations of the Radon 
transformation, see Appendix C. 

 

9.2 The Range and the Azimuth Lines in our Bistatic Processing 
We used the Radon transformation to detect the directions of the range and the azimuth 

lines of the processed point targets by means of the implementation available in IDL1. 
We checked out the quality of our bistatic processor for different configurations: the 

Tandem configuration (for both the airborne and the spaceborne case), and the 
translationally invariant case and the (spaceborne) general case. The Radon transformation 
was precise enough to determine the range and the azimuth directions. Sometimes the line 
was not clearly structured, because most of the energy was concentrated on the main peak. In 
such situations, we used upsampling. The interpolation was made by zero padding in the 
frequency domain. In all computations, we generated the bistatic scene with PTs allocated at 

                                                 
1 Interactive Data Language 
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the vertexes of a 2x5 matrix (being 2 the number of range columns and 5 the number of 
azimuth lines). Figure 9.1 shows the result of the Radon transformation for one particular 
simulation, the spaceborne Tandem configuration. The peaks located at the middle of the 
image, close to 90°, correspond to the angles of the azimuth lines. A very close look gives 
exact value of this angle. At the beginning and the end of the image, we have peaks located 
at 0° and 180°, which correspond to the angles of the two range lines.  

In most of the simulations done before now, we got the azimuth line parallel to the flight 
trajectory of the receiver track and the range line perpendicular to the azimuth line. Only for 
the airborne case of the Tandem configuration do we obtain a 0.5° offset from the range 
perpendicular direction. We visualize this result in detail in Figure 9.2. In the lower part, we 
have all 2x5 PTs projected on the ground plane. The top left image represents a closer view 
of the single PT. It is obvious that the range angle is not exactly perpendicular to the azimuth 
line. The exact angle was calculated by the Radon transformation, and it has a value of 0.5°. 
The peak on the top right of image corresponds to a value of 0.5°, and it is shifted to the left 
from the 0° line.  

 

 
Figure 9.1, Radon transformation of a 2x5 focused image 

 

 
Figure 9.2. Range lines with an offset of 0.5° from the vertical line 
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9.3 SAR Image Quality Measurements Based on Simulations 
After determining the correct azimuth and the range direction, we now return to the 

focused image quality parameters. The individual peaks are sliced over the correct range and 
azimuth directions. We then calculate the following parameters for the different PTs: the 
resolution (in both the range and the azimuth directions) at the maximum peak, the 
integrated side lobe ratio (ISLR) and the peak side lobe ratio (PSLR). The geometric 
registration was checked as well. 

Normally, the resolution is associated with a main peak’s width of 3dB. Here, the width 
of the peak is calculated as the standard deviation of a random variable. We normalize the 
main lobe of the focused PT, thinking about it as power density function of a random 
variable. The variance of a random variable can be calculated as the second moment by 
means of: 

( ) ( )
( )

2

2
f t t dt

f t dt

μ
σ

⋅ −
=

⋅
∫

∫
 (9.1) 

μ  is the mean of the random variable. ( )f t  corresponds to the normalized main lobe.  
With a uniform antenna and the reference function weightings, the width of the main 

lobe response can be expressed in terms of the spatial resolution δ  by the following relation: 

2.258L δ= ⋅  (9.2) 

L  is the width of the main lobe. 
The Integrated Side Lobe Ratio (ISLR) is defined as the ratio of the side lobes energy to 

the main lobe energy (analogy with Sinc function Figure 9.3) in the system response of a PT. 
Mathematically, in the 1D case, the ISLR is given by: 

( ) ( )

( )

2 2 2

2

2 2

2

L

L

L

L

f x dx f x dx

ISLR

f x dx

−
∞

−∞

−

+

=

∫ ∫

∫

 (9.3) 

( )f x  is the amplitude system response to a PT. 
In SAR literature the Peak Side Lobe Ratio (PSLR) is defined as the ratio of the 

maximums of the main lob and the most strong side lobe. In this work PSLR we define as 
the ratio of the energies of the side lobe to the main lobe. 

2

2

2
2

2

( )

( )

L

L

L

L

f x dx

PSLR

f x dx
−

=

∫

∫

 (9.4) 
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Figure 9.3. Sinc function 

 
The ISLR, the PSLR and the spatial resolution of the SAR system will be affected by 

introducing a weighting of the antenna reference functions. Indeed, the ISLR and the PSLR 
are very sensitive to phase errors within the system. 

Table 9.1 shows the calculated processing parameters for different configurations in the 
azimuth direction. Table 9.2 shows similar results, but in the range direction.  

For all the configurations, the maximum change in the azimuth resolution was 1.7%. The 
maximum difference of the ISLR between the first and the second points is 0.8 dB. The 
maximum difference of the PSLR in the azimuth direction is 2.3dB.  

The error in the geometrical registration was quite small in the both directions, so we do 
not consider it here.  

 
Table 9.1. Calculated processing quality parameters (azimuth direction) 

 Velocity 
(m/s) 

Altitude 
(km) 

BW 
(MHz)

PRF 
(Hz) 

Az. Resol. 
(m) 

Az. ISLR
(dB) 

Az. PSLR 
(dB) 

PeakMAX 
(Norm) 

Tandem Case (Spaceborne) 
1st PT 5.1 -12.2 -17.1 0.8 
2nd PT (at 4 km) 

Vt=Vr= 
7000 225 40 2500 5.1 -12.2 -19.3 0.5 

Tandem Case (Airborne) 
1st PT 0.4 -10.8 -16.2  1.0 
2nd PT (at 400 m) 

Vt=Vr= 
98 3 100 1250 0.4 -10.0 -15.8 0.9 

Translationally Invariant Case (Spaceborne) 
1st PT 5.7 -13.3 -20.6 0.8 
5nd PT (at 4 km) 

Vt=Vr= 
7000 225 40 2500 5.8 -13.3 -20.7 0.6 

Translationally Invariant Case (Airborne) 
1st PT 0.5 -10.1 -15.4 0.9 
2nd PT (at 400 m) 

Vt=Vr= 
110 3.5 100 1250 0.5 -10.3 -15.5 0.8 

General Case (Spaceborne) 
PT11 8.6 -10.7 -17.1 0.9 
PT53 (at 1 km) 

Vt=7100 
Vr=7000 300 20 1800 8.6 -9.8 -14.9 0.8 

 
In the range direction, the maximum change of the ISLR is 0.9 dB, and the change of the 

PSLR is 2 dB. The change in the resolution had a limit of 6%. 
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Processing for the general case is the most challenging and complicated. It contains the 
scaling steps in both range and azimuth directions. We obtained slightly worse focusing 
results in this case. The parameters of PT5x3 are not very pleasing. We can observe from 
Table 9.2 that the change in range direction for ISLR is general case is nearly 5dB, and the 
value of ISLR in this case is far from an excellent result. 

