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Zusammenfassung: Im Jahr 1985 definierte A. Casson eine topologische Invariante λ(Σ)
für Homologie-3-Sphären Σ, die, vereinfacht formuliert, nicht-abelsche SU(2)-Darstellungen der
Fundamentalgruppe von Σ mit Vorzeichen zählt. X.-S. Lin griff das konstruktive Prinzip Casson’s
auf und definierte 1992 eine Invariante h(k) für Knoten k in der 3-Sphäre S3. Die Berechnung von
h(k) führt auf einen von Lin als “mysteriös” eingeschätzten Zusammenhang mit der Knotensignatur
σk, einer klassischen Seifert-Invariante.

In der vorliegenden Arbeit werden beide Ansätze zusammengeführt, um unter Verwendung von
SU(2)-Darstellungen der Knotengruppe π1(Σ−k) eine Schnittzahl sα(k ⊂ Σ) zu definieren (wobei α

anzeigt, dass für die Darstellung der Knotenmeridiane SU(2)-Matrizen mit Spur 2 cosα, α ∈ (0, π),
verwendet werden). Das zentrale Resultat ist die Berechnung von sα(k ⊂ Σ) mit Hilfe eines Skein-
Algorithmus. Aus dieser folgt, dass sα(k ⊂ Σ) eine Invariante für Knoten in Homologie-3-Sphären
ist. Es ergibt sich

sα(k ⊂ Σ) = 2λ(Σ) +
1
2
σk⊂Σ(e2iα) ,

wobei die äquivariante Signatur σk⊂Σ(e2iα) eine Verallgemeinerung der Knotensignatur darstellt.
Damit bildet sα(k ⊂ Σ) das topologische Gegenstück zu der von C. Herald auf analytischem Wege
definierten Invariante hα(Σ, k). Die Invarianten von Casson und Lin ergeben sich als Spezialfälle
limα→0,π sα(k ⊂ Σ) bzw. sπ/2(k ⊂ S3).

Das Resultat der Berechnung wird zeigt, dass die Bedingung σk⊂Σ(e2iα) 6= 0 hinreichend für die
Existenz eines abelschen Limes nicht-abelscher Darstellungen von π1(Σ−k) ist. Insbesondere folgt,
dass π1(Σ−k) in einem solchen Fall nicht-abelsche SU(2)-Darstellungen ermöglicht. Darüberhinaus
werden die Zusammenhänge, die man zwischen sα(k ⊂ Σ) und der klassischen Seifert-Invariante
σk⊂Σ(e2iα) beobachten kann, begründet.

Abstract: In 1985 A. Casson defined a topological invariant λ(Σ) for homology 3-spheres.
Roughly speaking, λ(Σ) counts the irreducible SU(2)-representations of the fundamental group of
Σ with signs. In 1992, motivated by Casson’s construction, X.-S. Lin defined an invariant h(k)
for knots k in the 3-sphere S3. The computation yields a correlation to the knot signature σk, a
classical Seifert invariant, which seemed “mysterious” to Lin.

Combining both constructions, we define an intersection number sα(k ⊂ Σ) using the repre-
sentations of the knot group π1(Σ− k) (where α indicates that SU(2)-matrices with trace 2 cosα,
α ∈ (0, π), are used to represent the knot meridians). Our main result is the computation of
sα(k ⊂ Σ) by using a skein algorithm. The computation implies that sα(k ⊂ Σ) is actually an
invariant for knots in homology 3-spheres. It yields

sα(k ⊂ Σ) = 2λ(Σ) +
1
2
σk⊂Σ(e2iα) ,

where the equivariant signature σk⊂Σ(e2iα) is a generalization of the knot signature. It turns out
that sα(k ⊂ Σ) is the topological counterpart of the knot invariant hα(Σ, k) defined by C. Herald
along the lines of the analytical interpretation of Casson’s invariant. The invariants of Casson and
Lin appear as the special cases limα→0,π sα(k ⊂ Σ) and sπ/2(k ⊂ S3) respectively.

Using the results of the computation we show that the condition σk⊂Σ(e2iα) 6= 0 ensures the
existence of an abelian limit of non-abelian representations of π1(Σ − k). In particular this im-
plies that π1(Σ − k) admits non-abelian SU(2)-representations. Furthermore the computation of
sα(k ⊂ Σ) provides an explanation of the correlations between the invariant sα(k ⊂ Σ) based on
representation spaces and the classical Seifert invariant σk⊂Σ(e2iα).
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Chapter 1

Introduction

In 1985 Andrew Casson defined an invariant λ(Σ) of homology 3-spheres Σ via elegant constructions
on SU(2)-representation spaces. The idea of Casson’s invariant comes from the observation that
for a given Heegaard splitting Σ = Hg

1 ∪Hg
2 (where Hg

1 and Hg
2 are solid handlebodies of genus g

meeting along their common boundary F g) the surjections π1(F g) i∗k→ π1(H
g
k )

j∗k→ π1(Σ), k = 1, 2,
of the fundamental groups give rise to inclusions of spaces of conjugacy classes of non-abelian
representations of these groups into SU(2):

R̂(H1
g)

bi1
vvnnnnnnnnnn bj1hhPPPPPPPPPP

R̂(F g) R̂(Σ)
bi2hhPPPPPPPPPP

bj2
xxpppppppppp

R̂(H2
g)

It turns out that R̂k := R̂(Hg
k ) are complementary (and equal) dimensional smooth open subman-

ifolds of R̂(F g). Then Casson’s invariant is roughly “the algebraic intersection number” of the
manifolds R̂k in R̂(F g). The isotopy R̂1 Ã R̃1 t R̂2 ⊂ R̂(F g) which is used to obtain a transversal
intersection can be compactly supported away from the abelian singularities of R̂(F g). This is
possible because the condition H1(Σ,Z) = 0 guarantees that the trivial representation of Σ (which
is the only abelian one) is isolated in R̂(F g).

Let k be a knot in Σ and denote the manifold obtained by 1
n -surgery on k by Σ + 1

nk. Then it
turns out that the difference

λ′(k) := λ(Σ +
1

n + 1
k)− λ(Σ +

1
n

k) =
1
2
∆′′

k⊂Σ(1) (1.1)

is independent of n and therefore an invariant of the knot k. In fact 2λ′(k) is determined by the
second derivative of the symmetrized Alexander polynomial ∆k⊂Σ(t) evaluated at 1. Together with
the initial value λ(S3) = 0 equation (1.1) allows us to compute λ(Σ) for any homology 3-sphere.
There are many remarkable consequences due to the properties of Casson’s invariant. One of the
most important corollaries states that any homotopy sphere has zero Rohlin invariant. Another
beautiful corollary is that a knot k ⊂ S3 has property P if ∆′′

k(1) 6= 0. Here a non-trivial knot is
said to have property P if no non trivial Dehn surgery on k yields a homotopy sphere.
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In 1992 K. Walker generalized Casson’s construction to the case of rational homology 3-spheres
(cf. [Wak92]). Five years later C. Lescop published a global surgery formula which determines
the Casson-Walker invariant as a function of the surgery data given for a link in S3 (cf. [Les97]).
Because all closed orientable 3-manifolds can be presented by a surgery on a link her definition can
be extended to this general case.

In 1990 C. H. Taubes introduced a gauge theoretical approach to the Casson invariant by
interpreting it as the Euler characteristic of the Floer homology of Σ (cf. [Tau90]). In the gauge
theoretical context the equivalence classes of representations of the fundamental group are regarded
as flat connections of the principal (and therefore trivial) SU(2)-bundle over Σ. As usual when using
gauge theory as a tool for investigating the topology of manifolds one has to perturb the flatness
conditions. These perturbations are the analytical counterpart of the topological problem to make
sense of the intersection of R̂1 and R̂2 in R̂(F g).

Motivated by Casson’s original construction, X.-S. Lin defined an invariant h(k) of knots k in
S3 by counting the number of conjugacy classes of SU(2)-representations of the knot group with
appropriately defined signs (cf. [Lin92]). Presenting the knot as a closed braid and representing all
knot meridians by SU(2)-matrices with zero trace, Lin computed his invariant and showed

h(k) =
1
2
σk

where σk denotes the classical knot signature of k. In [Kro96] Lin’s construction is generalized to
SU(2)-representations whose values on any knot meridian have trace 2 cosα with a specified α ∈
(0, π). This yields the intersection number hα(k) which can be defined if the condition ∆k(e2iα) 6= 0
holds. Again the computation is based on a braid presentation for k and shows that hα(k) is
determined by the equivariant (or Tristram-Levine) signature σk(e2iα):

hα(k) =
1
2
σk(e2iα) , σk(ω) := sign((1− ω)V + (1− ω)V T ) , ω ∈ S1 , (1.2)

where V denotes a Seifert matrix of k.
This is used in [HK98] to generalize a result of C. Frohman and E.P. Klassen who considered

the following question: Which are the conditions for an abelian SU(2)-representation ρα of a knot
group (mapping the knot meridians to SU(2)-matrices with trace 2 cos α) to be a limit of non-abelian
representations?

It was shown by Klassen ([Kla91]) that the condition ∆k(e2iα) = 0 must be satisfied if ρα is to
be such a limit. Moreover, it is conjectured that this condition is also sufficient.

In [FK91] the authors proved the conjecture under the assumption that e2iα is a single root of
∆k(t). Using relation (1.2) we showed in [HK98] that ρα is a limit of non-abelian representations
if the equivariant signature jumps at e2iα. Therefore the conjecture holds if e2iα is a root of ∆k(t)
of odd multiplicity. Note that these results support the conjecture that all 3-manifolds with non
trivial fundamental group admit a non-trivial representation in SU(2) (see [Kir97], Problem 3.105
(A)).

The stated results were independently proven by C. Herald using the gauge theory treatment
initiated by Taubes (cf. [Her97]). Since the gauge theoretical approach provides a more general
viewpoint, Herald was able to show the results for knots k in any homology sphere Σ. His main
tool is an intersection number hα(k, Σ) defined as follows. Let m be the meridian of a knot k ⊂ Σ
and denote by R(T 2) the representation variety of the boundary torus whose fundamental group is
generated by m and the canonical longitude of k. Further let Sα denote the set of representations
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ρ ∈ R(T 2) such that tr ρ(m) = 2 cosα and let r : R(Σ− k) →R(T 2) be the projection induced by
the inclusion of the torus boundary of the knot complement. Then a generic perturbation h deforms
R(Σ−k) into the moduli space Rh(Σ−k) so that r(R(Σ−k))∩Sα is a transversal intersection on
the pillow case PC (which denotes the smooth part of R(T 2)). By counting these (finitely many)
intersection points with proper signs the invariant hα(Σ, k) := 〈r(Rh(Σ−k)), Sα〉PC ∈ Z is defined.
Herald shows that for α ∈ [0, π] with ∆k⊂Σ(e2iα) 6= 0, the formula

hα(Σ, k) = 4λ(Σ) +
1
2
σk⊂Σ(e2iα)

holds. We call a formula like this, relating an intersection number defined via representation theory
with topological invariants of the 3-manifold and the knot, computational formula.

Since the right hand side only contains topological invariants it is natural to ask: Is it possible
to define a similar Casson-Lin invariant using Casson’s original topological approach?

The intersection number sα(k ⊂ Σ) defined below gives a positive answer to this question.
The construction which is outlined in the following combines the techniques used to define the
invariants of Casson and Lin. The construction is reflected by the result of the computation which
is essentially the sum of Casson’s and Lin’s invariants.

Let k ⊂ Σ be a knot in an arbitrary homology sphere, F a Seifert surface of k, i.e. ∂F = k, and
Hg

1 ∪Hg
2 be a Heegaard splitting of genus g. Taking F as a thickened 1-complex we can isotope F

into Hg
1 to achieve the situation k ⊂ F ⊂ Hg

1 as a starting point. Further let (Hg
1 , h) be a Heegaard

diagram associated with the Heegaard splitting of Σ where we consider a standard embedding of
the handlebody Hg

1 in S3. Then the homeomorphism h : F g
∼=→ F g is specified by the g curves

h(∂Di) attaching the boundaries of the handle discs Di of the complementary handlebody Hg
2 . For

a knot k ⊂ Σ and a Heegaard diagram with k ⊂ Hg
1 we denote the knot obtained by the standard

embedding of Hg
1 by k′ ⊂ Hg

1 ⊂ S3. Thus the use of a Heegaard diagram (Hg
1 , h) allows for a

concrete description of the representation space of π1(Σ− k) by identifying it with the intersection

R̂(Σ− k) = R̂1(H
g
1 − k′) ∩ R̂2 ⊂ R̂(F g)

where the embedding ĥ(R̂2) is still denoted by R̂2.
In order to obtain a dimensional situation similar to the definition of the Casson invariant

we restrict our considerations to representations which map the knot meridians to SU(2)-matrices
with fixed trace 2 cosα. (All representation spaces subject to this restriction are indexed by α).
Then the representation space R̂α(Hg

1 − k′) gives rise to the (3g − 3)-dimensional manifold R̂′α(β)
which can be properly embedded in R̂(F g) (where we assume g ≥ 2 without loss of generality).
Resembling Lin’s approach we define R̂′α

1 (β) using the intersection of the (2n+3g−6)-dimensional
diagonal Λ̂α

g,n and the (2n + 3g − 3)-dimensional graph Γ̂α
β which both are submanifolds of the

(4n+3g− 6)-dimensional manifold Ĥα
g,n. The key tool to obtain the graph is the standard position

for k′ which is a 2n-plat presentation β̂ whose n upper closing arcs run through exactly one handle.
Here β denotes a braid with 2n strands. The standard position is obtained from the initial Heegaard
diagram by isotopies of the knot and stabilization of the handlebodies (with the new genus still
denoted by g and g ≥ n). Then we obtain the graph from the diffeomorphism induced by the braid
automorphism on the matrices representing the meridians of the closing arcs of β̂. After an isotopy
Γ̂α

β Ã Γ̃α
β we obtain a (3g − 3)-dimensional manifold from the transversal intersection

R̂′α
1 (β) := Γ̃α

β t Λ̂α
n,g ⊂ Ĥα

n,g .
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With the g longitudes of Hg
1 and the n meridians of the closing arcs as generators of π1(H

g
1 − β̂),

the map i1∗ : π1(F g) → π1(H
g
1 − β̂) induced by inclusion is surjective. Therefore the map î1 :

Λ̂α
n,g → R̂(F g) induced on the representation spaces provides a proper embedding R̂′α

1 (β) ↪→ R̂(F g)
of manifolds and we may regard the plat presentation to be natural in this context.

For dimensional reasons there is an isotopy R̂′α(β) Ã R̃′α(β) to a transversal 0-dimensional
intersection: R̃′α(β) t R̂2 ⊂ R̂(F g) (where we keep the notation for the embedding of R̂′α(β)).
Because the abelian representations of the knot complement are isolated if the condition
∆k⊂Σ(e2iα) 6= 0 holds, both isotopies above can be chosen with compact support. Thus, after
choosing an orientation of the manifolds, the intersection number sα(k ⊂ Σ) is well defined:

Definition 1. Let the manifolds R̂′α
1 (β), R̂2 and R̂(F g) be endowed with orientations. If the

condition ∆k⊂Σ(e2iα) 6= 0 holds there exists an isotopy R̂′α
1 (β) Ã R̃′α

1 (β) with compact support such
that the intersection number

sα(k ⊂ Σ) := (−1)g
∑

p∈ eR′α1 (β)t bR2⊂ bR(F g)

εp , εp = ±1

is well defined.

The factor (−1)g is needed to ensure the invariance under stabilization.
In contrast to the proofs given in [Lin92] and [HK98] we derive the fact that sα(k ⊂ Σ) is a knot

invariant from a computational formula in analogy with Herald’s result. As for the computation
of Casson’s knot invariant λ′(k) we want to utilize the existence of a knot k′ ⊂ S3 which has the
same Seifert matrix as k ⊂ Σ and compute sα(k ⊂ Σ) by examining a skein algorithm for k′. Here
complications arise because the corresponding k′ ⊂ S3 must respect the Heegaard splitting of Σ.
The latter is achieved by changing an arbitrary chosen Heegaard diagram into a homologically flat
diagram by handle slides. The expression “homologically flat” is used because the homology classes
of the g attaching curves h(∂Di) are the same as in the case of trivial pasting of Hg

2 . Then a trivial
embedding of Hg

1 in S3 yields k′. Note that the handle slides generally change the embedding of
k′ ⊂ Hg

1 ⊂ S3. The construction has immediate corollaries:

Corollary 2. (a) In each free homotopy class γ of loops in a homology 3-sphere Σ all Laurent
polynomials p(t) with p(t) = p(t−1) and p(1) = 1 are realized as Alexander polynomials of knots
k ⊂ Σ.
(b) Let k0 ⊂ Σ be a knot with trivial Alexander polynomial. Then all Alexander polynomials are
realized by k0 with one crossing changed.