 It should be mentioned that the error comes partially from the simulation itself. The 
reason is that we consider the idealistic model. The PTs in a far range are longer in the 
beamwidth. Therefore, they experience the bigger resolution than the PTs in the near range. 
We do not consider the attenuation factor in our processor.  

 
Table 9.2. Calculated processing quality parameters (range direction) 

 Velocity 
(m/s) 

Altitude 
(km) 

BW 
(MHz) 

PRF 
(Hz) 

Az. Resol.
(m) 

Az. ISLR 
(dB) 

Az. PSLR 
(dB) 

PeakMAX 
(Norm) 

Tandem Case (Spaceborne) 
1st PT 7.6 -11.7 -16.5 0.8 
2nd PT (at 4 km) 

Vt=Vr= 
7000 225 40 2500 8.2 -10.4 -16.4 0.5 

Tandem Case (Airborne) 
1st PT 2.1 -12.1 -17.5 1.0 
2nd PT (at 400 m) 

Vt=Vr= 
98 3 100 1250 2.1 -12.4 -18.4 0.9 

Translationally Invariant Case (Spaceborne) 
1st PT 6.4 -11.1 -17.0 0.8 
5nd PT (at 4 km) 

Vt=Vr= 
7000 225 40 2500 6.8 -10.0 -16.1 0.6 

Translationally Invariant Case (Airborne) 
2nd PT (at 400 m) 2.5 -10.9 -16.6 0.9 
2nd PT (at 400 m) 

Vt=Vr= 
110 3.5 100 1250 2.6 -10.6 -15.9 0.8 

General Case (Spaceborne) 
PT11 11.0 -11.8 -18.1 0.9 
PT53 (at 1 km) 

Vt=7100 
Vr=7000 300 20 1800 13.2 -6.4 -11.2 0.8 
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10 2D-Inverse Scaled Fourier Transformation for Bistatic SAR 
 

In this chapter we consider the Inverse Scaled Fourier Transformation in two or more 
dimensions. The concept was first presented in [7]. The transformation directly transforms 
back a frequency-scaled spectrum into the non-scaled corresponding counterpart in the 
space-time domain. Hence it is applicable to those imaging processes where the spectrum of 
the acquired data is a frequency-scaled replica of the radar brightness spectrum, such as 
mono- and bistatic focusing applications. The transformation makes use of a quadratic form 
extension of the Bluenstein formula, also known as the Chirped Z-Transform.  

Monostatic SAR data focusing can be carried out by filtering the data in the 2D 
frequency domain, either applying a change of variables often referred to as Stolt 
interpolation [62] or using Chirp Scaling techniques [41], or by directly applying an Inverse 
Scaled Fourier Transformation [62], [3], [4], transforming the counterpart to the space-time 
domain. This Inverse Scaled FFT can be realized by chirp multiplications in both the time 
and frequency domain. While the scaling in the monostatic case only affects the range 
frequency, in the bistatic case the scaling affects both frequency axes: the range frequency 
and the azimuth (Doppler frequency). Even if the scaling factors of both the range and the 
azimuth frequencies are not directly coupled, thus allowing the scaling to be removed in two 
individual steps, the combination of the two individual rescaling operations in one higher 
dimensional rescaling step is conceptually preferable, especially if the discrete 
implementation is considered. The derivations are given for 2D signals, but due to the vector 
matrix notation, they are not restricted to 2D. The first coordinate in the space-time domain 
refers to the range time, and the second one denotes the azimuth time. 
 

10.1  Focusing and Inverse Scaled Fourier Transformation 
The Fourier integral interpretation of the range-compressed bistatic raw data spectrum [9] 

leads to a backscattering coefficient spectrum that is scaled and shifted in both the range and 
the azimuth frequency directions (section 8.4, (8.68)):  

( ) ( )0, ,ra ra az azW f f a f b f a f bτ τσ= ⋅ + ⋅ ⋅ +  (10.1) 

raa  and aza  are the scaling factors in the range and the azimuth frequency directions, 
respectively. rab  and azb  are the range and the azimuth frequency shifts. The final aim is to 
express the backscattering coefficient ( ),rσ τ , compensating the scaling and the shifting 
factors for both directions.   

In section 8.4 it was shown that: 

• The scaling factor and the shifting of the range frequency depend on the azimuth 
frequency fτ . 

• The scaling factor of the azimuth frequency in the 1st order approximation is constant, but 
the shifting depends on the range frequency f . 

Introducing vectorial notation [ ], Tf f fτ= , we rewrite (10.1) as: 
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A f
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⎣ ⎦ ⎣ ⎦

 (10.2) 

Having 11 22 12 21,  ,  0ra aza a a a a a= = = = , A  becomes a diagonal matrix, indicating that 
the scaling might also be removed by two 1D Inverse Scaling algorithm, as is done in section 
8.4. 

If ( )w t  and ( )W f  now form a conventional Fourier transform pair ( ) ( )
IFT

W f w t • − D , 

[ ], T
rt t tτ=  being the space-time counterpart of f, and assuming A  to be invertible, then 

( )w t  will be given by: 

( ) ( ){ }
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F
 (10.3) 

yielding an inversely time-scaled replica of the reflectivity of the scene, which is not the 
focused image that we want. Conceptually, (10.3) allows us to define the Inverse Scaled 
Fourier Transformation by specifying its desired output: 

( ){ }

( )
( )

1 1

1

( ) exp 2

1exp 2
det

T

f toff

T

off

w t j A f t ScF A f

j A f t t
A

π σ

π σ

− −
→

−

⎧ ⎫⎡ ⎤= ⋅ ⋅ ⋅⎨ ⎬⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤= ⋅ ⋅ ⋅⎨ ⎬⎣ ⎦⎩ ⎭

�
 (10.4) 

saying that the Inverse Scaled Fourier Transformation applied to a scaled spectrum yields its 
non-scaled counterpart in the space-time domain: 

( ){ } ( ) ( )1 1
detf tSc A f t

A
σ σ−

→
⋅ = ⋅F  (10.5) 

 

10.2 Complex Quadratic Forms and Chirps 
Consider the complex time frequency signal ( ),c t f  given by: 

( ) ( ) ( ){ }, exp
T Tc t f j t f A t fπ= − − ⋅ ⋅ −  (10.6) 

where A  is a quadratic, not necessarily symmetric, but invertible matrix. Let ( )S A f⋅  be 
some scaled spectrum, so we can consider the following integral: 
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( ) { } ( ) { } ( )

{ } ( ) { } { }

exp exp ,

exp exp exp

T TT T

T T TT T T

s t j t A t S A f j f A f c t f d f

j t A t S At j t A t j t A t

π π

π π π

∞

−∞

⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ∗ − ⋅⎢ ⎥⎣ ⎦⎣ ⎦

∫�
 (10.7) 