Since the stabilizations which are applied to obtain the standard position for k′ leave a homo-
logically flat Heegaard diagram flat we can assume a homologically flat Heegaard diagram given by
(Hg

1 , h) with k′ ⊂ Hg
1 ⊂ S3 in standard position.

The starting point for the computation of sα(k ⊂ Σ) is the following observation. Because
sα(k ⊂ Σ) cannot change at α if the condition ∆k⊂Σ(e2iα) 6= 0 holds, sα(k ⊂ Σ) is constant (with
respect to α) if k is a knot with trivial Alexander polynomial. From the definition of sα(k ⊂ Σ)
it follows that limα→0,π sα(k ⊂ Σ) = 2λ(Σ) (where the factor 2 appears because all intersection
points are counted). Since sα(k ⊂ Σ) is locally constant, the equation sα(k ⊂ Σ) = 2λ(Σ) holds for
all α if k is a knot with ∆k⊂Σ = 1. Thus to compute sα(k ⊂ Σ) we may consider an “unknotting
process” which leads to a knot k0 with trivial Alexander polynomial and observe the difference
∆sα(k ⊂ Σ) := sα(k+ ⊂ Σ) − sα(k ⊂ Σ) where k+ denotes the knot k with one crossing changed.
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To switch a certain crossing we establish a computational position k′c = k′c(k′, k′+) = β̂c. This
position is obtained by a stabilization of the plat β̂ presenting k′ followed by a stabilization of the
standard splitting such that the crossing is isolated in an additional handle. Then we perform a
1-surgery along the meridian of the new handle. Note that these manipulations are in general not
realizable by band homotopies of the Seifert surface F ⊂ Hg

1 bounding k. But for our purposes it
is sufficient that the Alexander polynomials of k+ ⊂ Σ and k′+ ⊂ S3 coincide.

To control ∆sα(k ⊂ Σ) we project the (in general high dimensional) manifolds R̃′α
1 (βc) and

R̂(Hg+1
2 ) via p̂ : R̂(F g+1) → PC onto the pillow case representing the non-central part of the

longitude l0 and the meridian m0 of the new handle. Note that due to the conditions of the
projection the representations ρ(l0) and ρ(m0) commute. Then we obtain ∆sα(k ⊂ Σ) by comparing
the intersection number of the projection curve of the knot p̂α(βc) := p̂(R̃′α

1 (βc)) and the projection
curve of R̂(Hg+1

2 ), denoted by ĥ2, with the intersection number 〈p̂α(βc), ĥ+〉PC (where ĥ+ denotes
the projection curve of R̂(Hg+1

2 ) after the 1-surgery). Because there is no isotopy needed in a
sufficiently small neighborhood of the abelian representations of R̂′α

1 (βc) (and R̂(Hg
1 − k′) resp.),

the endpoints of p̂α(βc) on the pillow case are independent from the isotopies chosen to define
sα(k ⊂ Σ). Thus ∆sα(k ⊂ Σ) is determined by the endpoints of the projection curve of the knot
which are given by the limit

lim p̂α(βc) = (
1
2

arg λα
0 (k, k+),−2α) ∪ (π − 1

2
arg λα

0 (k, k+), 2α) ⊂ PC ,

where

λα
0 (k, k+) =

∆k+⊂Σ(t)− t∆k⊂Σ(t)
∆k+⊂Σ(t)− t−1∆k⊂Σ(t)

∈ S1 and t = e2iα .

Since the skein relation for sα(k ⊂ Σ) fits together with the skein algorithm for the equivariant
signature, we obtain our main result.

Theorem 3. Let k ⊂ Σ be a knot and α ∈ (0, π) with ∆k⊂Σ(e2iα) 6= 0 be given. Then

sα(k ⊂ Σ) = 2λ(Σ) +
1
2
σk⊂Σ(e2iα) .

The result depends on the orientations of Σ and of the knot by an overall sign of λ(Σ) and σk⊂Σ

respectively. Since all computations are independent from the chosen Heegaard splitting we have
proven:

Theorem 4. Suppose that the assumptions of theorem 3 hold. Then sα(k ⊂ Σ) defines an invariant
for knots in homology 3-spheres.

Using a bordism argument as in [HK98] the following theorem is immediate.

Theorem 5. Let k ⊂ Σ be a knot in a homology 3-sphere and α ∈ [0, π] such that ∆k⊂Σ(e2iα) = 0.
(a) Then the abelian representation ρα is a limit of non-abelian representations of π1(Σ−k) if σk⊂Σ

jumps at e2iα.
(b) If σk⊂Σ(e2iα) changes its value on the unit circle then the representation space of Σ − k is
non-trivial.

Remark 6. 1. The equivariant signature changes its value if e2iα is a root of ∆k⊂Σ(e2iα) of odd
multiplicity.
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2. The invariant hα(k) defined in [Kro96] and the results of [HK98] are included as the case
Σ = S3. Of course we obtain Lin’s invariant for Σ = S3 and α = π/2.

We conclude the introduction with some remarks on the results and ideas regarding possible
developments based on the construction.

Since our invariants of Casson type can be computed from a corresponding knot k′ in S3, it is
clear that they cannot carry more topological information than the Seifert surface which bounds k

and k′. Therefore it is not surprising that the invariants computed from constructions on SU(2)-
representation spaces are determined by Seifert invariants like the derivative of the Alexander
polynomial or the equivariant signature. It is because of this limitation that G. Burde’s proof of
property P for 2-bridge knots (see [Bur90]) cannot be generalized with the help of Casson type
invariants. Because there is no need to isotope the representation spaces in the case of the 2-bridge
knots Burde can make use of the full potential of the SU(2)-representations to detect even such
non-abelian phenomena which fail to be noticed by the Casson invariant.

For sα(k ⊂ Σ) this potential is lost even twice. Firstly as a consequence of the perturbation
Γ̂α

β Ã Γ̃α
β implicating the determination of the intersection number by the local structure of the

representation space at the abelian representations. The second loss comes with the perturbation
R̂′α

1 (β) Ã R̃′α
1 (β) which puts us in the position to compute sα(k ⊂ Σ) from a knot k′ in S3.

Considering Herald’s picture on the pillow case representing the torus boundary of Σ − k we see
that Casson type invariants in spite of their limitations may provide non trivial contributions for
proving property P . Hence a more detailed comparison of the topological and the gauge theoretical
approach to this invariants seems to be of further interest.

The projection curve of the knot in our construction provides explicit information about the
neighborhood of an abelian representation. From this we expect some progress in proving the
conjecture that ∆k⊂Σ(e2iα) = 0 is a sufficient condition for ρα to be a limit of non-abelian repre-
sentations.

Another topic for further examination is the definition of a Casson-Lin invariant for knots in ra-
tional homology 3-spheres. For this, a Heegaard diagram whose gluing curves are of trivial rational
homology seems to be a good starting point for computing a skein algorithm. For the knot invariant
in the rational case we conjecture an analogous formula where the Casson invariant take values inQ.

The paper is organized as follows. In Chapter 2 the basic facts and notations are presented.
Furthermore it includes the construction of a homologically flat Heegaard diagram which is the
central tool for the computation of sα(k ⊂ Σ) in terms of the Casson invariant and signature
function. The invariant itself is defined in chapter 3. In Chapter 4 the computation of sα(k ⊂ Σ)
is discussed. The example of the (2, n)-torus knots provides a good insight into the computational
procedure and is presented in detail in section 4.1. The difference cycle which plays a central role
in the computation of sα(k ⊂ Σ) and λ(Σ) is the subject of the comparison of both invariants in
section 4.2. Section 4.3 contains the computation of sα(k ⊂ Σ) for arbitrary knots and presents
our main results. These are applied in section 4.4 to obtain the statements on the representation
space of the knot complement Σ− k.
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Chapter 2

Facts and Notations

2.1 Homology 3-spheres and surgery

A homology 3-sphere Σ is defined to be a 3-dimensional closed oriented manifold with the integer
homology of the 3-sphere, i.e.

Hi(Σ,Z) = Hi(S3,Z) =

{
Z , i = 0, 3
0 , otherwise

.

Being a 3-dimensional manifold, Σ admits a Heegaard splitting which is a decomposition into two
handlebodies Hg

i , i = 1, 2, of genus g:

Σ = Hg
1 ∪Hg

2 .

The handlebodies meet along their common boundaries F g where F g denotes the closed oriented
surface of genus g ([Hem76], Th.2.5).

A convenient way of viewing and constructing a 3-manifold M is provided by a Heegaard diagram
associated with a given Heegaard splitting (see [Hem76], p.17f).

Definition 2.1.1. Let a Heegaard splitting M = Hg
1 ∪Hg

2 be given. Further let the handlebody Hg
1

be trivially embedded in S3. Then M is determined by the homeomorphism h : F g → F g which glues
in the complementary handlebody Hg

2 . The homeomorphism h itself is determined by the images of
the boundaries of the g meridian discs Di ⊂ Hg

2 (which are the g non intersecting, 2-sided “gluing
curves” on F g). Then the collection (Hg

1 ,Hg
2 , h(∂D1), . . . , h(∂Dg)) =: (Hg

1 , h) is called a Heegaard
diagram of M . (Sometimes a Heegaard diagram of M is denoted by Hg

1 ∪h Hg
2 .)

Because any closed oriented 3-manifold can be triangulated (cf. [MKS66], [New29]), we obtain
a Heegaard splitting from a chosen triangulation. The construction is as follows. One handlebody
is the result of thickening up the 1-skeleton. Its handles are built from the edges and connect the
3-balls which for their part are the result of the thickened points. The complementary handlebody
consists of the thickened plates as handles which connect the 3-balls inside the tetrahedron (com-
pare the proof of Th.2.5 in [Hem76]). It is clear, for example because of the dependency of the
triangulation, that a Heegaard splitting cannot be unique. Moreover, for a chosen decomposition
with genus g we obtain another decomposition with genus g + 1 by adding an unknotted handle
to each of the handlebodies. Here “unknotted” means that it is possible to span a disc in the new
handle (see [Sav99], Ch.1.3) which furthermore ensures that the complement remains a handle-
body. The process described is called stabilization and two decompositions are said to be stably
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equivalent if there exists a sequence of stabilizations which takes one decomposition into the other.
The following result is due to Singer ([Sin33]).

Theorem 2.1.2. Any two Heegaard-decompositions of a closed oriented 3-manifold are stably equiv-
alent.

Another way of describing a closed oriented 3-manifold is given by surgery on a framed link
L ⊂ S3. The fundamental surgery process is to cut out an open tubular neighborhood of one link
component and to past a solid torus back as it is given by the framing coefficients (compare [Kir78]
for the case of integer framing and [Rol84] for the more general case of rational coefficients). The
importance of the surgery concept might be underlined by the following result of Lickorish and
Wallace ([Lic62], [Wal60]).

Theorem 2.1.3. Any closed oriented 3-manifold can be obtained by surgery on a framed link L in
S3.

Remark 2.1.4. 1. We denote a 3-manifold M given by a surgery on a framed link L = l1∪. . .∪ln
by M = c1l1 + . . . + cnln where the ci denote the framing coefficients.

2. It can be shown that it is possible to obtain any manifold M by a ±1-surgery on a link in
S3, i.e. M = c1l1 + . . . cnln with ci = ±1.(see [FM97], Th.9.5).

−2

+LL

±1
K1

L2 L# L2L1
K2

Figure 2.1: The Kirby moves K1 and K2.

It is immediate that two 3-manifolds are homeomorphic if they differ by a Kirby move K1 or
K2. Kirby proved that the reversed direction holds as well ([Kir78]):

Theorem 2.1.5. Let M and M ′ be closed oriented 3-manifolds which are given by surgery on the
framed links L and L′ respectively. Then M is homeomorphic to M ′ if and only if there exists a
sequence of Kirby moves K1 and K2 which takes L into L′ (as framed links).

2.2 Seifert-invariants of knots in homology 3-spheres

An important class of invariants for a knot k in the 3-sphere is based on the existence of a Seifert
surface F , where F is an oriented surface which bounds the knot. Because the first and second
homology of a homology 3-sphere Σ vanish, a Seifert surface exists even for a knot in Σ. In the
more general case of a link in a homology sphere we have ([Sav99], Th.7.12):
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Theorem 2.2.1. Let L ⊂ Σ be a link in a homology 3-sphere Σ. Then there exists an oriented
surface F ⊂ Σ with ∂F = L. F is called a Seifert surface for L.

Therefore we are able to generalize all knot invariants constructed with the help of a Seifert
surface to the case of knots in arbitrary homology-3-spheres. We call invariants of that kind
Seifert invariants and denote them by S(k ⊂ Σ). We will make frequent use of the following
Seifert invariants: the Alexander polynomial ∆k⊂Σ(t) and the equivariant signature σk⊂Σ(ω). The
definitions are sketched below.

Let k ⊂ Σ be a knot in a homology 3-sphere and F ⊂ Σ a Seifert surface for k. Since F is
oriented a normal direction is given. Thus we can push cycles on F along this normal direction
into the complement of F . This defines a homomorphism H1(F ) → H1(Σ−F ) with x 7→ x+ where
H1(X) := H1(X,Z). The Seifert pairing H1(F )⊗H1(F ) → Z is given by x⊗y 7→ lk (x, y+) where
lk is the linking number in Σ (see [Sav99], Ch.7.5). By fixing a base {ai|1 ≤ i ≤ 2g} of H1(F )

the pairing is described by a 2g × 2g-matrix V over Z. Here g denotes the genus of F and V is
called a Seifert matrix for k. The antisymmetric matrix V − V T (V T being the transpose of V ) is
the intersection matrix of the basis {ai} in H1(F ) ([BZ85], Ch.8b).

Definition 2.2.2. Let k ⊂ Σ be a knot in a homology-3-sphere and Vs a Seifert matrix of k. Then

∆k⊂Σ(t) = det (t
1
2 V − t−

1
2 V T )

is the normalized Alexander polynomial of k where normalized means ∆k⊂Σ(t) = ∆k⊂Σ(t−1) and
∆k⊂Σ(1) = 1.
Under the same assumptions as above let ω ∈ S1. Consider the hermitian matrix

H(ω) = (1− ω)V + (1− ω̄)V T = (ω−
1
2 − ω

1
2 )(ω

1
2 V − ω−

1
2 V T ) . (2.1)

Then the equivariant signature (or Tristram-Levine-signature) σk⊂Σ(ω) is defined to be the signature
of H(ω), i.e.

σk⊂Σ(ω) = sign(H(ω)) .

The signature function σk⊂Σ : S1 → Z is the map ω 7→ σk⊂Σ(ω) for ω 6= 1 and σk⊂Σ(1) = 0.
Let zk = {ω ∈ S1|∆k⊂Σ(ω) = 0} be the zeros of ∆k⊂Σ on the unit circle. Then it follows from
equation (2.1) that σk⊂Σ(ω) is constant on the components of S1 − zk. Moreover, it can be seen
that σk⊂Σ(ω) = 0 if ω lies in a small neighborhood of 1 (for details see [Kau87], Ch.12 and [Gor78]).
If the definition of a knot invariant is founded on the Seifert matrix V there are strong connections
between the cases of S3 and arbitrary homology 3-spheres.

Let k be a knot in the homology 3-sphere Σ which is given by a surgery on a framed link L ⊂ S3.
Note that the invariant S(k ⊂ Σ) does not change if Σ is manipulated by an additional surgery on
a new link component l ⊂ S3 and if the latter is boundary to k ([Sav99], Lem.7.14). Here “being
boundary” means that k and l possess disjoint Seifert surfaces. Let a ±1-surgery description of Σ
be given (see Rem.2.1.4). Isotope the Seifert surfaces of the n-th component and that of k into discs
with thin bands attached. Then local homotopies lead to a situation where ln and k are boundary.
It should be remarked that the homotopy may change the link but it preserves the isotopy classes
of both, the knot k and the link component ln. An inductive procedure, considering k as a knot in
the homology 3-sphere Σ′ = c1l1 + . . . + cn−1ln−1 in the second step, shows

Theorem 2.2.3. Let k ⊂ Σ be a knot in a homology 3-sphere and S(k ⊂ Σ) a Seifert invariant.
Then there exists a knot k′ ⊂ S3 with S(k′ ⊂ S3) = S(k ⊂ Σ).
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By using a special Heegaard splitting as a starting point and pushing the knot entirely into Hg
1

we receive a more vivid version of theorem 2.2.3. The construction will provide a very useful point
of view because then the knot k′ ⊂ S3 given in 2.2.3 is in fact the knot k′ ⊂ Hg

1 resulting from
a trivial embedding Hg

1 ⊂ S3. To obtain the Heegaard splitting with the property which we call
homologically flat we perform handle slides with respect to the meridian discs of the glued in Hg

2

and embedded discs of Hg
1 .