 
(10.7) indicates that the integral in the frequency domain can be interpreted as a convolution 
in the time domain. Now we analyze the integral in detail. Substituting (10.6) into (10.7), 
and factoring out the quadratic form in the exponential term, we obtain (after cancelling 
some terms): 

( ) ( ) { } ( ) ( ){ }exp 2 exp 2
TT Ts t S A f j f A t d f S A f j A f t d fπ π

∞ ∞

−∞ −∞

= ⋅ − ⋅ = ⋅ − ⋅ ⋅∫ ∫�  (10.8) 

Substituting u A f= ⋅  and det( )du A d f= ⋅ , we get: 

( )
( )

( ) { } ( ) { }11 1exp 2 ( )
det( )det

T
f ts t S u j u t du s t Sc S A f

AA
π

∞

→
−∞

= ⋅ ⋅ − ⋅ ⋅ = ⋅ =∫� F  (10.9) 

Now combining (10.7) and (10.9), we obtain the meaningful result: 

{ } { }

( ) { } { }

11 ( ) ( ) exp
det( )

exp exp

T T
f t

T TT T

s t Sc S A f j t A t
A

S At j t A t j t A t

π

π π

→
⋅ = = ⋅ ⋅

⎡ ⎤⎡ ⎤⋅ ⋅ ⋅ ∗ − ⋅⎢ ⎥⎣ ⎦⎣ ⎦

F
 (10.10)

 
The expression above means that the Inverse Scaled Fourier Transformation can be 

realized by a sequence of a chirp multiplication in the frequency domain, a chirp convolution 
in the frequency domain and a chirp multiplication in the time domain. It should be 
mentioned that in this case we need multidimensional chirps, opposite to the chirps discussed 
in sections 7.12 for the Inverse Scaled approach. 

Now, substituting the independent variable t  by f , we obtain a block diagram 
description of (10.10), displayed in Figure 10.1:  

 

 
Figure 10.1. Inverse Scaled Fourier transformation with chirps 

 
Figure 10.1 and (10.10) may be understood as a generalisation of the 1D Inverse Scaling 

approach discussed in section 7.12 for the high dimensional case. 
  

10.3 Implementation and Results 
The 2D scaling procedure has not yet been applied to the general case [12]. As a first 

test, we applied the 2D scaling procedure to a set of simulated PTs. The targets are arranged 
in a 45° line, where the outer target is located at the point ( )500, 500rn nτ= = : 
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Figure 10.2. 2D Inverse Scaling approach 

 

 
Figure 10.3. 2D Inverse Scaling approach  

 
On the left side of Figure 10.2, we have the simulated PTs. The amplitudes were 

deliberately set up separately in order to identify the PTs after the end of the Inverse Scaling 
algorithm. We assume that the image spectrum undergoes a scaling of ( )1.02, 1.07ra aτ= = . 
The right side of Figure 10.2 shows the result after the Inverse Scaling. The outer point is 
located exactly at ( )1 1490 500 /1.02, 468 500 /1.07rn n τ= = = = , which proves that the 
procedure works properly. The determinant of the scaling matrix is not equal to 1, which 
causes amplitude scaling of the unscaled image. 

The next test we perform uses the scaling matrix A  with only diagonal terms. We 
distributed 100 PTs with a separation of 50 samples in both the horizontal and the vertical 
direction, as visible in part A in Figure 10.3. First, we apply a scaling by means of the 
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diagonal matrix 11 12

21 22

1.02 0
0 1.07

a a
A

a a
= =⎛ ⎞

= ⎜ ⎟= =⎝ ⎠
. The result in the time domain is shown in /B/. 

The first PT shown in A was originally located at the position (200,200), and the second PT 
was at (650,650). After the scaling, we have new locations of the PTs: the first PT is now 
located at (196=200/1.02, 186=200/1.07), and the second PT is at (637=650/1.02, 
607=650/1.07). Both values are in good agreement with the simulation results. Next, we 

applied the scaling matrix 11 12

21 22

1.02 0
0.2 1.07

a a
A

a a
= =⎛ ⎞

= ⎜ ⎟= =⎝ ⎠
, but only with one non-vanishing 

off-diagonal element. The result is shown in C. We see now that, in addition to scaling, we 
have a skewing of the image. We got similar results with the scaling matrix 

11 12

21 22

1.02 0.3
0.2 1.07

a a
A

a a
= =⎛ ⎞

= ⎜ ⎟= =⎝ ⎠
, as we see in /D/. In the case of a scaling with non-vanishing 

off-diagonal terms, we do not have direct relations between the time and the frequency 
scaling, as we have in the 1D case. Therefore, the results with non-diagonal terms are 
slightly difficult to interpret. 
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11 Results and Summary 
In this doctoral work we have considered the bistatic SAR focusing problem.  
While the processing of conventional monostatic SAR data has been studied thoroughly, 

bistatic processing is an issue of interesting research.  
In this work, we have given the first analytical approximated solution for the most 

difficult bistatic general case configuration. 
Our bistatic approach is based on a point target reference spectrum derived at our 

research institute; we gave a detailed derivation of this bistatic point target reference 
spectrum and explained it thoroughly. The result of the bistatic formula is an instruction for 
the processing: the bistatic focusing is converted to a quasi-monostatic processor by first 
convolving the range-compressed raw data with the bistatic phase term. This convolution 
can be implemented in the time domain very easily only because of the nature of the bistatic 
term. The different simulations show that the bistatic deformation term is a short and slowly 
varying operator. These facts allow realization of the convolution in the time domain by 
averaging the bistatic term in range azimuth blocks. 

Based on the bistatic formula, we gave some approximate expressions of the bistatic 
azimuth bandwidth and Doppler centroid frequencies. These formulas were later used in the 
bistatic processing, and they gave perfect results. 

 The derivation of the bistatic point target reference spectrum is complex and 
mathematically lengthy; as an approximation, the Method of Stationary Phase was used. The 
use of this method in the monostatic case is straightforward, but in the bistatic case, the 
bistatic point of stationary phase is difficult to determine. Additionally, the range history in 
the bistatic case loses the hyperbolic shape that we had in the monostatic case, becoming a 
flat-top hyperbola. Therefore, the Method of the Stationary Phase had to be applied very 
carefully. Hence, we derived four constraints for the validity of the bistatic formula. Two of 
them were obtained for the transmitter side and two for the receiver side. The bistatic 
constraints are expressed in terms of the range and azimuth frequencies, the receiver’s and 
transmitter’s velocities and slant ranges. The results of the constraints were demonstrated by 
considering particular bistatic configurations. 