V2 k1 ⊂ V1

Figure 2.2: The case k1 = σ̂1 ⊂ V1 ⊂ S3.

Example 2.2.4. Let us approach the problem by discussing one of the most simple cases: the
(2, 1)-torus knot presented by a closed braid, i.e. k1 := σ̂1 ∼ k0, which is embedded in the full torus
H1

1 =: V1 (see Fig.2.2). Performing a +1-surgery along the core of the complementary full torus
H1

2 =: V2 yields the trefoil k3 = σ̂3
1 ⊂ S3. Thus the embedding k1 ⊂ V1 ⊂ S3 does not carry the full

“knotting information” of k3 in S3. Moreover, all linking phenomena computed from V1 as being
embedded in S3 fail to notice the additional linking provided by the exterior twist. The twist is a
consequence of the meridian part of the gluing curve: h∗(∂D) = l+m ∈ π1(∂V1) = π1(T 2) = H1(T 2)
where ∂D denotes the boundary of the meridian disc in H2

1 .

Figure 2.3: A simple Dehn twist along the meridian of a handle.

To obtain the complete knotting information already in V1 a Dehn twist along the meridian
disc of V1 is needed. Being a handle slide this manipulation does not change the 3-manifold which
remains S3 in our example. Now the gluing curve is represented by l ∈ π1(T 2). We call curves
of this kind, carrying no homological meridian twists, homologically flat. The proof of the next
theorem will show that establishing a Heegaard diagram with gluing curves being homologically
flat is sufficient for “seeing” the required knotting (or linking) information already in Hg

1 ⊂ S3.
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Remark 2.2.5. In 1989 C.M. Gordon and J. Luecke proved the famous result that knots in S3

are determined by their complements ([GL89]). This is not the case for links in S3. Regarding the
core of the complementary torus V2 together with k1 and k3 respectively as links in S3 the example
above provides a well-known counterexample (cf. [Rol76], Ch.3.A.2).

Due to its importance we shall give a precise definition of a homologically flat Heegaard diagram.

Definition 2.2.6. Let a Heegaard splitting of a homology 3-sphere Σ be given. Furthermore choose
the longitudes li and the boundaries of the meridian discs mi of Hg

1 , 1 ≤ i ≤ g, as generators
of H1(F g). Then a Heegaard diagram (Hg

1 , h) of Σ is homologically flat if the following condition
holds: the gluing curves have the homology h#(∂Di) = li ∈ H1(F g) where # indicates the map
induced in homology.

The possibility to establish a homologically flat Heegaard diagram reflects the fact that Σ is
a homology sphere. The homologically flat Heegaard diagram can be regarded as a homologically
trivial pasting of Hg

2 .

Theorem 2.2.7. Each homology 3-sphere admits a homologically flat Heegaard diagram.

Proof. Let (Hg
1 , h) be a Heegaard diagram associated with the given Heegaard splitting

of Σ (compare Def.2.1.1) and choose the longitudes li, 1 ≤ i ≤ g, of Hg
1 as generators of the first

homology. Furthermore choose the longitudes and the boundaries of the meridian discs of Hg
1 as

generators of H1(F g), i.e.:
H1(F g) = 〈mi, li, 1 ≤ i ≤ g|−〉 .

If i denotes the inclusion i : F g → Hg
1 we obtain i# ◦ h#(∂Di) =

∑
j λijlj , λij ∈ Z, and thus a

presentation of H1(Σ) by

H1(Σ) = 〈l1, . . . , lg |
g∑

j=1

λijlj = 0, 1 ≤ i ≤ g〉 .

Because Σ is an integer homology 3-sphere the matrix (λij) ∈ GL(g,Z) is invertible over Z. Let
(µij) ∈ GL(g,Z) denote its inverse:

δij =
∑

k

µikλkj =
∑

l

λilµlj .

Then handle slides on the meridian discs of Hg
2 induce row operations of (λij). Thus suitable handle

slides on the meridian discs of Hg
2 lead to gluing curves h′(∂Di) which are homologically diagonal

with respect to the li, i.e.:

h′#(∂Di) =
∑

j

αijmj +
∑

j

δijlj =
∑

j

αijmj + li .

Regarding the union of curves h′(∂Di) as a link in S3 we interpret the non diagonal elements of
(αij) as the linking coefficients of this link. This implies αij = αji. To proceed let us orient the
generators of π1(F g) by a symplectic basis of H1(F g,R) (cf. [Sav99], Cor.16.6). Then the twists
along the discs dij ⊂ Hg

1 , which are spanned between the i-th and j-th handle, i 6= j, (see Fig.2.4),
add ±(mi −mj) and ±(mj −mi) in the homology of the curves h′(∂Di) and h′(∂Dj) respectively.
Let ∂dij Ã ∂̃dij be an isotopy which yields a transversal intersection ∂̃dij t h′(∂Dm) ⊂ F g for
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Figure 2.4: The disc dij spanned in between the i-th and j-th handle.

m 6= i, j. Because of λij = δij follows
∑

εp = 0, p ∈ ∂̃dij t h′(∂Dm) ⊂ F g, m 6= i, j. Thus
−αij-twists along dij do not change the αmn, {m,n} 6= {i, j}, and we can diagonalize (αij).
Note that any operation adds ∓αij = ∓αji to the diagonal elements αii and αjj . Finally Dehn
twists along the handle meridians of Hg

1 lead to the identity matrix αij = δij . Since the twists
along the discs inside Hg

1 are handle slides of Hg
1 they do not alter Σ and the proof is complete.

As a starting point for the next theorem we establish the following situation: For a given
homologically flat Heegaard diagram of Σ we choose a Seifert surface F ⊂ Σ of k and push F inside
Hg

1 . This is possible since both Hg
2 and Fs are thickened 1-complexes. Of course we may also start

with an arbitrary Heegaard diagram. Then the twists along the discs dij ⊂ Hg
1 which are applied

to obtain the flat diagram will in general change the embedding k′ ⊂ F ⊂ Hg
1 ⊂ S3.

Theorem 2.2.8. Let k ⊂ Σ be a knot in a homology 3-sphere and F a Seifert surface of k with
F ⊂ Hg

1 for a given Heegaard splitting of Σ. Further let (Hg
1 , h) be a homologically flat Heegaard

diagram associated with the splitting of Σ. Then S(k ⊂ Σ) = S(k′ ⊂ S3) where k′ denotes the knot
k′ ⊂ Hg

1 ⊂ S3.

Proof. To show that k′ is a suitable knot we have to check that the linking numbers
computed with the help of the Seifert surface spanning k′ ⊂ S3 and k ⊂ Σ are equal. Hence we
start with some general observations for linking numbers in homology 3-spheres.
Let γ1 and γ2 be two embedded non intersecting curves in Hg

1 . Because the linking numbers are
symmetric, lk(γ1, γ2) = lk(γ2, γ1) (cf. [Sav99], Ch.3.1), we may compute lk(γ1, γ2) with respect
to the complement of γ1. It can be seen by a Mayer-Vietoris-sequence that H1(H

g
1 − γ1) is free

generated by the longitudes of Hg
1 and the meridian mγ1 of γ1, i.e. H1(H

g
1−γ1) = 〈l1, . . . , lg,mγ1 |−〉.

Gluing in the handlebody Hg
2 , the images of the boundaries ∂Di of its meridian discs in H1(H

g
1−γ1)

are:
h#(∂Di) =

∑

j

λijlj + αiγ1mγ1 , αiγ1 ∈ Z . (2.2)

Thus a presentation of H1(Σ− γ1) is given by

H1(Σ− γ1) = 〈l1, . . . , lg,mγ1 |
∑

j

λijlj + αimγ1 = 0 , 1 ≤ i ≤ g〉

= 〈l1, . . . , lg,mγ1 | li = −
∑

j

µijαjmγ1 , 1 ≤ i ≤ g〉 = 〈mγ1 |−〉 , (2.3)
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where the second equation only holds for an integer homology 3-sphere, i.e. µij ∈ Z. (Of course the
result follows immediately (but less concrete) from a Mayer-Vietoris-sequence for the complement
of γ1.)
To compute the linking number we use the definition which relates the homology class of γ2 to the
generator mγ1 of H1(Σ− γ1), i.e. (cf. [Sav99], Ch.3.1 (3)):

H1(Σ− γ1) 3 [γ2] = lk(γ1, γ2)mγ1 .

In H1(H
g
1 − γ1) we have [γ2] =

∑
j βjlj + µmγ1 . Using the relations in (2.3) we substitute the lj

and obtain
[γ2] = (µ−

∑

i,j

βjµjiαi)mγ1 .

Then for the linking number follows

lk(γ1, γ2) = µ−
∑

i,j

βjµjiαi . (2.4)

Considering Hg
1 as embedded in the 3-sphere, µ can be regarded as the “visible” linking number.

The additional part in (2.4), −∑
i,j βjµjiαi, vanishes for a homologically flat embedding of Hg

1 . To
see this we consider the map i# : H1(F g) → H1(H

g
1 − γ1) induced by inclusion with li 7→ li and

mi 7→ kimγ1 . The ki ∈ Z are given by [γ1] = kili ∈ H1(H
g
1 − γ1) and count how often γ1 runs

oriented around the i-th handle. For the homology of the gluing curves we obtain

i# ◦ h#(∂Di) =
∑

j

αijkjmγ1 +
∑

j

λijlj = αiγ1mγ1 +
∑

j

λijlj .

Therefore the flat situation with αij = 0 implies αiγ1 =
∑

j αijkj = 0, 1 ≤ i ≤ g, and we obtain

lk(γ1, γ2) = µ

from equation (2.4). Because the generators of H1(F ) with k = ∂F ⊂ Σ and k′ = ∂F ⊂ S3 can be
represented by curves embedded in Hg

1 , for the Seifert matrices follows V (k ⊂ Σ) = V (k′ ⊂ S3).
Then the statement is an immediate consequence.

Remark 2.2.9. 1. For rational homology 3-spheres the matrix (λij) is not invertible over the
integers. (Note that this is even true for the lens spaces and should not be mixed up with
the statement that the mapping class group of the torus T 2 is given by SL(2,Z).) Thus the
construction of k′ ⊂ S3 given in theorem 2.2.8 is not applicable in the rational case.

2. Theorem 2.2.8 fits together with the definition of linking numbers for links in handlebodies
given by U. Kaiser (cf. A.3.2 and example A.3.4 in [Kai96]).

2.3 Representation spaces

As mentioned before any closed oriented 3-manifold can be triangulated. Therefore we are con-
cerned with finitely generated fundamental groups and their representation spaces.
Thus let G be a finitely generated group. The space of all representations of G in the Lie group
SU(2) is denoted by R(G) = Hom (G, SU(2)). Note that R(G) is a topological space via the
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compact open topology where G carries the discrete and SU(2) the usual topology which is induced
from the identification SU(2) ∼= S3 ([Sav99], Ch.14.1). A representation ρ ∈ R(G) is called abelian
(or central or trivial) if and only if its image is an abelian (or central or trivial resp.) subgroup of
SU(2). Note that for SU(2) a representation ρ is abelian if and only if it is reducible (cf. [Sav99],
Ch.14.2). The set of abelian (central) representations of G is denoted by S(G) (C(G)).
Two representations ρ and ρ′ are said to be conjugate (ρ ∼ ρ′) if and only if they differ by an
inner automorphism of SU(2). If, on the other hand, we identify SU(2) with S3, it can be seen
that SO(3) = SU(2)/ ± 1 acts freely on SU(2) via conjugation. Identifying SU(2) with the unit
quaternions H1 we have an explicit interpretation of the action in terms of rotating the spatial part
of the quaternion which is conjugated (see Th.2.5).

Definition 2.3.1. Let R(G)− S(G) =: Rirr(G) be the set of non-abelian (i.e. irreducible) SU(2)-
representations of the finitely generated group G. Then the spaces of conjugation classes of all and
of non abelian representations from G into SU(2) are denoted by R(G) and R̂(G) respectively, i.e.

R(G) = R(G)/SO(3) , R̂(G) = Rirr(G)/SO(3) .

Generally R̂(G) is called the representation space of G.

Remark 2.3.2. If there are only abelian representations of G it is quite handy to use the same
notation for the equivalence classes of the non-central representations Rnc(G) := R(G)−C(G), i.e.:
R̂(G) = Rnc(G)/SO(3).

Regarding SU(2) as S3 ⊂ R4, the space R(G) has the structure of a real algebraic set, i.e. it
is given by a set of polynomial equations in R4n. Being an image of a polynomial map the spaces
R(G) and R̂(G) have the structures of semi-algebraic sets. Here a set is called semi-algebraic if it
is given by a finite union of finite intersections of sets defined by polynomial equations (see [Heu98]
and [Sav99], Ch.14.1, for details). The following representation spaces are well known.

2.3.1 The representation space of π1(H
g)

The fundamental group of a handlebody Hg of genus g is a free group with g generators which
can be identified with the g longitudes of Hg. Therefore R(Hg) ∼= SU(2)g is an identification of
topological spaces where R(Hg) inherits a smooth structure from SU(2)g ∼= (S3)g. The subspace
R(Hg) − S(Hg) is open, i.e. a smooth open manifold of dimension 3g. As a consequence the
representation space R̂2(Hg) is a smooth open manifold of dimension 3g− 3 (cf. [Sav99], Ch.14.3).

2.3.2 The representation space of π1(F
g)

Since the fundamental groups π1(F g) are trivial or abelian for g = 0 or g = 1 respectively, there are
no irreducible representations. In all other cases we have the following statement for the irreducible
part of the representation spaces.

Lemma 2.3.3 ([Igu50], [Sho36]). Let F g be the closed oriented surface of genus g ≥ 2. Then
R̂(F g) is a smooth manifold of dimension 6g − 6 (cf. [Sav99], Th.14.2 and Cor.14.3).

It should be mentioned that the proof can be simplified by applying the Fox calculus (compare
the proof of Lem.3.1 in [Heu98]).
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2.3.3 The pillow case

Although the irreducible part of the representation space of the torus F 1 = T 2 is trivial, the abelian
but non central part R(T 2) − C(T 2) =: Rnc(T 2) forms a 2-dimensional manifold which becomes
important in the sequel.

λ

µ

(0, 0)

π

π

µ

µ

λ

−π π

−π

π

π(0, 0)

(0, 0)

λ

Figure 2.5: The pillow case and its two canonical parameterizations.

Lemma 2.3.4. Let F 1 = T 2 be the 2-dimensional torus. Then R̂(T 2) := Rnc(T 2)/SO(3) is a
pillow case (PC), i.e. a 2-sphere with four cone points deleted.

Proof. Let ρ : π1(T 2) → SU(2) be any non central representation. Because π1(T 2) = Z⊕ Z
is an abelian group we have ρ(l)ρ(m) = ρ(m)ρ(l) for matrices which represent the meridian m and
the longitude l generating π1(T 2). Since the group U (1) ⊂ SU(2) and its conjugates, C ◦ U (1),
C ∈ SU(2) (for this notation see Ch.2.5), are the maximal commutative subgroups of SU(2) ([Sav99],
Th.13.1) we obtain modulo SU(2)-conjugation (see Convention 2.5.1):

L = ρ(l) =

(
eiλ 0
0 e−iλ

)
and M = ρ(m) =

(
eiµ 0
0 e−iµ

)
.

Usage of the quaternion language (see Ch.2.5) tells us that it is possible to rotate L = (λ, ex)
within its conjugation class into (λ,−ex) = (−λ, ex). (For example we can rotate by π with respect
to axis ey which corresponds to a conjugation with C =

(
0 1−1 0

) ∈ SU(2).) As a consequence we
can choose λ ∈ [0, π]. If λ ∈ {0, π} then a conjugation of this kind is possible for M = (µ, ex) and
we have µ ∈ [0, π] in these cases as well. This completes the proof.

Remark 2.3.5. 1. In general we identify a representation (L,M) of π1(T 2) with the corre-
sponding pair of angles (λ, µ) ∈ ((0, π)× [−π, π]) ∪ ({0} × (−π, π)) ∪ ({π} × (−π, π)).

2. The (non-trivial) fundamental action on the universal covering of the pillow case (which is
given by SU(2)-conjugation) takes a representation (λ, µ) ∈ [0, π]×[−π, 0] into the representa-
tion we have for the other canonical parameterization of the pillow case: (λ, µ) 7→ (−λ,−µ) ∈
[−π, 0]× [0, π]. Normally we shall use the parameterization under 1.
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2.3.4 Local properties of representation spaces

Since the space Hom (G, SU(2)) is not a smooth manifold in general, we need the more general
concept of the Zariski tangent space (cf. [Sha77], Ch.2). The Zariski tangent space equals the usual
tangent space at an irreducible representation.

But the concept also works for a reducible point (see [Kla91], Ch.II). The idea of the Zariski
tangent space refers to an observation of A. Weil situated in the context of the cohomology of
groups (cf. [Wei64]). Within this context the system of equations defining the Zariski tangent
vectors at ρ ∈ Hom (G,SU(2)) is same as the system of equations defining the space of 1-cocycles
Z1

ρ(G, su(2)) of G with coefficients in su(2). Here the Lie algebra su(2) is viewed as a G-module
where the module structure is given by the composition ρ̃ : G → Aut (su(2)), ρ̃(g) = ρ(g)◦ (where
◦ is the conjugation action defined in Ch.2.5). Moreover, the 1-coboundaries B1

ρ(G, su(2)) are
induced by SU(2)-action and we obtain the Zariski tangent space of the SO(3)-equivalence classes
at ρ as elements of the first cohomology group of G (with coefficients in the G-module su(2), see
[Sav99], Ch.15):

Tρ Hom (G,SU(2))/SO(3) = Z1
ρ(G, su(2))/B1

ρ(G, su(2)) = H1
ρ (G, su(2)) .

Theorem 2.3.6 ([LM85], Ch.3.7). Let w = w(X), X ∈ SU(2)n, be a word in SU(2). Then there
is the following commutative diagram for the vectors of the Zariski tangent space:

TXSU(2)n
∼=- su(2)n

TwSU(2)

DXw

? ∼= - su(2)

dXw

?

(2.5)

The horizontal isomorphisms are given by right multiplication with X−1 and w(X)−1 respectively;
the derivation dXw =

∑
i ∂w/∂Xi|X ◦dXi, dXi := dXXi ∈ su(2), is provided by the Fox differential

calculus (see [BZ85], Ch.9 B, for details).

Corollary 2.3.7. Let w =
∏

i Xi, Xi = 1 ∈ SU(2), be a word in SU(2). Then dXw =
∑

i dXi.

Proof. Because ∂w/∂Xi|X is central for all i we have ∂w/∂Xi|X ◦ dXi = dXi and the
statement follows from diagram (2.5).

2.4 The Casson invariant (Sketch of definition)

In spring of 1985 Andrew Casson defined an integer invariant λ(Σ) for homology 3-spheres Σ
which initiated a remarkable progress in 3-dimensional topology. One important corollary states
that the famous Rohlin invariant µ(Σ) ∈ Z2 ([Roh52]) is not able to detect a counterexample to
the Poincare conjecture. This is immediate because µ(Σ) ≡ λ(Σ) mod (2) holds and λ(Σ) equals
zero for a homotopy 3-sphere ([AM90], Introduction). Another no less important corollary deals
with property P of a knot k ⊂ S3. Here a knot is said to have property P if no non-trivial 1

n -
surgery along k yields a counterexample to the Poincare conjecture. The corollary states that if
λ(S3 + 1

n+1k)− λ(S3 + 1
nk) 6= 0 then the knot k has property P . In the following we give a short

survey of the definition of the Casson invariant. References are the books of Akbulut/McCarthy
[AM90] and Saveliev [Sav99].
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The definition of the Casson invariant consists of two parts. One deals with the computation
of λ(Σ), the other and more difficult part with the existence of the invariant.
The Casson invariant can be computed by a surgery formula which is based on a surgery description
of Σ given by a framed link L in S3 (see Th.2.1.3). It describes how λ(Σ) changes if Σ is manipulated
by an additional Dehn twist along one component k of L. Together with the starting value λ(S3) = 0
this determines the invariant. Explicitly we obtain the formula:

λ′(k) := λ(Σ +
1

n + 1
k)− λ(Σ +

1
n

k) =
1
2
∆′′

k⊂Σ(1)λ′(k31) = ±∆′′
k⊂Σ(1) , (2.6)

As the difference is independent of n it turns out that λ′(k) is a knot invariant. Let k31 ⊂ S3

denote the trefoil. Then an explicit calculation shows λ′(k31 ⊂ S3) = ±1 where the sign depends
on the orientations of representation spaces. The representation spaces come in via the equivalent
definition of λ(k) as an intersection number of oriented representation spaces. This interpretation
provides the framework for the existence proof of λ(k). Now the definition is done as follows. Let

Σ = Hg
1 ∪Hg

2

be a Heegaard decomposition of the homology 3-sphere Σ where the handlebodies Hg
i intersect in

the surface F g of genus g (where we can assume g ≥ 2). Then the inclusions F g ↪→ Hg
i ↪→ Σ induce

the following commutative diagram of fundamental groups

π1(H1
g)

66 66
i1∗

nnnnnnnnnn

(( ((

j1∗
PPPPPPPPPP

π1(F g) π1(Σ)

(( ((

i2∗
PPPPPPPPPP

66 66
j2∗

nnnnnnnnnn

π1(H2
g)

By applying the R-functor we obtain a commutative diagram of representation spaces

R(H1
g)

i∗1

vvnnnnnnnnnn j∗1
hhPPPPPPPPPP

R(F g) R(Σ)
i∗2

hhPPPPPPPPPP

j∗2

xxpppppppppp

R(H2
g)

where all maps are injective. The following two statements, both of which are based on the fact
that Σ is a homology sphere, are essential for the definition of λ(Σ) as an intersection number.

Lemma 2.4.1. Let Σ be a homology 3-sphere. Then any abelian representation ρ : π1(Σ) → SU(2)
is trivial ([Sav99], L.14.1).

Lemma 2.4.2. The intersection R(Hg
1 )∩R(Hg

2 ) ⊂ R(F g) is transversal at the trivial representation
in R(F g) ([Sav99], L.16.1).
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The restriction to irreducible representations yields the following commutative diagram of in-
clusions

Rirr(H1
g)

i∗1

vvnnnnnnnnnn j∗1
hhPPPPPPPPPP

Rirr(F g) Rirr(Σ)
i∗2

hhPPPPPPPPPP

j∗2

xxpppppppppp

Rirr(H2
g)

An immediate consequence of the lemmata 2.4.1 and 2.4.2 is

Theorem 2.4.3. a) The trivial representation of R(Σ) is isolated.
b) The intersection of the smooth open manifolds Rirr(Hg

i ), i = 1, 2, in Rirr(F g) is compact.

Taking the SO(3)-quotient of the representation spaces in the last diagram we obtain the com-
mutative diagram of embeddings

R̂(H1
g)

bi1
vvnnnnnnnnnn bj1hhPPPPPPPPPP

R̂(F g) R̂(Σ)
bi2hhPPPPPPPPPP

bj2
xxpppppppppp

R̂(H2
g)

Remark 2.4.4. Using the Heegaard diagram’s point of view to describe the splitting of Σ we
regard R̂(Hg

1 ) =: R̂1 ⊂ R̂(F g) as trivially embedded. The embedding ĥ(R̂(Hg
2 )) ⊂ R̂(F g) is still

denoted by R̂(Hg
2 ) =: R̂2.

As theorem 2.4.3 holds for the quotient spaces as well ([Sav99], Cor.16.3) we can isotope R̂1 into
R̃1 with compact support where R̃1 is transversal to R̂1. Moreover, the manifolds have dimensions

dim R̂i = 3g − 3 =
1
2

dim R̂(F g)

so that the intersection R̃1 t R̂2 ⊂ R̂(F g) is a finite number of points. By an orientation of R̂i,
i = 1, 2, the algebraic intersection number

#R̂1 ∩ R̂2 :=
∑

p∈ eR1t bR2

εp , εp ∈ ±1

is defined and independent of the chosen isotopy due to theorem 2.4.3.

Definition 2.4.5. Given a genus g Heegaard splitting Σ = Hg
1 ∪ Hg

2 of a homology-3-sphere, its
Casson invariant is

λ(Σ) =
(−1)g

2
#R̂1 ∩ R̂2

It turns out that the intersection number is a well defined invariant. The factor (−1)g is
necessary to ensure the independence of the chosen Heegaard splitting (cf. [Sav99], Ch.16.3). That
λ(Σ) is always an integer is not immediately clear from the definition. But it is known that the
intersection number defined above turns out to be even. The latter is shown within the existence
proof of λ(Σ) and in the end is a consequence of the 2-fold covering SU(2) → SO(3) (compare Sec.
4.3 and [AM90], Cor.4.5).
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2.5 Quaternions

Sometimes it is more convenient to work with quaternions instead of SU(2)-matrices. Therefore we
identify SU(2) with the unit quaternions H1 ⊂ H where the isomorphism is given by

(
a b

−b̄ ā

)
7→ a + jb .

The Lie algebra of H1 is the set su(2) ∼= R3 of pure quaternions and H1 acts via conjugation ◦ on
su(2), i.e. Q ◦ A := QAQ−1 ∈ su(2) for Q ∈ H1 and A ∈ su(2). The set of pure unit quaternions
su(2) ∩H1, which is homeomorphic to the 2-sphere S2, will be identified with S2. More generally,
we consider the argument function arg : SU(2) ³ [0, π] given by arg(Q) = arccos(tr (Q)/2). For
α ∈ (0, π) we have: S2

α := arg−1(α) is a 2-sphere and S2 = S2
π/2.

For each quaternion Q ∈ H1 there is an angle α ∈ [0, π] and a vector q ∈ S2 such that
Q = cosα + sinαq (where the coefficients of ex, ey, ez in S2 are given by the coefficients of i,
j, k resp.). The pair (α, q) is unique if and only if Q 6= ±1. We will write (α, q) shorthand for
cosα + sin αq and call α the angle of the quaternion Q and q its spatial part.
Given two unit quaternions P, Q ∈ H1 there is a formula for the product

PQ = (α, p)(β, q) =

(
cosα cosβ − sinα sinβ p · q

cosα sinβq + cosβ sinαp + sin α sinβp× q

)
(2.7)

where p · q denotes the dot and p× q the vector product of p and q in R3.

Convention 2.5.1. 1. Let ρ denote a SU(2)-representation of a finitely generated group G.
Then the capitals indicate the equally named elements of the represented group, i.e. X = ρ(x)
for x ∈ G and ρ ∈ R(G).

2. Let
∏n

i=1 Xi be a product of SU(2)-matrices. Then the spatial part of the product is denoted
by x1x2 . . .xn.

From the commutativity of matrices under the trace function we see from equation (2.7) that
the dot product of the spatial parts of two given quaternions is invariant under conjugation. This
can also be deduced from the following important geometrical interpretation of conjugation.

Lemma 2.5.2. Let P = (β,p) and Q = (α, q) ∈ H1 be unit quaternions. Then Q ◦ P rotates the
spatial part p of P by angle 2α with respect to axis q ∈ S2 ([Sav99], Th.13.4).

Corollary 2.5.3. The homomorphism ◦ : SU(2) → SO(3), Q 7→ Q◦ ∈ SO(3) ⊂ Aut (su(2)) =
Aut (R3) is a well defined Lie group homomorphism. It is the universal 2-fold cover of SO(3).

For eiα :=
(

eiα 0
0 e−iα

)
= (α, ex) ∈ SU(2) we identify the tangent space Teiα(S2

α) = span (j,k)
with the complex plane C via the multiplication by −j ∈ H1. From lemma 2.5.2 follows

Remark 2.5.4. Under the identification Teiα(S2
α) = span (j,k) = C the action of eiα◦ transforms

into a rotation by angle 2α in C, i.e. a multiplication by e2iα.
This is a very useful fact because together with equation (2.5) it follows that we are able to calculate
the Zariski tangent space at ρα ∈ Sα(S3−k) from an Alexander matrix Ak(t) of k by setting t = e2iα

(where α denotes that the meridians of k are represented by SU(2)-matrices with trace 2 cosα, cf.
[Kla91], Ch.2). Moreover, we will use this correlation in a similar way to obtain information about
the reducibles of R(Σ− k).
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In the sequel we will make frequent use of the following obvious identities (cosα =: cα, sin α =: sα).

• For the inverse of q = (α, q) ∈ H1 holds

q−1 = q̄ = cα − sαq = (−α, q) . (2.8)

• Let q = (α, q) and q̃ = (−α,−q) in H1 be given. Then

q = cα + sαq = c−α − s−αq = q̃ . (2.9)

• For the negative of q = (α, q) ∈ H1 we have

−q = −(α, q) = −cα − sαq = cπ+α + sπ+αq = (π + α, q) . (2.10)
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Chapter 3

The definition of sα(k ⊂ Σ)

3.1 The definition of the standard position for k′ ⊂ Hg
1

Let k be a knot in a homology sphere Σ and (Hg
1 , h) a Heegaard diagram associated with a Heegaard

splitting of Σ. In order to define sα(k ⊂ Σ) as an intersection number of representation spaces
we have to determine the representation space R̂(Hg

2 ) =: R̂2 and the representation space of the
complement of k′ in Hg

1 , i.e. R̂(Hg
1 − k′). (As in the case of the Casson invariant we assume

g ≥ 2. The only non-trivial case for a Heegaard splitting of genus 1, the (2, n)-torus knots in
S3, is discussed in section 4.2.) The intersection occurs in the representation space R̂(F g) of the
common boundary F g of the handlebodies. In order to define a Casson-Lin invariant for the knot
complement as an intersection number of representation spaces one has to fix the holonomy around
k (which means to represent all knot meridians by SU(2)-matrices with a fixed trace 2 cosα).

Definition 3.1.1. Let M be a closed 3-manifold and k a knot in M and let R(M − k) denote the
representation space of the fundamental group of M − k. Then Rα(M − k) denotes the subspace of
all representations which assign SU(2)-matrices with a fixed trace 2 cos α to all meridians of k.

The definition of the intersection number sα(k ⊂ Σ) uses a refined Heegaard diagram (Hg′′
1 , h′′)

which is obtained from the given decomposition by stabilizations of the handlebodies together with
isotopies of the knot. The resulting standard position for k′ is a plat presentation of k′ which
respects the first chosen splitting. To work with a plat presentation seems to be natural since the
map π1(F g′′) → π1(H

g′′
1 ) induced by inclusion is surjective in this case.

Let F be a Seifert surface of k and establish F ⊂ Hg
1 by an isotopy (see Th.2.2.8). Consider

F as a disc with (thin) bands attached and let m, 0 ≤ m ≤ g, be the number of handles of Hg
1

without bands inside. Furthermore denote a regular projection for k′ ⊂ Hg
1 ⊂ S3 by k′p. Then

perform the following manipulations:

1. “Comb” the g−m handles having bands of F inside, so that all the crossings of k′p lie entirely
inside the projection disc D2 of B3 ⊂ Hg

1 (see Fig. 3.1).

2. If there are t bands passing through a handle, drill t− 1 holes to get t handles with exactly
one band inside. Slide the new handles along the boundary of B3 such that both ends lie side
by side on ∂B3. Regarding the 2 strands as 1 band and t − 1 bands respectively, figure 3.1
shows one step of the inductive process. Then apply the procedure described in the proof of
theorem 2.2.7 to obtain a homologically flat Heegaard diagram (Hg′

1 , h′) with Hg′
1 of genus

g′ := s + m. This presentation is called a single band presentation for k′.

22



step 1

∂D2
1 band

1 band

step 2

t− 1 bands t− 1 bands

Figure 3.1: Establishing the standard position: Step 1 and 2.

3. Drill each of the s handles with bands inside one time to obtain the single strand presentation
for k′ (regarding the bands as strands of k′ this corresponds to step 2 in figure 3.1).

4. Isotope the knot to obtain a 2n-plat presentation β̂ of k′, n := 2s + r. This presentation
follows from a 2n-braid β ∈ B2n by closing it with 2n simple arcs. Here B2n denotes the braid
group with 2n− 1 generators (see Fig.3.2). Then stabilize the Heegaard diagram to obtain a
single strand presentation of the knot where all upper closing arcs pass through exactly one
handle. The Heegaard splitting of this standard position has genus g′′ := n + m.

2n-braid m handles

Figure 3.2: The standard position of k′ ⊂ Hg′′
1 .

Definition 3.1.2. Let k be a knot in a homology sphere Σ. The sequence of stabilizations and
isotopies described above leads to a new Heegaard splitting Σ = Hg′′

1 ∪Hg′′
2 with k ⊂ Hg′′

1 . Then we
call a Heegaard diagram (Hg′′

1 , h′′) associated with this splitting a standard diagram and k′ ⊂ Hg′′
1 ⊂

S3 being in standard position. Further we denote the 2n-braid associated with the plat presentation
of k′ by β.