Later, the correctness of the bistatic of formula was demonstrated with a bistatic 
simulator implemented in IDL. We were able to generate the raw data for an arbitrary 
bistatic configuration and determine all the necessary parameters for the bistatic processing. 
Initially, we generated the raw data for the scenes only with a single point target and groups 
of point targets and later focused with our bistatic formula, yielding excellent results: all 
point targets were correctly focused and positioned at the correct locations. 

The focusing of groups of point targets was extended for the whole scene. In the 
beginning, we considered the azimuth invariant configurations: the Tandem case and the 
translationally invariant case. Focusing solution for the Tandem case was completed 
analytically for the spaceborne case. The airborne case was carried out by compensating the 
averaged bistatic term in range blocks. It should be noted that only the Tandem case can be 
transformed to the conventional monostatic processing after compensating the bistatic term. 

In the translational invariant configuration, we tested the algorithm by simulation and 
with real bistatic data from an FGAN bistatic experiment. The data were acquired by 
FGAN’s PAMIR (mounted on a Transall C-160) and AER-II (mounted on a Do-228) SAR 
systems. These data were provided as part of the collaboration on bistatic SAR. Because of 
the wind and some other reasons, it was not possible to maintain the parallel tracks of the 
airplanes. Hence, this experiment cannot be considered as a purely translationally invariant 
configuration. Bistatic parameter tuning turned out to be crucial for the bistatic processing. 
The positions of the airplanes were estimated by means of the Kalman filter by fusing GPS 
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with INS measurements. The bistatic parameter estimation improved the image quality 
considerably.  

In the very general bistatic case, the processing became truly azimuth variant, which 
caused an additional scaling in the azimuth direction. We implemented two directional 
scaling algorithms in IDL, which initially compensated the frequency scaling in range and in 
azimuth. For the algorithm of the general case, we used some modules of the inverse scaling 
approach similar to the chirp scaling algorithm, which only uses chirp multiplications and 
convolutions. Hence, it was easy to implement for the discrete case. However, it is well 
known that the convolution causes the extension of the resulting signal, so a modified 
Inverse Scaling algorithm was implemented in IDL, where we considered the time and the 
frequency extensions. The performance of the modified Inverse Scaling algorithm was 
validated by some simulations on groups of point targets. The simulations proved the 
correctness of our general case processing algorithm. At the end of the processing, all point 
targets were located in the correct positions.  

The quality of the bistatic processing algorithm were checked by calculating the image 
quality parameters like resolution, peak side lob ratio, integrated side lob ratio, peak 
maximums for both range and azimuth directions. These directions were calculated by 
applying the Radon transformation. We observed that our processors for different bistatic 
cases performed perfectly and gave excellent image quality parameters. 

In the future, the sequence of the scaling in the range and the azimuth directions will be 
changed with a real 2D scaling approach. To address this, we gave the mathematical 
derivation of a 2D Inverse Scaling approach (it is the generalization of the 1D Inverse 
Scaling algorithm) and showed some processing results on some simulations.  
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Appendix 
A Method of the Stationary Phase 
 
A.1 General Derivation 

Very often we deal with integrals with fast oscillating integrands. In this situation, the 
Method of the Stationary Phase (MSP) can be applied. We follow the derivation given in [5].  

We consider the asymptotic behavior of the following Fourier integral: 

( ) ( ) ( )
b

jk t

a

N k f t e dtμ⋅= ⋅∫  (11.1) 

 
A.2 Case when µ(t) has no Extrema within the Interval (a≤t≤b) 

Having no maximums or minimums means that 0)t( ≠′μ  within the interval. Therefore, 
the phase term is continuously increasing or decreasing. We solve the integral given in (11.2) 
by the integration by parts: 
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In the above, we have introduced an abbreviation ( ) ( )
( )

d f tg t
dt tμ

⎛ ⎞
= ⎜ ⎟′⎝ ⎠

. Because of 

( ) 0tμ′ ≠ , the function ( )g t  will have no singularities and will not limit to ∞ .  

Now we determine the integral ( )( )
b

jk t

a

g t e dtμ⋅⋅∫  given in the right side of (11.2): 
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∫  (11.3) 

It is obvious that the integral above vanishes asymptotically. Taking into account the 
result of (11.3), we obtain for ( )N k : 

( ) ( )
( )

( ) ( )
( )

( ) ( )11 jk b jk af b f a
N k e e o k

jk b a
μ μ

μ μ
⋅ ⋅ −⎛ ⎞

= ⋅ ⋅ − ⋅ +⎜ ⎟⎜ ⎟′ ′⎝ ⎠
 (11.4) 
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The result of (11.4) is equivalent to the following:  

( ) ( )1lim
k

N k O k −

→∞
=  (11.5) 

Hence, the spectrum of function with non-stationary phase has asymptotical behavor at 
infinity.  
 
A.3 Case when µ(t) has Maximum or Minimum within the Interval 

(a≤t≤b)  
Having an extremum means that at some point 0t  ( )0 0tμ′ = . This point is called the 

Point of Stationary Phase (PSP). In the vicinity of extrema 0t , the phase changes very slowly. 
Also, because of the maximum/minimum condition, we can demand that ( ) 0t0 ≠′′μ . We 
additionally assume the rate of change of frequency is very high, which is equivalent to 

( )0tμ′′ . In this case, the peak at point of stationary phase will be sharp.  

We proceed with calculation of the Fourier integral ( )N k  by dividing the complete 
interval of integration into three parts. One part covers the interval in the vicinity of the PSP: 
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∫
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 (11.6) 

In the interval of the integral ( ) ( )
0t

jk t

a

f t e dt
ε

μ
−

⋅⋅∫ , we do not have PSPs. Therefore, 

according to the result of (11.5), it will be asymptotically vanishing. The same is valid for the 
third integral in (11.6). Hence, we can write: 
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+
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−

= ⋅ +∫  (11.7) 

We still have one integral left to determine. We do the Taylor series expansion of the 
phase function ( )tμ  in a vicinity of PSP: 

( ) ( ) ( ) ( )20
0 02

t
t t t t

μ
μ μ

′′
= + ⋅ − …  (11.8) 

In the extension above, the first-order term is not available because it is zero at PSP. We 
substitute the quadratic term of (11.8) into (11.7) and obtain: 



Appendix 163 
  

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

200 0 0 0

0 0

20 0
00

0

2

2

tt t jk t t t
jk t

t t

t t
jk t tjk t

t

N k f t e dt f t e dt

e f t e dt

με ε μ
μ

ε ε

ε μ
μ

ε

′′⎡ ⎤+ + ⋅ + ⋅ −⎢ ⎥
⋅ ⎣ ⎦

− −

+ ′′
⋅ ⋅ −⋅

−

= ⋅ ≅ ⋅

= ⋅ ⋅

∫ ∫

∫
 (11.9) 