Remark 3.1.3. 1. If not stated otherwise, let a Heegaard diagram (Hg
1 , h) of Σ with k′ ⊂ Hg

1

and g ≥ n always be standard.
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2. The proof of theorem 3.2.5 shows that a standard diagram is actually homologically flat.

3.2 The representation space of π1(H
g
1 − k′)

Let k′ ⊂ Hg
1 ⊂ S3 in standard position be given by the plat presentation β̂. Then π1(H

g
1 − k′) is

generated by the g longitudes li of Hg
1 and the n knot meridians x2i, 1 ≤ i ≤ n, corresponding to

the upper closing arcs of β̂.

������ ���������������������� ������

x2i−1
li

i-th handle

x2i

Figure 3.3: The orientations of the longitudes and knot meridians.

To figure out the relations for the generators we have to orient them. Hence we fix an orientation
of k′ and orient the meridians of k′ by the “right hand rule” (where the thumb of the right hand
points in the direction of k and the fingers give the orientation of the meridians). For the longitudes
we choose the standard orientation (see Fig.3.3). Let x2i denote the knot meridian at the attaching
disc, where the knot runs into the i-th handle (with respect to the orientation of li). Then the
meridian at the disc where the knot leaves this handle is given by conjugation with li, i.e. x2i−1 =
li ◦ x2i, 1 ≤ i ≤ n. Since the path enclosing the 2n-plat β̂ is contractible in Hg

1 − k′ we obtain the
further relation

∏n
i=1 x−εi

2i−1x
εi
2i = 1 for the knot meridians. Here εi = 1 (εi = −1) holds if k′ and li

are parallel (anti-parallel).
Let β(xi), 1 ≤ i ≤ 2n, denote the images of the upper knot meridians under the braid auto-

morphism induced by β. Then the lower closing arcs contribute the relations β(x2i−1) = β(x2i),
1 ≤ i ≤ n.

Choosing the longitudes li and the corresponding handle meridians mi of Hg
1 as generators of

F g = ∂Hg
1 , the relation

∏g
i=1[li,mi] = 1 is satisfied in π1(F g). Because mi = 1, n + 1 ≤ i ≤ g,

holds in π1(H
g
1 − k′) we obtain the additional relation

∏n
i=1[li, x

εi
2i] = 1. Note that the exponents

are compatible with the orientation conventions in chapter 3.3 provided that we chose a suitable
orientation of F g.
We summarize the result in the next lemma.

Lemma 3.2.1. Let k′ ⊂ Hg
1 ⊂ S3 be a knot in standard position be given by the plat presentation

β̂. Then we have the following presentation of π1(H
g
1 − k′) in terms of the longitudes li, 1 ≤ i ≤ g,

of Hg
1 and the knot meridians x2i, 1 ≤ i ≤ n of the handles passed through by k′:

π1(H
g
1 − k′) = 〈l1, . . . , lg, x2, . . . , x2n|

x2i−1 = li ◦ x2i , β(x2i−1) = β(x2i), 1 ≤ i ≤ n ,
n∏

i=1

[li, xεi
2i] = 1 ,

n∏

i=1

x−εi
2i−1x

εi
2i = 1 , εi = ±1〉
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According to Lin (cf. [Lin92], p.343) we want to recover the part of the representation space
R̂(Hg

1 − k′) which is relevant to the definition of sα(k ⊂ Σ) from an intersection of two manifolds,
the diagonal and the graph. The graph is determined by the diffeomorphism induced on the
representation spaces by the braid automorphism. The definition of the manifolds is based on
the following geometrical observation which is in connection with the plat presentation of k′ ⊂ Hg

1 .
A 2n-plat presentation β̂ of k ⊂ S3 gives rise to a splitting

d1

β

x′1 x′nx′2

B′

x1 xnx2 B

d2n

D2n

Figure 3.4: The decomposition B ∪D2n B′.

S3 = B ∪D2n B′

where B and B′ are handlebodies of genus n and D2n = B ∩ B′ is a 2-sphere with 2n holes (see
Fig.3.4). Then the representation space of π1(S3−k) is given by the intersection of the embeddings
of R̂(B) and R̂(B′) in R̂(D2n) (cf. [Heu98], Ch.3):

R̂(S3 − k) = R̂(B) ∩ R̂(B′) ⊂ R̂(D2n) .

Slight generalizations due to the additional relations in π1(H
g
1 − k′) lead to the desired manifolds.

Let k′ ⊂ Hg
1 be a knot in standard position given by the 2n-plat β̂. Then the counterpart of

R̂(D2n) is defined by

Hα
n,g = {(X1, X2, . . . , X2n, L1, . . . , Lg) ∈ (S2

α)2n × SU(2)g|
2n∏

i=1

Xi = 1} .

It can be shown by the Fox calculus that the map

f : (S2
α)2n → SU(2)

(X1, . . . , X2n) 7→ ∏2n
i=1 Xi

is regular at 1 ∈ SU(2) for an irreducible set of matrices Xi (see [Heu98], L.3.1). Therefore Ĥα
n,g is

a manifold with
dim Ĥα

n,g = 4n + 3g − 6
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Since the intersection number sα(k ⊂ Σ) is supposed to count non-abelian representations of the
knot complement we may restrict our interests to the set

Iα := {(X1, . . . , Xn, L1, . . . , Ln) ∈ ((S2
α)n × SU(2)n)irr} .

Then the diagonal, being the counterpart of R̂(B), is defined by

Hα
n,g ⊃ Λα

n,g = {(L1 ◦X−ε1
1 , Xε1

1 , . . . , Ln ◦X−εn
n , Xεn

n , L1, . . . , Lg)|

(X1, . . . , Xn, L1, . . . , Ln) ∈ Iα ,

n∏

i=1

[Li, X
εi
2i ] = 1 , Lj ∈ SU(2) , n + 1 ≤ j ≤ g , εi = ±1} .

Lemma 3.2.2. Let the map g be defined by

g : (S2
α)n × SU(2)n → SU(2)

(X1, . . . , Xn, L1 . . . , Ln) 7→ ∏n
i=1[Li, X

εi
2i ]

.

Then the irreducible part of g−1(1) is a manifold of dimension 5n− 3.

Proof. Because the arguments used in the proof of theorem 2.3.3 (cf. [Sav99], Th.14.2)
involve only the spatial parts of the quaternions, they also apply for the case considered. Since
the trace of the matrices Xi is fixed their dimensional contribution is only 2. This proves the
statement.

It follows from lemma 3.2.2 immediately that the diagonal is a manifold with

dim Λ̂α
n,g = 5n− 3 + 3(g − n)− 3 = 2n + 3g − 6 .

Still denoting the diffeomorphism induced on the representation spaces by β, we define the graph

Hα
n,g ⊃ Γα

β = {(β−1(X ′
1)

ε′1 , β−1(X ′
1)
−ε′1 , . . . , β−1(X ′

n)ε′n , β−1(X ′
n)−ε′n ,

L1, . . . , Lg) ∈ (S2
α)n × SU(2)g , ε′i = ±1} .

The ε′i depend on the permutation induced by the braid automorphism β. Thus they may differ
from the εi in the relations of π1(H

g
1 − k′). For the dimension of the graph holds

dim Γ̂α
β = 2n + 3g − 3 .

The space of equivalence classes of representations of π1(H
g
1 − k′) mapping the knot meridians to

non-abelian matrices can be identified with the intersection of diagonal and graph:

R̂α
1 (Hg

1 − k′) ⊃ Λ̂α
n,g ∩ Γ̂α

β ⊂ Ĥα
n,g .

This leads to the definition of the manifold R̂′α
1 (β) in the following lemma.

Lemma 3.2.3. Let the manifolds Λ̂α
n,g, Γ̂α

β and Ĥα
n,g be given as before. Choose an isotopy Γ̂α

β Ã Γ̃α
β

such that Λ̂α
n,g t Γ̃α

β ⊂ Ĥα
n,g. Then

R̂′α
1 (β) := Λ̂α

n,g t Γ̃α
β ⊂ Ĥα

n,g

is a manifold with

dim R̂′α
1 (β) = dim Λ̂α

n,g + dim Γ̂α
β − dim Ĥα

n,g = 3g − 3 .
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Remark 3.2.4. Note that the manifold R̂′α
1 (β) apart from plat presentation β̂ also depends on the

Heegaard splitting of Σ.

By fixing L = L0 ∈ SU(2)g at a point p ∈ Λ̂α
n,g t Γ̃α

β we conclude that Λ̂α
n,g|L0

t Γ̃α
β|L0

is 0-
dimensional. Furthermore, since the map i1∗ : π1(F g) → π1(H

g
1 − k′) induced by inclusion is

surjective, we obtain a proper map of representation spaces

î1 : Λ̂α
n,g → R̂(F g) . (3.1)

and therefore a proper embedding of manifolds (cf. [AM90], Cor.1.2 (c))

î1 : R̂′α
1 (β) ↪→ R̂(F g) , (3.2)

where we identify î1(R̂′α
1 (β)) with R̂′α

1 (β) to simplify the notation.
Since we want to compute sα(k ⊂ Σ) by observing its behavior under crossing changes we need

a more general version of theorem 2.2.8.

Theorem 3.2.5. Let (Hg
1 , h) be a standard Heegaard diagram for k ⊂ Σ and let k′ ⊂ S3 be the

corresponding knot in S3. Then
∆k⊂Σ(t) = ∆k′⊂S3(t)

holds for all knots derived from k′ by crossing changes.

Proof. The standard position for k′ is obtained from the single band presentation (step
2) by stabilization of all s handles, for which the bands pass through. From this, the standard
presentation of k′ follows by further (trivial) stabilizations. Let li, 1 ≤ i ≤ g, denote the standard
longitudes generating π1(H

g
1 ) where the li, 1 ≤ i ≤ n, denote the handles, for which the knot in

standard position passes through. The gluing curves corresponding to the holes we drill to establish
the single strand presentation (step 3) contribute the following relations to the Heegaard diagram
(see Fig.3.5):

l−1
2i m−1

2i−1l
−1
2i−1m2i−1 = 1 , 1 ≤ i ≤ s .

Further we have to substitute each meridian mi = x±1
2i x∓1

2i−1 appearing in the relations of the
single band Heegaard diagram by m2i−1m2i where m2i−1 = x−εi

2i−1 and m2i = xεi
2i, 1 ≤ i ≤ s. The

remaining r relations contributed by step 4 are trivial, i.e. li = 1, 2s + 1 ≤ i ≤ n.
The Alexander polynomial of k ⊂ Σ can be obtained as the first principal minor of the matrix

of the abelianized Fox derivatives of the relations determining the knot group π1(Σ − k) (cf. the
construction in [HPS01], Sec.2.1). In our case we use the relations of π1(H

g
1−k′) and the additional

relations associated with the g gluing curves h(∂Di) (which implies the relation
∏n

i=1[li, x
εi
2i] = 1

in π1(H
g
1 − k′)).

Let γi, 1 ≤ i ≤ n + g, denote the generators of π1(H
g
1 − k′) corresponding to the 2n-plat

presentation β̂ of k′ with γi = li, 1 ≤ i ≤ g, and γi = x2i, g + 1 ≤ i ≤ n + g. Further let Ri,
1 ≤ i ≤ g, be the relations associated with the g gluing curves and Ri, g + 1 ≤ i ≤ n + g, the n

relations associated with the braid automorphism. Then abelianizing the Fox derivations ∂Ri/∂γj

by ab(li) = 1 and ab(xi) = t yields

(
∂Ri

∂γj

)

ab

=




Es 0 0 0
Es Es 0 0
0 0 Eg−2s 0

∗
(

∂Ri≥g+1

∂xj

)
ab




(3.3)
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m′
imi

l′i li l′i = l−1
2i−1m

−1
2i−1l

−1
2i m2i−1

m2im2i−1

l2i

m2i

Figure 3.5: The gluing curves after drilling and moving a handle (step 3).

where Ek denotes an k × k-identity matrix.
Since every appearance of a band meridian in a relation contributes ab(m2km2k−1) =
ab(x±1

2k x∓1
2k−1) = 1 the results for the derivatives with respect to the longitudes follow im-

mediately from corollary 2.3.7. The equalities ab(∂Ri/∂γj) = 0, 1 ≤ i ≤ g, g + 1 ≤ j ≤ n + g, hold
because we use a flat Heegaard diagram. The latter implies that the derivatives with respect to
the knot meridians x2k−1 and x2k respectively cancel out. Because

(
∂Ri≥g+1

∂xj

)
ab

is an Alexander

matrix of k′ ⊂ S3 the statement follows.

Theorem 3.2.5 has some immediate corollaries:

Corollary 3.2.6. Let k ⊂ Σ be a knot in a homology 3-sphere. Then there exists a knot k0 ⊂ Σ
with trivial Alexander polynomial ∆k0⊂Σ(t) = 1 (or trivial signature σk0⊂Σ(ω) = 1) in the same
homotopy class as k.

Proof. With k′ ⊂ Hg
1 ⊂ S3 from theorem 2.2.8 we obtain ∆k⊂Σ(t) = ∆k′⊂S3(t) (or

σk⊂Σ(ω) = σk′⊂S3(ω) resp.). Let a regular projection and k′ as a map k′ : [0, 1] → S3, r 7→ k′(r),
with k′(0) = k′(1) be given. Then we are able to change the crossings of k′ such that the image
k′(r) is, with respect to the coordinate perpendicular to the projecting plane, a monotone curve
for r ∈ (0, 1− ε), ε > 0. Joining the points k′(1− ε) and k′(0) by a straight line yields the trivial
knot k′0 ⊂ S3. From theorem 3.2.5 follows that identical changes of crossings for k ⊂ Hg

1 ⊂ Σ lead
to the aspired k0 ⊂ Σ.

Remark 3.2.7. Corollary 3.2.6 implies that in each homotopy class of a knot k ⊂ Σ all possible
Alexander polynomials are realized.

Corollary 3.2.8. Let k0 ⊂ Σ be a knot in a homology sphere with trivial Alexander polynomial.
Then all possible Alexander polynomials ∆(t) are realized by k0 with one crossing changed.

28



Proof. The band construction used by Kondo to establish the statement for knots in S3

(see [Kon78]) can also be applied for the k′ ⊂ Hg
1 ⊂ S3 of theorem 2.2.8.

Remark 3.2.9. 1. To simplify the notation we do not indicate the homology 3-sphere Σ if any
confusion can be ruled out.

2. A comparison of the proofs given in [AR99] or [Les98], Pr.4.6, and the proof of corollary 3.2.6
shows the advantages of using a Heegaard splitting of Σ as a starting point.

3.3 Orientations of the manifolds

Let Σ = Hg
1 ∪Hg

2 be a Heegaard splitting of genus g. The inclusions ik : F g → Hg
k , k = 1, 2, induce

homomorphisms i#k : H1(Hg
k ,R) → H1(F g,R). The Mayer-Vietoris exact sequence

· · · → H1(Σ,R) → H1(Hg
1 ,R)⊕H1(Hg

2 ,R)
i#1 ⊕i#2→ H1(F g,R) → H2(Σ,R) → · · ·

with H1(Σ,R) = H2(Σ,R) = 0 implies i#1 H1(Hg
1 ,R) ⊕ i#2 H1(Hg

2 ,R) = H1(F g,R) ∼= R2g. Then
orienting H1(F g,R) by a symplectic basis (which is canonical, provided an orientation of F g is
given, cf. [Sav99], Lem.7.7 and Cor.16.6), an orientation of H1(Hg

1 ,R) defines an orientation of
H1(Hg

2 ,R) if we require i#1 ⊕ i#2 being orientation preserving.
By excision (exc) and Poincare-Lefschetz duality (PLD) we obtain (V1 := H1

1 ):

H1(Hg
1 ,Hg

1 − k′,R)
exc∼= H1(V1, ∂V1,R)

PLD∼= H2(V1,R) = 0 , H2(Hg
1 ,R)

PLD∼= H1(H
g
1 , ∂Hg

1 ,R) = 0

and

H2(Hg
1 , Hg

1 − k′,R)
exc∼= H2(V1, ∂V1,R)

PLD∼= H1(V1,R) ∼= H1(k,R) = R .

Therefore H1(Hg
1−k,R) is oriented by the short exact sequence induced by the long exact sequence

of the pair (Hg
1 ,Hg

1 − k):

0 → H1(Hg
1 ,R) → H1(Hg

1 − k′,R) → H2(Hg
1 ,Hg

1 − k′,R) → 0 .

By fixing an orientation of SU(2) we orient the 2-sphere S2
α (cf. [HK98], p.486). Furthermore, given

an orientation of k, the meridians of k are oriented by the “right hand rule”.
Thus, orienting SU(2) and F g and specifying which handlebody to call Hg

1 , fixes an orientation of all
manifolds defined above. Note that a specification of one handlebody together with an orientation
of F g orients the homology 3-sphere Σ.

It should be mentioned that for k = ∅ the orientations correspond to the orientation of R̂1 and
R̂2 used to define the Casson invariant (cf. [Sav99], Ch.16.2).

3.4 The intersection number sα(k ⊂ Σ)

Observing that the considered representation spaces are (open) manifolds with suitable dimensions,
we are able to define the following intersection number:
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Definition 3.4.1. Let R̂′α
1 (β), R̂2 and R̂(F g) be given as oriented manifolds. By choosing an

isotopy R̂′α
1 (β) Ã R̃′α

1 (β) such that R̃′α
1 (β) t R̂2 the intersection number

sα(k ⊂ Σ) := (−1)g
∑

p∈ eR′α1 (β)t bR2⊂ bR(F g)

εp , εp = ±1

is defined.

An argument completely analogous to that of the Casson invariant (cf. [Sav99], p.153) shows
that all signs εp change if the orientation of F g is reversed, or the roles of Hg

1 and Hg
2 are switched

(where both cases correspond to reversing the orientation of Σ). If we reverse the orientation of
k the orientations of H1(Hg

1 − k′,R) and of all knot meridians are reversed. By Fox calculus we
obtain

su(2) 3 0 = d1 = d(X−1X) = dX−1 + X−1 ◦ dX ⇔ dX−1 = −X−1 ◦ dX .

Since ◦ is orientation preserving the reversion of knot meridians changes the orientation of TpR̂
′α
1 (β)

by a factor −1. This factor cancels with the factor −1 provided by reversing the orientation of
H1(Hg

1 − k′).1 Thus the intersection number sα(k ⊂ Σ) is independent of the orientation of k and
defined if we fix an orientation of Σ.

Because the intersected manifolds are open we further have to ensure the independence of
the isotopies R̂′α

1 (β) Ã R̃′α
1 (β) and Γ̂α

β Ã Γ̃α
β of lemma 3.2.3. This holds if both can be chosen

with compact support and, according to the next theorem, is always possible if the condition
∆k⊂Σ(e2iα) 6= 0 is satisfied. Note that our notation anticipates the fact that sα(k ⊂ Σ) is actually
a knot invariant (see Th.4.4.19). At the moment the definition depends on the plat presentation
β̂ as well as the chosen Heegaard splitting (cf. Rem.3.2.4). In order to show that sα(k ⊂ Σ) is
independent of these choices we will examine the computation process of sα(k ⊂ Σ).

Theorem 3.4.2. If ∆k⊂Σ(e2iα) 6= 0 holds, a sufficiently small neighborhood of reducible represen-
tations of π1(Σ− k) consists entirely of reducible representations.

Proof. Let k′ ⊂ Hg
1 be given in standard position. A Mayer-Vietoris sequence for the

decomposition Σ = (Σ − Nk) ∪ Nk, where Nk is an open tubular neighborhood of k, shows
H1(Σ − k) = Z. Therefore all abelian representations of the knot complement factor through
H1(Σ − k) which is generated by a meridian of k′. For k′ in standard position the fundamental
group π1(H

g
1 −k′) is generated by the longitudes li, 1 ≤ i ≤ g, of Hg

1 and the upper closing arcs x2i,
1 ≤ i ≤ n, of the 2n-plat presentation β̂. For an abelian representation we obtain Li = 1 ∈ SU(2),
1 ≤ i ≤ g, and (modulo SO(3)-conjugation) X2i = (α, ex), 1 ≤ i ≤ n, for the representing matrices.
Let Ri, 1 ≤ i ≤ n+ g, be the relations determining π1(Σ− k) according to the standard position of
k′ (see equation (3.3)). Since we use a homologically flat Heegaard diagram we infer from corollary
2.3.7 and the proof of theorem 3.2.5 that the first g relations determining the Zariski tangent space
of π1(Σ− k) at the reducibles boil down to the abelianized derivatives ab(∂Ri/∂γj) = 0, 1 ≤ i ≤ g,
g + 1 ≤ j ≤ n + g, with li and x2i substituted by dLi and dX2i respectively. This yields dLi = 0,
1 ≤ i ≤ g, for the Zariski tangent vectors of the longitudes. Thus for the Zariski tangent vectors
of the knot meridians at the reducibles of π1(Σ − k), the same conditions hold as for the Zariski
tangent space at the reducibles of π1(S3 − k′). Then using theorem 2.2.8 the given statement is

1If k ⊂ B3 ⊂ S3 we have g = 0 and H1(B3 − k,R) ∼= H1(k,R). The factor −1 which results from changing the

orientation of k cancels with an overall factor −1 of Tp
bΓα

σ . Therefore hα(k) defined in [HK98] is independent of the

orientation of k.
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proved by deducing a contradiction analogous to that in the proof of theorem 19 in [Kla91] .

Remark 3.4.3. Theorem 3.4.2 holds in the more general case of compact orientable 3-manifolds,
which are rational homology circles with torus boundary (cf. [HPS01], Th.2.7, ). We gave a proof
for the special situation of a knot in a homology 3-sphere because some arguments will be used for
the computation of sα(k ⊂ Σ).

Theorem 3.4.2 leads to a criterion for the compactness of the intersection î1(R̂α(Hg
1 − k′)) ∩ R̂2 in

R̂(F g).

Corollary 3.4.4. Let k ⊂ Σ = Hg
1 ∪Hg

2 be a knot with k ⊂ Hg
1 . If ∆k⊂Σ(e2iα) 6= 0 holds then the

intersection
î1(R̂α

1 (Hg
1 − k′)) ∩ R̂2 ⊂ R̂(F g)

is compact.

Since R̂α(Hg
1 − k′) ⊂ Λ̂α

n,g it follows from equation (3.1) that î1 : R̂α(Hg
1 − k′) → R̂(F g) is a

proper map. Therefore the preimage î−1
1 (R̂α(Hg

1 −k′)∩ R̂2) ⊂ Ĥα
n,g is a compact subset and we can

restrict the isotopy Γ̂α
β Ã Γ̃α

β to a compact subset of Ĥα
n,g. As a consequence R̂′α

1 (β) = Λ̂α
n,g t Γ̃α

β is
a compact subset of Ĥα

n,g as well. Therefore the intersection î1(R̂′α
1 (β)) ∩ R̂2 ⊂ R̂(F g) is compact

too. We summarize the results in

Corollary 3.4.5. If ∆k⊂Σ(e2iα) 6= 0 the isotopies Γ̂α
β Ã Γ̃α

β in Ĥα
n,g and R̂α′

1 (β) Ã R̃α′
1 (β) in R̂(F g)

can be chosen with compact supports.

It follows

Corollary 3.4.6. Let k ⊂ Σ be a knot in a homology sphere. Then the intersection number

sα(k ⊂ Σ) = (−1)g〈R̂α
1 (β), R̂2〉 bR(F g)

is well defined for all α with ∆k⊂Σ(e2iα) 6= 0.

Remark 3.4.7. The homologically flat embedding which implies the conditions Li = 1 and dL1
i =

0, 1 ≤ i ≤ g, still allows the representation space of Σ− k at the reducibles to be regarded as if the
knot were embedded in S3 (where all conditions trivially hold).

A close look at α ∈ {0, π} reveals a situation quite opposite to that in 3.4.7. Then all meridians
of k are represented by central matrices. Thus, from the representation spaces’ point of view, k is
not “visible”. Due to the similarities of the constructions we expect

lim
α→0,π

sα(k ⊂ Σ) = 2λ(Σ) , (3.4)

where the factor 2 corresponds to the additional factor 1/2 in the definition of λ(Σ) (see Def.2.4.5).
Because sα(k ⊂ Σ) is not defined for the limits α ∈ {0, π} we are content with proving equation
(3.4) for a knot k0 ⊂ Σ with trivial Alexander polynomial. This provides the starting point from
which the general statement follows by the computation algorithm (see Cor.4.4.15).

Lemma 3.4.8. Let k0 ⊂ Σ be a knot with trivial Alexander polynomial. Then

lim
α→0,π

sα(k0 ⊂ Σ) = 2λ(Σ) .
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Proof. We prove the statement for a knot k0 ⊂ Σ in standard position having one and
only one maximum with respect to an axis perpendicular to the projective plane of β̂ (compare the
proof of Cor.3.2.6). Furthermore we assume that maximum is at the end of the first handle l1.

Let a collection of Li = ρ(li) ∈ R̃1 t R̂2, li ∈ π1(H
g
1 ), 1 ≤ i ≤ g, be given. We may

assume {L1, . . . , Ln} to be a non-abelian set (after a small isotopy if necessary). Choose X1 ∈ S2
α

for the representation of the knot meridian x1. Because of the monotony and since the Li are
fixed this determines the representations of all other meridians, especially X2 ∈ S2

α. To obtain a
representation of Σ− k0 the equation X1 = L1 ◦X2 must be satisfied. This is possible choosing a
suitable L1 ∈ SU(2).
The meridian x2 follows from x1 by conjugation with knot meridians and longitudes. If α approaches
0 or π (and since 1 ∈ R(Σ) is isolated) the conjugations by matrices representing the knot meridians
are negligible compared with the conjugations by matrices representing the longitudes.

Let the order of the handles, for which the knot passes through, be given by (i1, . . . , in−1) where
{i1, . . . , in−1} = {2, . . . , n}. Then the spatial part of X2 lies in a small neighborhood of

(L
εin−1

in−1
. . . L

εi1
i1

) ◦X1 , εij = ±1 .

The equation X2 = (L
εin−1

in−1
. . . L

εi1
i1

) ◦ X1 is satisfied for a X1 having a spatial part parallel to

the spatial part of
∏n−1

j=1 L
εij

ij
. Since {L1, . . . , Ln} is a set of non-abelian matrices we can choose

an isotopy R̂′α
1 (β) Ã R̃′α

1 (β) such that any p ∈ R̃1 t R̂2 corresponds with one and only one
p′ ∈ R̃′α

1 (β) t R̂2. From the orientation conventions and the definition of sα(k ⊂ Σ) it follows that
limα→0,π sα(k ⊂ Σ) = 2λ(Σ).

In the following we want to show that the equation sα(k0 ⊂ Σ) = 2λ(Σ) holds for all α ∈ (0, π).
For this purpose let us consider manifolds analogous to those defined in chapter 3.2 but all angles
of the open interval (0, π) admitted. Denoting these manifolds as before with α omitted we find

Λ̂α
n,g ⊂ Λ̂n,g , Γ̂α

β ⊂ Γ̂β , Ĥα
n,g ⊂ Ĥn,g ,

being submanifolds of codimension one. The space of non-abelian representation classes of
R̂(Hg

1 −k′) can be identified with the intersection Λ̂n,g∩ Γ̂β ⊂ Ĥn,g which is in general not compact.
However, if the abelian representation ρα is not a limit of non-abelian representations the intersec-
tion î1(R̂(Hg

1 − k′)) ∩ R̂2 ⊂ R̂(F g) is compact. From corollary 3.4.5 it follows that the intersection
Λ̂α

n,g ∩ Γ̂α
β ⊂ Ĥα

n,g is compact as well. Moreover, there exists an ε > 0 such that

(Λ̂n,g ∩ Γ̂β) ∩ Ĥ [α−ε,α+ε]
n,g =: Ĥα,ε

n,g , Ĥ [α1,α2]
n,g :=

⋃

α∈[α1,α2]

Ĥα
n,g

is compact (cf. [HK98], p.487). This is used in the following lemma.

Lemma 3.4.9. Let k be a knot and in a homology 3-sphere Σ, and assume that the abelian rep-
resentation ρα is not a limit of non-abelian representations. Then there exists an ε > 0 such that
sα(k ⊂ Σ) = sγ(k ⊂ Σ) for |α− γ| < ε.

Proof. First we choose an ε > 0 such that (Λ̂n,g ∩ Γ̂β) ⊂ Ĥα,ε
n,g is compact. Let Γ̂α

β Ã Γ̃α
β

be an isotopy with compact support such that Γ̃α
β t Λ̂α

n,g. Extend this perturbation to an isotopy
Γ̂β Ã Γ̃β with compact support such that Γ̃β t bHα,ε

n,g
Λ̂n,g. Using the map î1 : Λ̂n,g → R(F g) induced

by inclusion (see equation (3.1)), we define

R̂′
1 := R̂′

1(β) := î1(Γ̃β ∩ Λ̂n,g) .
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with R̂′α
1 := R̂′α

1 (β) = î1((Γ̃β ∩ Λ̂n,g) ∩ Ĥα
n,g) ⊂ R̂′

1. Therefore the intersection

R̂′α,ε
1 ∩ R̂2 ⊂ R̂(F g)

is compact. Let R̂′α
1 Ã R̃′α

1 be an isotopy with compact support such that R̃′α
1 t R̂2. Extend

this perturbation to an isotopy R̂′
1 Ã R̃′

1 with compact support such that (R̂′[α,ε]
1 ∩ R̃1) t R̂2. If

|α− γ| < ε holds R̃′γ
1 := R̂′γ

1 ∩ R̃′
1 is a (3g− 3)-dimensional manifold with R̃′γ

1 t R̂2 ⊂ R̂(F g). Then
R̃′

1 ∩ R̂2 yields a 1-dimensional bordism from R̃′α
1 t R̂2 to R̃′γ

1 t R̂2 and the statement follows.

From the lemmata 3.4.8 and 3.4.9 and because the interval [0, π] is compact we obtain

Corollary 3.4.10. Let k0 ⊂ Σ be a knot with trivial Alexander polynomial. Then sα(k0) = 2λ(Σ)
holds for all α ∈ (0, π).

If Σ = S3 we obtain sα(k ⊂ Σ) = hα(k) where hα(k) is the invariant defined in [HK98],
p.486. Analogously to the intersection number hα(k) in [HK98] we interpret sα(k ⊂ Σ) as counting
the regular representations of the knot complement at a fixed angle α with signs. The given
interpretation of sα(k ⊂ Σ) will be underlined by its computation using a skein algorithm which
is done in the next chapter. The computation will also show that sα(k ⊂ Σ) is actually a knot
invariant.
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Chapter 4

The computation of sα(k ⊂ Σ)

To compute sα(k ⊂ Σ) we will determine the difference which comes up if we change a crossing of
k. Therefore we consider

∆sα(k ⊂ Σ) = sα(k+ ⊂ Σ)− sα(k ⊂ Σ) ,

where k+ denotes the knot k with a crossing changed inside a 3-ball B3 ⊂ Σ. In fact this is
equivalent to changing the corresponding crossings of k′ ⊂ S3 (compare Th.2.2.8).

Let us first establish the computational position k′c ⊂ Hg+1
1 for k′ which means to “isolate”

the crossing which is to be changed in an additional handle of Hg
1 . Then the crossing is switched

by performing a simple Dehn twist along the meridian of this handle. This induces an isotopy
in the representation space which can be controlled. For this purpose we project the (in general
high dimensional) manifolds used to define sα(k ⊂ Σ) onto curves on the 2-dimensional pillow-case
representing the longitude and the meridian of the additional handle.

4.1 The definition of the computational position k′c ⊂ Hg+1
1

Let k′ ⊂ Hg
1 in standard position be given by the 2n-plat presentation β̂. Then we obtain the

computational position by the following manipulations:

β

Figure 4.1: Establishing the computational position: Step 1.

1. Choose an isotopy such that the crossing which is supposed to be changed is presented by
the generator σ1 ∈ B2n (see Fig.4.1).
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βc

Figure 4.2: Establishing the computational position: Step 2.

2. Stabilize the new plat β̂′ and drill Hg
1 as shown in figure 4.2 to obtain the knot in compu-

tational position k′c ⊂ Hg+1
1 . Since we want to achieve that both strands of k′c pass the new

handle in the same direction it depends on the crossing which of both stabilizations is needed.
In each case the corresponding (2n + 2)-braid is denoted by βc.

Definition 4.1.1. Let k ⊂ Σ = Hg
1 ∪ Hg

2 with k′ ⊂ Hg
1 in standard position be given by the 2n-

plat β̂. Then we call the knot in computational position if the manipulations described above were
carried out. The knot corresponding to the computational Heegaard diagram (Hg+1

1 , hc) is denoted
by k′c ⊂ Hg+1

1 ⊂ S3. It is presented by the (2n + 2)-plat β̂c.

Note that the computational position, i.e. k′c, specifies the crossing which is to be changed and
therefore the knot k+.

By a construction analogous to the one in the definition of sα(k ⊂ Σ) (cf. Sec.3.4) we define an
intersection number sα(kc ⊂ Σ) for the knot in computational position.