To proceed with our calculation, we introduce an approximation and change the Gaussian 
distribution with a Dirac function. 
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We do a substitution 2 2
0 jσ σ= ⋅  and get: 
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Therefore, for the infinitesimally small values of 0σ , we can write: 
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 (11.12) 

Now we make a change of variables: 

( ) ( )0 02
0 0

1 2
2
k t

k t
μ σ

σ μ
′′⋅ = ⇔ =

′′⋅
 (11.13) 

In the above, we assumed that 0( )tμ′′ is very large, which guarantees that 0σ  is very small.  
Now we rewrite (11.10) as: 
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The result of (11.14) is substituted into (11.9), thus obtaining: 
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In the above, we resubstitute the result of (11.14) and obtain: 
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With the additional substitution 0t t u− = , we obtain: 
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From the definition of Dirac function, we can write ( ) ( ) ( )0s u u du s
ε

ε

δ
−

⋅ =∫ . Using this 

property, we modify (11.17) as: 
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The final result is summarized as: 
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 (11.19) 

Interpretation: the spectrum of a high-speed oscillating phasor can be estimated only by 
knowing the phase term and its second derivative at the point of stationary phase. 
 
A.4 Example – Chirp Signal 

As an example of a function with an oscillating phase, we consider a chirp signal: 

( ) 2
rj k ttf t rect e

T
π⎛ ⎞= ⋅⎜ ⎟

⎝ ⎠
 (11.20)

The frequency of this signal is linearly modulated. 
 

 
Figure 11.1. Real part of the chirp signal in time domain 

 
Figure 11.1 shows the real part of the chirp signal that is centered at the origin. We 

observe that the phase is nearly constant at the zero time, but it changes very fast distancing 
the origin. 
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The Fourier transformation of the chirp can be calculated as: 
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2 2
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  (11.21)

We make a substitution ( )
2

2 ;
2

rk tk f t t
f

π μ= = ⋅ −  and end up with expression similar to 

(11.1). (11.21) is a Fresnel type of integral, and it can be found in most of mathematical 
books.  

Here we solve it by means of the method of stationary phase: 
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 (11.22) 

The integral above is similar to (11.19). Hence, we can use the method of stationary 
phase. At first, comparing (11.22) and (11.19), we make relations: 

 ( ) ( ) 0
0 01 1 0rr
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Now we calculate the phase term at the point of stationary phase as: 
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We should remember that the method of stationary phase can be applied if the phase term’s 
second derivative at point of closest approach is not zero and has big values. The first 

condition is fulfilled because ( )0 0rkt
f

μ′′ = − ≠ . The second condition is satisfied if rk  is 

selected big enough. The chirp sweep rates used in the communication field and in radar 
applications are normally selected to be high. We apply the method of stationary phase on 
(11.22) and get: 

( )
( )

2 22

2 1
4

12

2

1

fj f kr fj kr

fj kr

r

rrr

rr

f
ke fF f j rect j e rect
T k Tkkf

f

fe rect
k Tk

π
π

π

π

π

− ⋅
− ⋅

⎛ ⎞
⎜ ⎟− ⋅ −
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟≅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⎜ ⎟⋅⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟− ⋅ −⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
= ⋅ ⋅ ⎜ ⎟⋅⎝ ⎠

 (11.25) 

Therefore, the spectrum of the chirp signal is determined as: 

( ) ( )
2

2
4

1 fj kr
r jj k t

rr

t ff t rect e F f e rect e
T k Tk

π ππ
− ⋅ ⎛ ⎞⎛ ⎞= ⋅ ⎯• ≅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠

D  (11.26) 

This is a nice feature of chip signal: it is a chirp in both time and frequency domains. The 
real part of the chirp spectrum is shown in Figure 11.2: 
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Figure 11.2. Real part of the chirp spectrum 
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B Chirp Scaling Algorithm 
B.1 Continuous Implementation 

Here we follow the derivation of the Chirp Scaling algorithm [6]. The block diagram of 
the Chirp Scaling approach is displayed in Figure 11.3. 

 

 
Figure 11.3. Chirp Scaling algorithm in the continuous implementation 

 
It contains the chirp multiplications and convolutions. These chirps have different sweep 

rates. During the derivation, we will observe that there are some binding relations between 
these chirp sweep rates.  

( )1S f  is the result of the convolution of the input scaled spectrum ( )0S a f  with 
2j fe α . 

Therefore, we can write: 

( ) ( ) ( ) ( )
2 2 2 2

1
j f x j f j x j x fS f S a x e dx e S a x e e dxα α α α

∞ ∞
⋅ − ⋅ − ⋅ ⋅

−∞ −∞

= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅∫ ∫  (11.27) 

For the signal ( )2S f , we have: 

( ) ( ) ( ) ( )
22 2 2

2 1
j fj f j x j xfS f S f e e S a x e e dxα ββ α α

∞
−− −

−∞

= ⋅ = ⋅ ⋅ ⋅∫  (11.28) 

( )3S f  is the convolution of ( )2S f  with the chirp 
2j fe γ , so we write: 

( ) ( ) ( ) ( ) ( )222 2 2
3 2

j z j f zj f j x j xzS f S f e e S a x e e e dxdzα β γγ α α
∞ ∞

− ⋅ ⋅ −−

−∞ −∞

= ∗ = ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫  (11.29) 

We bring the phasor ( ) 2j ze α β−  inside the double integral by grouping some phasors, and we 
obtain: 

( ) ( ) ( )

( ) ( ) ( )

22 2 2

22 2

2 2
3

2

j zj x j x z j f j z j fz

j z j x f zj x j f

S f S a x e e e e e e dxdz

S a x e e e e dxdz

α βα α γ γ γ

α β γ α γα γ

∞ ∞
− ⋅⋅ − ⋅ ⋅ ⋅ ⋅ −

−∞ −∞

∞ ∞
− + ⋅ − + ⋅⋅

−∞ −∞

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

∫ ∫
 (11.30) 

Now we evaluate the internal integral: 

( ) ( )2 2j z j x f zI e e dzα β γ α γ
∞

− + ⋅ − + ⋅

−∞

= ⋅∫  (11.31) 

Until now we did not impose any constraint on the chirp sweep rates. Hence, we have 
freedom to select them arbitrarily. To force the phasor ( ) 2j ze α β γ− + ⋅ to vanish, we assume that 
the following relation holds: 
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0α β γ− + =  (11.32) 

We substitute (11.32) into (11.31) and obtain: 

( )2j x f zI e dzα γ
∞

− + ⋅

−∞

= ∫  (11.33) 

Here we introduce a new variable, ( )1f x fα γ
π

′ = + , and rewrite (11.33) as: 

2j f zI e dzπ
∞

′−

−∞

= ∫  (11.34) 

This integral is a Fourier transformation of the unitary function ( ) 1f z = . It is known that the 
inverse Fourier pair of the unit function is Dirac function. We therefore write: 

( )2j f zI e dz fπ δ
∞

′−

−∞

′= =∫  (11.35) 

Now we resubstitute ( )1f x fα γ
π

′ = +  into (11.35) and get: 

( )1I x f x fπ γδ α γ δ
π α α

⎧ ⎫ ⎛ ⎞= + = ⋅ +⎨ ⎬ ⎜ ⎟
⎩ ⎭ ⎝ ⎠

 (11.36)

In the above, the scaling property of Dirac function was used: 

( ) ( )1x xδ α δ
α

⋅ = ⋅  (11.37)

Now we substitute the result of (11.36) into (11.30), obtaining: 

( ) ( ) 2 2

2

2

3
j x j f

j f
j f

S f S a x e e x f dx

S a f e e

α γ

γα
γα

π γδ
α α

π γ
α α

∞

−∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞= ⋅ = ⋅ + ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞= − ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∫
 (11.38)

Here we introduce another dependency between the chirp sweep rates: 

1a γ
α

− =  (11.39)

which is equivalent to: 

aα
γ

= −  (11.40) 

We insert (11.40) into (11.38) and obtain: 

( ) ( )
2

2

3

j f

S f S f e
γα γ
απ

α

⎛ ⎞
⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠= ⋅ ⋅  (11.41) 
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Looking at the algorithm in Figure 11.3, we note that only one step – multiplication by 
the frequency chirp 

2

0
j fc e ε−  is necessary for the final result: 

( ) ( ) ( )

( ) ( )

2
2

2 2

2
2

4 3 0 0

0 !

j f
j f j f

j f

S f S f c e c S f e e

c S f e S f
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γ γ ε
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π
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⎛ ⎞
⋅ + ⋅⎜ ⎟⎜ ⎟− − ⋅⎝ ⎠

⎛ ⎞
+ − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

= ⋅ ⋅ = ⋅ ⋅ ⋅ =

= ⋅ ⋅ = =

 (11.42) 

Looking at (11.42), it is natural to introduce two new relations: 

0c α
π

=  (11.43) 

and 
2γ γ βε γ

α α
⋅

= + =  (11.44) 

We calculate the third chirp rate using (11.40) as: 

a
αγ = −  (11.45) 

The second chirp rate β  is obtained from (11.32) as: 

11
a a
αβ α α ⎛ ⎞= − = ⋅ −⎜ ⎟

⎝ ⎠
 (11.46) 

 The expression of the fourth chirp rate ε  is determined from (11.44) and using (11.46): 

2

11
1 1a a
a a

α α
βε γ α
α α

⎛ ⎞⋅ ⋅ −⎜ ⎟ ⎛ ⎞⎝ ⎠= = − = ⋅ −⎜ ⎟
⎝ ⎠

 
(11.47) 

As the summary, we collect all the chirp factors together:  

0

2

11 , ,

11
1 1

freely selected

c
a a

a a
a a

α
α αβ α γ

π
α α

βε γ α
α α

=

⎛ ⎞= ⋅ − = − =⎜ ⎟
⎝ ⎠

⎛ ⎞⋅ ⋅ −⎜ ⎟ ⎛ ⎞⎝ ⎠= ⋅ = − = ⋅ −⎜ ⎟
⎝ ⎠

 
(11.48) 

The chirp rates above show the dependence on both the scaling factor 0a (given) and the 
first chirp rate α (freely selected). 

The nice fact that the first chirp rate can be arbitrarily selected is seized by the SAR 
processors [38], [39]. Their first chirp rate α  is chosen equal to the negative value of the 
transmitted chirp sweep rate. Then, the first convolution in Figure 11.3 becomes equivalent 
to the range compression, which has to be done anyway. Hence, one convolution is omitted 
from the processing, which increases the efficiency of the algorithm.  
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B.2 Discrete Implementation of the Chirp Scaling Algorithm 
We discussed in appendix B.1 the continuous implementation of the Chirp Scaling 

algorithm. Here, we consider its discrete realization. As already mentioned, we have freedom 
to select the first chirp rate α  arbitrarily. For simplicity, we make substitution: α πα→ . 
Then, the chirp rates shown in Figure 11.3 are slightly modified (as shown in Figure 11.4): 
 

 
Figure 11.4. Modified continuous implementation of the Chirp Scaling algorithm 

 
All chirp rates have changed by a factor of π . Nevertheless, all relations given in (11.48) 

remain unchanged. 
The algorithm consists of chirp multiplications and convolutions. The convolutions are 

carried out by FFT techniques, as was done in the Inverse Scaling algorithm. Figure 11.5 
shows the discrete implementation of the Chirp Scaling algorithm: 
 

 
Figure 11.5. Discrete implementation of Chirp Scaling algorithm 

 
Symbols used: 

fΔ  is the bandwidth of the input signal. 

0T  is the time extent (duration) of the input signal. 

1,2,3,4cB  are the bandwidths of the corresponding chirps 1,2,3,4 ( )C f . 

1,2,3,4cT  are the time durations of the chirps 1,2,3,4 ( )c t . 

1 ,2 ,3 ,4ext ext ext extT  are the time extensions at corresponding steps of the algorithm. 
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1 ,2 ,3 ,4ext ext ext extf  are the equivalent bandwidth extensions. 

1,2,3,4T  are the equivalent complete time extents. 

1,2,3,4fΔ  are the full signal bandwidths. 
 
Step 1 

Step 1 performs the convolution with the chirp 
2j fe πα . Hence, it extends the bandwidth, 

but keeps the signal duration unchanged. We calculate the bandwidth of the first chirp 
2

1

j f

c

frect e
B

πα−
⎛ ⎞

⋅⎜ ⎟⎜ ⎟
⎝ ⎠

. This bandwidth equals to the size of frequency extension 1extf  after the 

step 1: 

1

0
1ext c

Tf B
α

= =  (11.49) 

Hence, the final extended frequency bandwidth after the step 1 is obtained as: 

1 1extf f fΔ = Δ +  (11.50)

 
Step 2 

Here we multiply ( )1S f  with 
2j fe πβ− . Step 2 extends the time and keeps the frequency 

bandwidth unchanged. Time domain chirp equivalent to 
2j fe πβ− can be written as 

2

2

1j t

c

trect e
T

π
ββ

⎛ ⎞
⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
. Therefore, the time extension is obtained as: 

( )
22 1 1ext c extT T f f fβ β= = ⋅ Δ = ⋅ Δ +  (11.51) 

The total time duration after step 2 is given as: 

2 1 2 0 2ext extT T T T T= + = +  (11.52)