Definition 4.1.2. Let R̂′α
1 (βc), R̂′

2 := R̂(Hg+1
1 ) and R̂(F g+1) be given as oriented manifolds. By

choosing an isotopy R̂′α
1 (βc) Ã R̃′α

1 (βc) such that R̃′α
1 (βc) t R̂′

2 we define the intersection number

sα(kc ⊂ Σ) := (−1)g′
∑

p∈ eR′α1 (βc)t bR′2⊂ bR(F g+1)

ε′p , ε′p = ±1 .

Since sα(k ⊂ Σ) is not yet established as a knot invariant the definition is not redundant. In the
following we show that the intersection numbers sα(k ⊂ Σ) and sα(kc ⊂ Σ) are equal.

Let l0 and m0 denote the additional generators of π1(H
g+1
1 −k′c) where m0 = (x−1x0)ε0 , ε0 = ±1.

Then the gluing homeomorphism is trivial with respect to the additional longitude of Hg+1
1 , i.e.

hc∗(∂D0) = l0, which yields l0 = 1 ∈ π1(Σ). Thus, according to [Sav99], p.154f, we obtain :

R̂′α
1 (βc) ∩ R̂′

2 = 1× X̂−1X0
ε0 × R̂′α

1 (β) ∩ R̂2 , (4.1)
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where X̂−1X0 := {X−1X0 ∈ R̂′α
1 (β)∩R̂2} and X−1X0 denotes the representation of a path enclosing

the strands of the crossing which is to be changed.
To compute the intersection number sα(kc ⊂ Σ) the manifold R̂′α

1 (βc) may need to be perturbed
so that the intersection R̃′α

1 (βc) ∩ R̂′
2 is transversal. As in the case of the Casson invariant (see

[AM90], p.77f) the perturbations can be chosen such that

R̃′α
1 (βc) t R̂′

2 = 1× X̃−1X0

ε0 × (R̃′α
1 (β) t R̂2) , X̃−1X0 := {X−1X0 ∈ R̃′α

1 (β) t R̂2} . (4.2)

As sα(kc ⊂ Σ) receives a “new” sign for the knot in computational position, namely (−1)g+1 =
−(−1)g, referring to the genus of the computational Heegaard diagram, we have to check that
ε′p = −εp holds for all intersection points p ∈ R̃′α

1 (βc) t R̂′
2
∼= R̃′α

1 (β) t R̂2.
To see this note that we need a permutation of the 1-dimensional vector space R with the
g-dimensional vector space H1(Hg

1 ,R) to obtain the product orientation H1(Hg+1
2 ,R) = R ⊕

H1(Hg
2 ,R). Identifying DX(X−1X0)ε0 ∈ T(X−1X0)ε0SU(2) with d(X−1X0)ε0 ∈ su(2) (see Th.2.3.6)

we obtain

ε′pTpR̂(F g+1) = TpR̂
′α
1 (βc)⊕ TpR̂

′
2 = (−1)gsu(2)⊕ TpR̂

′α
1 (β)⊕ su(2)⊕ TpR̂2

= (−1)g(−1)g−1su(2)⊕ su(2)⊕ TpR̂
′α
1 (β)⊕ TpR̂2

= −εp su(2)⊕ su(2)⊕ TpR̂(F g) = −εpTpR̂(F g+1)

which proves the following lemma.

Lemma 4.1.3. Let k ⊂ Σ = Hg
1 ∪Hg

2 with k′ ⊂ Hg
1 in standard position and let k′c ⊂ Hg+1

1 be the
corresponding knot in computational position. Then sα(k ⊂ Σ) = sα(kc ⊂ Σ) holds.

4.2 An important example: the computation of sα(kn ⊂ S3)

It is useful to explain the procedure in the only non-trivial case with a Heegaard splitting of genus 1:
the (2, n)-torus knots kn := σ̂n

1 ⊂ S3, σ1 ∈ B2, with the 3-sphere decomposed into two solid tori Vi.
In this case the knot kn is already in computational position. Let the pillow case PC represent the
non-central part of the commuting longitude l and meridian m of the common boundary T 2 = ∂Vi.
Then any non-trivial representation of π1(S3 − kn) corresponds via R(T 2) 3 M = X−1X0 to a
non-central element of the pillow-case. It should be mentioned that the representation spaces of
torus knots are well known (cf. [Kla91], Th.1).

4.2.1 The case kn = k1

First we want to discuss the easiest case k0 ∼ k1 = σ̂1. This approach turns out to be important
since the procedure can be generalized to representation spaces of arbitrary (2, n)-torus knots. But
complications will arise from the more difficult relations in the fundamental group π1(S3 − kn) (if
the latter is calculated from the braid representation of kn).

Heegaard splitting of S3 and orientations of the generators of π1(Vi)

Let S3 be decomposed into an “inner” torus V2 and an “outer” torus V1 with k1 ⊂ V1. For the
fundamental groups we have

π1(V1) = 〈l1|−〉 ≈ Z , π1(V2) = 〈l2|−〉 ≈ Z , π1(T 2) = 〈l,m|[m, l]〉 ≈ Z⊕ Z .
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V2 k1 ⊂ V1

Figure 4.3: Decomposition of S3 into an “inner” torus V2 and an “outer” torus V1 with k1 ⊂ V1.

where T 2 = ∂Vi is the common boundary of the solid tori. The orientation of the boundary torus
T 2 is chosen such that 〈m, l, n〉 is a positive oriented triple of vectors. Here l and m denote the
vectors tangent to the canonical longitude and meridian respectively and n denotes an outward
pointing normal vector n (see [Sav99], Fig.2.2).
Turning the inner torus V2 inside out and reversing its orientation (which corresponds to the ori-
entation conventions given in chapter 3.3) we identify the longitudes and meridians of the common
boundary as

l1 ↔ l ↔ m−1
2 , m1 ↔ m ↔ l2 .

V1 :

l2

l

m

l1

m1

−V2 :T 2 :

m2

Figure 4.4: Orientations of the generators of π1(∂V1), π1(∂V ) and π1(−∂V2) respectively.

Thus the gluing homeomorphism h : T 2 → T 2 preserves the orientation1 and the automorphism of
π1(T 2), corresponding uniquely to h (cf. [Rol76], Ch.2, Th.D4), is given by the matrix h =

(
0 −1
1 0

)
.

Orienting the generators of the fundamental group π1(V1 − k1) as shown in figure 4.4 we get the
following relations for the meridians

x′1 = x1 ◦ x2 , x′2 = x1 = x1 ◦ x1

which can be combined to yield (x1, x2) = x1 ◦ (x2, x1). The x′i result from x′i = l1 ◦ xi, i = 1, 2,
and we obtain the equations

l1 ◦ (x1, x2) = x1 ◦ (x2, x1) (4.3)

for the fundamental group π1(V1−k1). For the fundamental group of the inner torus with reversed
orientation we have π1(−V2) = 〈l2|−〉. Together with the relations

l1 = l = m−1
2 = 1 , m1 = m = l2 = 1 ,

1In difference to [Sav99], p.22, where a homeomorphism reversing the orientation is used.

37



m1 = l2

x′1

x1 x2

x′2

Figure 4.5: Orientation of the generators of π1(V1 − k1).

which are introduced by an ∞-surgery along the core of V2, this leads to following presentation of
the fundamental group of the trivial knot k1 ∼ k0 ⊂ S3:

π1(V1 − k1 ∪h∞ −V2) = 〈x1, x2|x1 = x1 ◦ x2, x1 = x2〉 = 〈x1|−〉 = Z = π1(k0) ,

where π1(kn) := π1(S3 − kn). On the other hand, a +1-surgery yields relations of the form

l1m1 = m−1
2 = 1 ⇒ l−1

1 = m1 = x1x2

and we obtain

π1(V1 − k1 ∪h+1 −V2) = 〈x1, x2|(x1, x2) = (l−1
1 x1) ◦ (x2, x1) = (x1x2x1) ◦ (x2, x1)〉 = π1(k3) .

This is certainly not surprising because the +1-surgery corresponds to an additional 2π-left twist
which leads to the (left handed) trefoil when regarding an embedded situation (see Fig.4.6).

==

+1 −1

Figure 4.6: +1 and −1 correspond to additional 2π-left and 2π-right twists respectively.

The representation curves of the tori

The surjective maps ij∗ : π1(T 2) → π1(Vj), j = 1, 2, induced by inclusions (compare Ch.2.4) lead
to the embeddings

îj : R̂(Vj) → PC
[ρ] 7→ [ρ ◦ ij∗]
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of manifolds. Here [ρ] := ρ/SO(3) denotes the equivalence class of the representation ρ under the
SO(3)-action. Recall that π1(T 2) is an abelian group and the pillow case represents the non-central
part of its representation space. For the surgeries considered above we obtain the following results.

∞-surgery along the core of V2: The equivalence classes of non the central representations Rnc

of the fundamental groups π1(Vj) are homeomorphic to an open interval:

R̂(V1) = {ρ(l1), ρ ∈ Rnc(V1)}/SO(3) ∼= (0, π) ∼= {ρ(l2), ρ ∈ Rnc(−V2)}/SO(3) = R̂(−V2) .

The surjections

i1∗ : π1(T 2) → π1(V1) , i2∗ : π1(T 2) → π1(−V2)
l 7→ l1 l 7→ m−1

2 = 1
m 7→ m1 = 1 m 7→ l2

(4.4)

lead to the following embedded curves

î1(R̂(V1)) = {ρ ◦ i1∗ × ρ ◦ i1∗(l,m), ρ ∈ Rnc(V1)}/SO(3)

= {(ρ(l1), ρ(m1)), ρ ∈ Rnc(V1)}/SO(3) = (0, π)× {0} ⊂ PC ,

î2(R̂(−V2)) = {ρ ◦ i2∗ × ρ ◦ i2∗(l,m), ρ ∈ Rnc(−V2)}/SO(3)

= {(ρ(m−1
2 ), ρ(l2)), ρ ∈ Rnc(−V2)}/SO(3) = {0} × (0, π) ⊂ PC .

Note that the run of the curves does not depend on the choice of the canonical parameterization
of the pillow case.

ĥ∞2

λ

µ

π

−π

π

ĥ−2

ĥ+
2

ĥ1

Figure 4.7: The representation curves of R̂(V1) and of R̂(−V2) for +1, −1 and ∞-surgery.

+1-surgery along the core of V2: Denoting the embeddings with respect to a± 1
n -surgery by î

± 1
n

j

we have as in the case of ∞-surgery above î+1 (R̂(V1)) = (0, π) × {0} ⊂ PC. From the +1-surgery
we obtain the relations

m−1
2 = lm and l2 = m (4.5)
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which lead to

ρ(m−1
2 ) = 1 = ρ(l)ρ(m) = ρ(l)ρ(l2) ⇒ ρ(l) = ρ(l−1

2 ) and ρ(m) = ρ(l2) respectively . (4.6)

Using equation (2.8) and regarding the chosen parameterization of the pillow case (cf. Rem.2.3.5)
it follows

î+2 (R̂(−V2)) = {(l2,−l2), 0 < l2 < π} .

Similarly we obtain for arbitrary ± 1
n -surgeries along the core of V2:

Lemma 4.2.1. Let S3 = V1 ∪h V2 be a Heegaard splitting. If we perform a ± 1
n -surgery along the

core of V2, n ∈ N, the embedding of R̂(−V2) is given by a curve with constant slope ∓ 1
n on the

pillow case.

Proof. A ± 1
n -surgery along the core of V2 induces (compare equation (4.5))

m−1
2 = lm±n and l2 = m .

Therefore we have to replace ρ(l2) by ρ(l±n
2 ) in the first equation of (4.6) and obtain

ρ(l) = ρ(l∓n
2 ) and ρ(m) = ρ(l2) .

Then equation (2.8) yields

î
± 1

n
2 (R̂(−V2)) = {(±nl2,−l2) , 0 < l2 < π}

for the curve embedded in the pillow case.

Remark 4.2.2. For the representations of the handlebodies which occur as embedded curves on
the pillow case we will use the following notations:

ĥ1 := î1(R̂(V1)) , ĥ2 := î2(R̂(−V2)) , ĥ
± 1

n
2 := î

± 1
n

2 (R̂(−V2)) ,

with the abbreviations ĥ±1
2 =: ĥ±2 and ĥ∞2 =: ĥ2.

The representation curve of π1(V1 − k1) in the trace free case

The use of SU(2)-matrices with trace zero (i.e. having angle α = π/2) provides an explanation of
the procedure and at the same time minimizes the technical problems.
As a start we remark that having presented k1 as a closed braid k1 = σ∧1 , the braid relation yields

x1x2 = σ1σ2 = x′1x
′
2 = (x1 ◦ x2)x1 .

With the help of the relations (4.3) we have

l−1
1 ◦ (x1x2) = l−1

1 ◦ ((x1 ◦ x2)x1) = l−1
1 ◦ (x1 ◦ x2) l−1

1 ◦ x1 = x1x2 = m1 , (4.7)

Therefore the spatial parts of the quaternions representing l1 and m1 respectively have to be parallel:
l1||x1x2||m1. Here x1x2 denotes the spatial part of the product X1X2 ∈ H1 (see Conv.2.5.1). This
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enables us to project the matrices L1 and M1 onto the pillow case. For the product of X1 and X2

equation (2.7) yields in the trace-free case:

X1X2 =

(
cα

sαx1

)(
cβ

sβx2

)
α=β=π/2

=

(
−x1 · x2

x1 × x2

)
.

By SO(3)-conjugation we choose

X1 = (π/2, cϕex + sϕey) , 0 ≤ ϕ ≤ π and X2 = (π/2,ex) . (4.8)

We determine L−1
1 in order to solve equation (4.7) where the solution is parameterized by the angle

ϕ between the spatial parts of X1 and X2. Therefore the matrices have to satisfy

X1 = L−1
1 ◦ (X1 ◦X2) , X2 = L−1

1 ◦X1 . (4.9)

Thus conjugation with L−1
1 = ρ(l−1

1 ) must rotate the spatial parts of X1 ◦X2 and X1 respectively
by −ϕ with axis ez. It seems trivial that one arrives at the same result with each of the following
rotations:

1) by −ϕ with axis ez, 2) by ϕ with axis −ez,

3) by 2π − ϕ with axis ez, 4) by 2π + ϕ with axis −ez,

but it is well worth having a close look at the quaternions behind. From equation (2.9) it can be
seen that the equivalences between 1) and 2) on the one hand and 3) and 4) on the other hand are
due to an identity of quaternions. To see the equivalence between both pairs, observe that as a
consequence of the 2-fold covering SU(2) → SO(3) a conjugation with ±Q = ±(α, q) ∈ SU(2) = H1

induces the same rotation (namely by 2α = 2(π + α), compare lemma 2.5.2 and equation (2.10)).
So, to determine L1 in (4.9), we may restrict ourselves to quaternions of the form L−1

1 = (−ϕ/2, ez)
or L−1

1 = (π + ϕ/2,−ez). Applying equation (2.10) to the latter we obtain L−1
1 = ±(−ϕ/2, ez)

which reflects the explicit form of the 2-fold covering: SO(3) = SU(2)/{±1}.
Remark 4.2.3. In spite of the fact that the rotations of each pair are caused by identical quater-
nions, the choice of the spatial part (which distinguishes both cases) is not arbitrary. For the
representation on the pillow case it is important to use those spatial parts to which the parameter
angles λ and µ of the pillow case refer to. In our case both are related to ez.

Therefore, using the equations (2.9) and (2.10) again, we obtain

L = L1 = ±(ϕ/2,ez) =

{
cϕ/2 + sϕ/2ez = (ϕ/2, ez)
cπ+ϕ/2 + sπ+ϕ/2ez = (π + ϕ/2, ez)

.

For the meridian of V1 the parameterization by ϕ together with equation (2.8) yields

M = M1 = X1X2 =

(
−cϕ

−sϕez

)
= −(ϕ,ez) = (π + ϕ,ez), 0 ≤ ϕ ≤ π .

Regarding the chosen parameterization of the pillow case (see Rem.2.3.5) we obtain the following
curve representing π1(V1 − k1):

p̂π/2(σ1) := î1(R̂π/2(V1 − σ̂1)) = {(−π + ϕ, ϕ/2), ϕ ∈ (0, 2π)} ⊂ PC .
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We call p̂π/2(σ1) the representation curve of σ1. The intersection points of p̂π/2(σ1) with ĥ2 and
ĥ+

2 can be identified with irreducible representations of π1(k1) = π1(k0) and π1(k3) respectively.
One case of reducible representations of π1(V1 − k1) is given by the representations X1 = X2 =
(0, ex) for the meridians xi inducing µ = arccos(1/2tr (X1X2)) = π. Moreover, the angle of
the conjugating matrix L1 = (λ1, ex) is arbitrary, i.e. λ1 ∈ (0, π). So we have a first interval
(0, π)× {π} ∼ (0, π)× {−π} ⊂ PC of reducible representations. The other possible case of abelian
representation of π1(V1 − k1), namely X1 = X−1

2 , only provides the point (π/2, 0) ∈ PC because
L1 = −1 is fixed in this situation. Hence all the reducible representations of π1(V1 − k1) are given
by

p̂
π/2
red (σ1) = (0, π)× {π} ∪ {π/2} × {0} ⊂ PC .