The frequency bandwidth stays unchanged: 

2 1 1extf f f fΔ = Δ = Δ +  (11.53)

 
Step 3 

This step contains the convolution of ( )2S f with chirp 
2j fe πγ . Thus it does not extend the 

time: 

3 0extT =  (11.54)

The total time extent after step 3 is: 

3 2 3 2 0 2ext extT T T T T T= + = = +  (11.55)

The frequency extension after step 3 is calculated as: 

3

2
3ext c

Tf B
γ

= =  (11.56)

The final frequency bandwidth after the step 3 is given as: 
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2
3 2 3 2ext

Tf f f f
γ

Δ = Δ + = +  (11.57) 

 
Step 4 

The final step is a multiplication of ( )3S f  with 
2j fe πεα −⋅ . It does not change the 

frequency bandwidth, but it extends the time. The time extension is calculated as: 

( )
44 3 2 3ext c extT T f f f fε ε= = ⋅ = ⋅ Δ ⋅ +  (11.58) 

The chirp is generated in the time domain as 
21

4

j t

ext

trect e
T

π
ε

α
ε

⎛ ⎞
⋅ ⋅⎜ ⎟

⎝ ⎠
 and then converted 

into the frequency domain. For the unchanged bandwidth, we write: 

4 3 2 3extf f f fΔ = Δ = Δ +  (11.59)

 
 
B.3 Standardization of the Chirp Scaling Algorithm 

In case of discrete implementation, because we deal with the frequency and the time, we 
should take care of the standardization like it was done in case of the Inverse Scaling 
algorithm. Suppose the following: 

et  is the initial sampling time measured in [ ]s . 

ef  is the corresponding frequency unit width measured in [ ]Hz . 

0N  is the number of initial discrete signal samples. 

 fΔ  is the bandwidth of the input signal and can be calculated as 
0

1

e

f
N t

Δ = . 

We know that the factor α  can be freely selected in the algorithm. We introduce a 
modified scaling factor α� : 

2
0eT Nα α= ⋅ ⋅�  (11.60) 

α� , given in (11.60), has a dimension of 2s , which solves the standardization problem in 
the future derivations.  
 
Step 1 

We calculate the values of the time and the frequency extensions after step 1 using 
(11.49), (11.50). For the complete frequency bandwidth after step 1, we have: 

1
1 1 1 11
e e e

f
t t tα α

⎛ ⎞Δ = + = ⋅ +⎜ ⎟
⎝ ⎠� �

 (11.61) 

And for the time extent, we can write: 

1 0eT t N= ⋅  (11.62) 

 
Step 2 

At step 2 we use (11.52) and obtain the complete time extent: 
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1 1 11

11 1
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 (11.63) 

Using (11.53), we calculate the equivalent frequency bandwidth after step 2 as: 

0 0
2 2

0

1 1 1 11e e

e e e e

t N t Nf
t t t N tα α α

⋅ ⋅ ⎛ ⎞Δ = + = + = ⋅ +⎜ ⎟⋅ ⋅ ⎝ ⎠� �
 (11.64) 

 
Step 3 

After step 3, using (11.56) and (11.57), we can easily determine the complete frequency 
bandwidth as: 

( )

( )
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0 02
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1 1 11

1 1 11 1
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e e

e e e e e
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 (11.65) 

We simplify the above equation and obtain: 

( )3
1 1 11 1 1
e

af a
t α α α

⎛ ⎞⎛ ⎞Δ = ⋅ + + + − ⋅ +⎜ ⎟⎜ ⎟
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 (11.66) 

Considering (11.55), the time extent is calculated as: 

( )

2 0
3 0 0 2

0

0 0

1 11

11 1

e
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e e

e e
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 (11.67) 

 
Step 4 

At step 4, we use (11.57), (11.58) and obtain the final frequency bandwidth: 

( )4 3
1 1 11 1 1
e

af f a
t α α α

⎛ ⎞⎛ ⎞Δ = Δ = ⋅ + + + − ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠� � �

 (11.68) 

The complete time extent is determined using the equation (11.58): 

( ) ( )

( ) ( ) ( )( )

2
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0 2

1 1 1 1 11 1 1 1 1

1 1 11 1 1 1 1 1

e e e
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� �
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 (11.69) 
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At the end of the algorithm, the bandwidth of the signal is resized by the scaling factor. 
Therefore, the actual scaling factor is calculated as: 

( )4 1 11 1 1act
f aa a
f α α α

Δ ⎛ ⎞= = + + + − ⋅ +⎜ ⎟Δ ⎝ ⎠� � �
 (11.70) 

Appropriately selecting α�  and a  factors, we can obtain the necessary scaling effect. 
 
B.4 Chirp Scaling algorithm –simulated result 

To verify the validity of the Chirp Scaling algorithm we simulate a very extreme case, 
where the scaling is required with the scaling coefficient equal to 0.5. We have experienced 
this kind of situation in the processing of the hybrid bistatic configuration described in 
section 2.4.1. In this case, the azimuth time variance of the bistatic processing causes the 
scaling of the azimuth frequency with a factor of the 0.5. The compensation of a big scaling 
was impossible to achieve by the Inverse Scaling approach. Additionally, after the azimuth 
scaling we needed to stay in the frequency domain, so the Chirp Scaling algorithm was more 
preferable.  

In one direction we have a sampling with a frequency of 8000 Hz, and six point targets 
are distributed at the positions 300, 800, 1300, 1500, 2500 and 5000, visible in Figure 11.6: 

 
Figure 11.6. Initial location of the point targets 

 
The magnitudes of the PTs are intentionally increased for better observation of the 

processing effect.  
In Figure 11.7, we have the result after applying the Chirp Scaling algorithm. All PTs are 

focused correctly and allocated at the correct positions. The algorithm is quite complex and 
long. In order to decrease the processing time, we slightly simplify the algorithm by using 
some approximations. These approximations cause an error on the magnitude of the last PT, 
but it is actually not a big problem. At the beginning of most of the processing algorithms, 
the zeros are padded to the end of the scene in order to perform a correct convolution. 
Therefore, the erroneous result in the end of the scene can be ignored, because at the location 
of the last PT we have zeros anyway.  

The position of the last PT after the end of the Chirp Scaling algorithm is calculated as: 

1

15000 0.50 =5000.06
0.5

timeSamplingUnitOldNnew Nold
timeSamplingUnitNew scalingFactor

= ⋅ ⋅

= ⋅ ⋅
 (11.71) 
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Nnew  is the new position of the PT and Nold  is the old position.  
timeSamplingUnitOld  is the initial sampling time and timeSamplingUnitNew  is the 
sampling time at the and of the processing.  
scalingFactor  is the required scaling factor. 
 
This result is in good accordance to the real allocation of the 6th PT given in Figure 11.6: 

 
Figure 11.7. The result after the Chirp Scaling algorithm 
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C Radon Transformation 
The Radon transformation [36] converts lines from the Cartesian coordinates into points 

in the polar domain. Suppose that we have a 2D function ( )1 2,u x x  and we are looking for 

the parallel projection of ( )1 2,u x x  along the direction T . The parallel projection of a 2D 
signal can be understood as a convolution with a Dirac line perpendicular to the line of 
projection, as seen in Figure 11.8.  

Now we convert Dirac line to polar coordinates: 
( ) ( ) ( )1R Tδ δ⋅ = ⋅g x  (11.72) 

g  is a unit vector normal to the Dirac line. The 2D signal ( )1 2,u x x  in polar coordinates 

is given as: ( ) ( )1 2, ,u R T u x xϕ = . The result of the convolution of the Dirac line with 

( ),u R Tϕ  is a parallel projection, and we abbreviate it as ( ),pu R T : 
 

1x

1x

1x

2x

2x

2x

R R
T T

),(),( 21 TRuxxu ϕϕ =

**

)(Rδ

ϕ

),( ϕRU p

 
Figure 11.8. Parallel projections of a 2D signal by the convolution with the Dirac line 

 
Using (11.72) we express the parallel projections using the line integral in the polar 

coordinates: 

( ) ( ) ( ) ( ), , , **pu R u R T dT u R T Rϕ ϕϕ δ
∞

−∞

= ⋅ =∫  (11.73)

The integral given in (11.78) expresses the Radon transformation. It was first introduced 
in [61]. The Radon transformation calculates the integrals over the lines and then gives the 
result in polar coordinates. It is widely used in the X-Ray tomography. 

 
C.1 Central Slice Theorem 

Very often, the Radon transformation is associated with the Central Slice theorem. 
Generally for any 1D signal, we can write: 
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( ) ( )0u t dt U
∞

−∞

=∫  (11.74) 

This property comes directly from the Fourier integral after inserting the value 0f = . 
(11.74) can be generalized for the multidimensional functions: 

( ) ( )u d U
∞

−∞

=∫ x x 0  (11.75) 

where ( )0,0,..., 0 T=0 is a null vector. 
(11.75) was obtained after the integration of all the variables of the multidimensional 

function.  
It is interesting to find out what kind of result we will get if we perform the integration 

with only some variables and then do projection across the rest of the variables. We consider 
this task for 2D functions. We use ,R T  polar coordinates as shown in Figure 11.8. We 
abbreviate the frequency axes as ,R Tf f . They are oriented in the same way as ,R T  axes. We 
calculate the Fourier spectrum as: 

( ) ( ) ( ) ( )1 2 1 2, : , , : ,R Tu x x u R T U f f U f fϕ ϕ= ↔ • =D  (11.76) 

which is equivalent to: 

( ) ( ) ( )2, , R Tj R f T f
R TU f f u R T e dRdTπ

ϕ ϕ

∞ ∞
− ⋅ + ⋅

−∞ −∞

= ∫ ∫  (11.77) 

By setting 0Tf = , we get  

( ) ( ) ( )2 2, , ,R Rj R f j R f
p R pU f u R T dT e dR u R e dRπ π

ϕϕ ϕ
∞ ∞ ∞

− ⋅ − ⋅

−∞ −∞ −∞

⎡ ⎤
= ⋅ = ⋅⎢ ⎥

⎣ ⎦
∫ ∫ ∫  (11.78) 

( ),p RU f ϕ  is the slice of 2D spectrum at the origin and taken on ϕ  direction. 

( ( ),pu R ϕ  is the projection of the 2D function ( )1 2,u x x  in direction T  evaluated across 
the R  axes).  

The equation above represents the Central Slice theorem. We write it in another way: 

( ) ( ) ( ) ( ), , , , 0p p R R Tu R T dT u R U f U f fϕ ϕϕ ϕ
∞

−∞

= ↔ • = =∫ D  (11.79) 

The Central Slice theorem can be formulated in the following way: the spectrum of the 
projected signal can be calculated by taking the slice of original signal spectrum; the slice is 
taken at the origin and at the perpendicular to the projection direction. 

 
C.2 Another Interpretation of Central Slice Theorem – Fourier Spectrum 

of Dirac points, Dirac lines and Dirac planes 
Generally for 1D signals, the following correspondence is valid: 

 ( ) ( )1 1t and fδ δ↔ • ↔ •D D  (11.80) 
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We use the shifting property of Fourier transformation and write: 

( ) ( )0 02 2
0 0

j t f j f tt t e and e f fπ πδ δ−− ↔ • ↔ • −D D  (11.81) 

In the multidimensional case with separable variables, the Fourier transformation is 
calculated by separating the variables. Hence, for a multidimensional Dirac point with 
separable variables, the following is valid: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2... 1 1 ...1 1n nx x x f f fδ δ δ δ= ⋅ ⋅ ↔ • ⋅ ⋅ =x D  (11.82) 

For a multidimensional Dirac point, we have the analogue of the 1D expression: 

( ) 02
0 e πδ − ⋅− ↔ • x fx x D  (11.83) 

Now we return to the 2D case. For the Dirac lines within a plane, we have: 

( ) ( ) ( ) ( ) ( )1 1 2 1 21 1x x x f fδ δ δ= ⋅ ↔ • ⋅D  (11.84) 

The expression (11.84) can be visualized graphically, as shown in Figure 11.9: 
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Figure 11.9. Fourier transform of a Dirac line in 2D space 

 
The Dirac line can be interpreted as a rectangle with one side going to zero; this rectangle 

is displayed in /A/. We consider the case when the side b  vanishes and another side 
increases to infinity keeping the underling area constant. In the limiting case, we will obtain a 
Dirac line as shown in /B/. Now we observe the corresponding scenario in the Fourier 
domain. The spectrum corresponding to the rectangle is a 2D si  function shown in /C/. 
Generally, it is known that the time scaling causes an inverse scaling in frequency domain. 
Therefore, the spectrum in /C/ will be stretched horizontally; in a limit case, the function 

fsi π
ε

ε

⎛ ⎞
⎜ ⎟
⎝ ⎠  (when 0ε → ) approaches the ( )fδ  function. Hence, the time domain Dirac line 
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will be transformed as well to the Dirac line in frequency domain as shown in /D/. Time and 
frequency Dirac lines will be orthogonal to each other. 

As discussed above, the parallel projection of 2D signal can be considered as a 
convolution with a Dirac line. This convolution in time domain is equivalent to a 
multiplication in frequency domain by the Dirac line. Therefore a multiplication by a 
frequency Dirac line will be equivalent to a slice of a spectrum at the origin. That is why 
Radon transformation is often associated with the multidimensional Central Slice theorem. 
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