The reducible representations of π1(k1) and π1(k3) follow from the intersection with ĥ2 and ĥ+
2

respectively. Let us briefly summarize the results:

p̂
π/2
red (σ1)

λπ/2

−π

π

µ

ĥ+
2

ĥ1

ĥ2

p̂π/2(σ1)

Figure 4.8: The representation curves p̂π/2(σ1) and p̂
π/2
red (σ1) in the trace-free case.

Irreducible representations: The irreducible representations of π1(k1) and π1(k3) can be iden-
tified with p̂π/2(σ1) ∩ ĥ2 = ∅ and p̂π/2(σ1) ∩ ĥ+

2 = (π/3,−π/3) ∈ PC respectively.

Reducible representations: The reducible representations of π1(k1) and π1(k3) can both be

identified with p̂
π/2
red (σ1) ∩ ĥ2 = p̂

π/2
red (σ1) ∩ ĥ+

2 = (0, π) ∈ PC, where for each space X we let
X denote the closure of X. It should be mentioned that we need the closed sets only in
the trace free case (cf. the next section). The point (0, π) corresponds to the angle π/2 of
the open interval (0, π) which represents the non-central part of the reducibles of the knot
complement.

Representation curve of k1: The curve p̂π/2(σ1) has slope 2. It consists of two branches each
of which is related to one sheet of the 2-fold covering SU(2) → SO(3). Both branches run
from the reducible limits at (π, π) and (0,−π) respectively, into (π/2, 0) ∈ PC and they are
symmetric with respect to (π/2, 0) ∈ PC. Hence we picture only the lower part of the pillow
case with −π ≤ µ ≤ 0 (see Fig.4.8).

Intersection number sα(k): Choosing TpPC = {(dλ,dµ), dλ,dµ ∈ R} the orientations conven-
tions of chapter 3.3 force the representation curves ĥi of the handlebodies Vi, i = 1, 2, to
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start at (0, 0) ∈ PC. Similarly the orientation conventions let both branches of p̂π/2(σ1) start
at (0, π/2) ∈ PC and run into the reducible limits. Because p̂π/2(σ1) ∩ ĥ2 = ∅ we obtain
sα(k1 ⊂ S3) = 0. Evaluating 〈p̂π/2(σ1), ĥ+

2 〉PC at p = (π/3,−π/3) ∈ PC yields

sα(k1 ⊂ S3) = (−1)11 = −1 (4.10)

for the lefthanded trefoil.

Casson invariant: By definition the Casson invariant of Σ is intersection number −〈ĥ1, ĥ2〉PC .
Because ĥ1 ∩ ĥ2 = ∅ we have λ(S3) = 0 (as demanded in the definition of λ(Σ)).

The case k = k1 ⊂ S3 for arbitrary holonomy

According to theorem 4.2.5 the representation curve p̂α(σ1) := î1(R̂α(V1 − σ̂1)) is a curve with
constant slope 2 on the pillow case for all α ∈ (0, π).

ĥ2

π/2 λλλ µµ µ

ĥ+
2

−2α

−2α

−π/3

−π

p̂π/2(σ1)
p̂α(σ1)

p̂α(σ1)

Figure 4.9: The representation curve p̂α(σ1) for different angles α.

Thus the main difference to the trace free case lies in the range of µ-values. To see this we note
that the angle of the matrix representing m1 is:

arg(M1) = arg(X1X2) = arccos(c2
α − s2

αcϕ) .

For the irreducible representations with cϕ ∈ (−1, 1) we find the curve p̂α(σ1) being restricted
to the area [0, π] × (− arg(c2α), arg(c2α)) = [0, π] × (−2α, 2α) of the pillow case. Similar to the
trace-free case, intersection points of p̂α(σ1) with ĥ2 and ĥ+

2 can be identified with the irreducible
representations of π1(k1) and π1(k3) respectively and again equation (4.9) is satisfied by an arbitrary
L1 ∈ SU(2). Therefore the reducibles of π1(V1 − k1) are now given by

p̂α
red(σ1) = (0, π)× {−2α} ∪ [0, π]× {2α} ⊂ PC .

We obtain p̂α
red(σ1) ∩ ĥ2 = (0, 2α) for the reducibles of π1(k0) and p̂α

red(σ1) ∩ ĥ+
2 = (2α,−2α) for

those of π1(k3). Figure 4.9 shows the situation for different angles α.
As we will see (and as is known from [Kla91], Th.1) not all angles α will allow irreducible repre-
sentations of the knot groups considered. More precisely: because p̂α(σ1)∩ ĥ2 = ∅ for all α ∈ (0, π)
we have no irreducible representations for π1(k1) at all. But there are intersections of p̂α(σ1) and
ĥ+

2 if µ < 0 and
−µ > λ ⇒ −µ > µ/2 + π/2 ⇒ µ < π/3 .

43



Therefore we get irreducible representations of π1(k3) for

π/6 < α < 5π/6 .

The symmetry with respect to π/2 in this case follows trivially from c2(π−α) = c2α but nevertheless
reflects the symmetry of the representation spaces of knot groups in general. So the intersection
number sα(k3), counting the intersection points with positive signs, changes at values α which via
t = e2iα are connected with the roots of the Alexander polynomial

∆k3(t) = t− 1 + t−1 =
1
t
(t− eiπ/3)(t− e−iπ/3) .

As we know from theorem 3.4.2 the condition ∆k3(e
2iα) = 0 is necessary for sα(k) to change.

Later on it will be shown that comparing the signs of the Alexander polynomials of k and k+ at
e2iα determines ∆sα (with k = k1 and k+ = k3 in our example). This will turn out to be the key
to the computation of sα(k).

−ĥ2

π

−π

π

−π

µ µλ λ

ĥ+
2

−2α−2α

ĥ+
2

p̂α(σ)p̂α(σ)−ĥ2

Figure 4.10: Situations relevant to ∆sα(k), k = σ̂.

We summarize the observations for arbitrary holonomy briefly:

Irreducible representations: Because p̂α(σ1) ∩ ĥ2 = ∅ for all α ∈ (0, π) there are no irreducible
representations of π1(k1) = π1(k0). The irreducible representations of π1(k3) are given by

p̂α(σ1) ∩ ĥ+
2 =

{
(π/3,−π/3) ∈ PC for α ∈ (π/6, 5π/6)

∅ for α < π/6 , α > 5π/6
.

Reducible representation: The reducible representations of π1(k1) and π1(k3) can be identi-
fied with p̂α

red(σ) ∩ ĥ2 = (0,−2α) ∈ PC and p̂α
red(σ1) ∩ ĥ+

2 = (2α,−2α) ∈ PC respectively.
Again the intersection points can be identified with the corresponding abelian and non-central
representation of the knot complement, i.e. with α ∈ (0, π).

Intersection number sα(k1): If we change k1 into k3 the behavior of sα(k1) depends on the
endpoint of p̂α(σ1) related to the oriented cycle

C+ := ĥ+
2 ∪ −ĥ2 ∪ (0, π)× {π} .
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Because sα(k1) is an algebraic intersection number we deduce from figure 4.10

∆sα(k1) = sα(k3)− sα(k1) =

{
1, iff p̂α(σ1) ends in C+

0, iff p̂α(σ1) does not end in C+

with

∆sα(k1) =

{
1 iff α ∈ (π/6, 5π/6)
0 iff α < π/6 , α > 5π/6

in our example.
Let µ(p̂α(σ1)) and λ(p̂α(σ1)) denote the ranges of µ and λ respectively. Because µ(p̂α(σ1)) ⊂
(−2α, 2α), the intersection of p̂α(σ1) with ĥ+

2 ∪ −ĥ2 already determines ∆sα(k1). Thus we
may write

∆sα(k1) = #(p̂α(σ1) t ĥ+
2 )−#(p̂α(σ1) t ĥ2) = #(p̂α(σ1) t (ĥ+

2 − ĥ2)) ,

where p̂α(σ1) has to be transversal to both curves simultaneously.

The limiting behavior of p̂α(σ1): Due to the 2-fold covering SU(2) → SO(3) we have endpoints
of p̂α(σ1) with limϕ→0 µ(p̂α(σ1)) = ∓2α. The corresponding limits for limϕ→0 λ(p̂α(σ1)) =:
1
2 arg(±λα

0 ) which are related to the conjugation with ±L−1
1 describe rotations in the tangent

space at the reducible representation π1(V1 − k1) (compare Rem.2.3.4). By remark 2.5.4 the
angels of these rotations evaluate to arg(±λα

0 ) which yields identical rotations. The latter
follows from remark 4.2.3 and is due to the symmetry with respect to (π/2, 0) ∈ PC. Note
that in our example the rotations in the tangent space at the reducibles of π1(V1 − k1) are
trivial only in the trace-free case. In this case the endpoints of p̂π/2(σ1) coincide with the
cone points of PC.

Remark 4.2.4. Note that the representation curves p̂α(σ1) for angles α < π/2 and γ := π−α > π/2
coincide. This can be seen as follows. Suppose the conjugation with L−1

0 induces a rotation by an
angle ϕ for some α < π/2 corresponding to the points (ϕ,−2α) and (π−ϕ, 2α) on the branches of
the representation curve. Therefore we have to rotate by an angle of 2π − ϕ if the meridians are
represented by matrices with trace 2 cos γ. This corresponds to the λ-values π − ϕ/2 and ϕ/2 but
at each case on the other branch. Thus the representation curve remains the same.

To complete the example we compute the representation curves and the intersection number sα for
arbitrary (2, n)-torus knots.

4.2.2 Computation of sα(kn ⊂ S3)

For the (2, n)-torus knot kn ⊂ S3, n = 2l+1, we use the same oriented generators of the fundamental
group π1(V1 − kn) as shown in figure 4.5. Then the relations of π1(V1 − kn) induce the following
equations of SU(2)-matrices representing the several generators:

L1 ◦ (X1, X2) = X(k2l+1) ◦ (X2, X1) , X(k2l+1) = (X1X2)lX1 . (4.11)

If P12 denotes the quaternion which permutes X1 and X2 the matrix

L1 = X(kn)P12
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ϕ

x2

v12

x1

ϕ/2

Figure 4.11: Spatial parts of the quaternions X1, X2 and V12.

solves equation (4.11). As before, we choose X1 = cαcϕ + sαsϕex and X2 = cα + sαex by SO(3)-
conjugation and obtain (see Fig.4.11)

P12 = cπ/2 + sπ/2
x1 + x2

|x1 + x2| =
1

2cϕ/2
(x1 + x2) = cϕ/2ex + sϕ/2ey .

Writing the product of X1 and X2 as

X1X2 =

(
c2
α − s2

αcϕ

cαsα(1 + cϕ)ex + cαsαsϕey − s2
αsϕez

)
=:

(
cβ

sβv

)
, (4.12)

we obtain
arg M1 = arg(X1X2) = β

for the matrix M1 representing the meridian of V1 and

p̂α(σn
1 ) := î1(R̂α(V1 − σ̂n

1 )) = {(arg L1(β), β), β ∈ (−2α, 2α)} ⊂ PC .

for the representation curve of σn
1 . The curve is symmetric with respect to the point (0, π/2) ∈ PC

related to the parameter value β = 0 ⇔ ϕ = π. The endpoints of p̂α(σn
1 ) corresponding to the

limits β → ±π lie in the intervals [0, π]×{±2α} ⊂ PC. Considering the new parameter β we derive
p̂α(σn

1 ) from

arg L1(β) = arccos((X1X2)lX1P12) = arccos((X1X2)l+1X−1
2 P12) .

The last step will simplify the computations as follows. Let U ∈ SU(2) be the matrix which maps
X1X2 into the matrix (β, ex) by conjugation, i.e.

U ◦ (X1X2) = cβ + sβex = eiβ ∈ S1 ⊂ H1 .

We obtain
(X1X2)l+1 = U−1(cβ + sβex)l+1U = c(l+1)β + s(l+1)βv

and therefore

(X1X2)l+1X−1
2

=

(
c(l+1)β

s(l+1)βv

)(
cα

−sαex

)
=

(
c(l+1)βcα + s(l+1)βsαv · ex

cαs(l+1)βv − c(l+1)βsαex − s(l+1)βsαv × ex

)
.
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The relations v · ex = 1
sβ

cαsα(1 + cϕ) and v × ex = − 1
sβ

(s2
αsϕey + cαsαsϕez) as well as use of the

addition theorems, the formulas for the half-angles and the relation s2
αcϕ = c2

α − cβ yields:

(X1X2)l+1X−1
2 =




cα
cβ/2

c(l+1/2)β

sα

[(
c2α
sβ

s(l+1)β(1 + cϕ)− c(l+1)β

)
ex + sϕ

sβ
s(l+1)βey

]

 .

With the help of sϕ = cϕ/2(1− cϕ) we compute

cos(arg L1) = −(x1x2)l+1x−1
2 · p12 = −sαcϕ/2

[
s(l+1)βcβ/2

sβ/2
− c(l+1)β

]
.

Using cβ = c2
α − s2

αcϕ/2, for the angles in question (namely α, ϕ ∈ [0, π]) implies: sαcϕ/2 = sβ/2.
We conclude

−(x1x2)l+1x−1
2 · p12 = −sβ/2

[
cβ/2

sβ/2
s(l+1)β − c(l+1)β

]
= −s(l+1/2)β = cos(π/2 + (l + 1/2)β)

and finally

arg L1(β) = π/2 +
2l + 1

2
β = π/2 +

n

2
β .

This implies

Theorem 4.2.5. Let kn ⊂ S3 be a (2, n)-torus knot. Then the representation curve of kn is given
by

p̂α(σn
1 ) =

{
(
π

2
+

n

2
β, β) , β ∈ (−2α, 2α)

}
⊂ PC .

The theorem shows that the representation curves p̂α(σn
1 ) have slope ∆µ

∆λ = 2
n for all α ∈ (0, π).

Calculating their endpoints from the limit ϕ → 0, theorem 4.2.5 yields

lim
ϕ→0

p̂α(σn
1 ) = (

π

2
± nα,±2α) ⊂ PC , α ∈ (0, π) .

Therefore p̂π/2(σn
1 ) has intersection points with ĥ2 at

2α =
2i + 1

n
π ⇔ α =

2i + 1
2n

π , 0 ≤ i ≤ n− 3
2

,

and intersection points with ĥ+
2 at

2α =
2i + 1
n + 2

π ⇔ α =
2i + 1
2n + 4

π , 0 ≤ i ≤ n− 1
2

.

These points correlate via t = e2iα with the roots of ∆kn(t) and ∆kn+2(t) respectively where ([Liv93],
p.47)

∆kn(t) =
1

t
n−1

2

tn + 1
t + 1

.

Because the representation curves p̂α(σn
1 ) are subsets of p̂π/2(σn

1 ) for α 6= π/2 we obtain

Corollary 4.2.6. Let kn ⊂ S3 and α ∈ (0, π) with ∆kn(e2iα) 6= 0. Then sα(kn) = sπ−α(kn) =
− [2nα/π]−1

2 where [2nα/π] denotes the smallest odd number greater than 2nα/π.

Again the result reflects the symmetry of the representation spaces with respect to α = π/2.
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Figure 4.12: The representation curve p̂α(σ3
1) for different angles α.

Remark 4.2.7. It should be noted that it is possible to compute sα(kn) directly from the inter-
section of p̂α(σ1) and ĥ

1
n . Explicitly this yields:

sα(kn) = −〈p̂α(σ1), ĥ
1
n 〉PC

for the left-handed (2, n)-torus knots. Because ĥ−
1
n is a curve starting in the upper part of the

pillow case (i.e. the part with λ ∈ [0, π], see Lem.4.2.1) all signs of the intersection points in
〈p̂α(σ1), ĥ−

1
n 〉PC are reversed. Therefore we obtain

sα(k∗n) = −sα(kn)

for the right-handed (2, n)-torus knots k∗n.

4.3 Comparison of sα(k ⊂ Σ) and the Casson invariant λ′(k)

There are strong similarities between Casson’s invariant for knots λ′(k) and the intersection number
sα(k ⊂ Σ) which are sketched in the following. References for the statements related to the Casson
invariant are [AM90] and [Sav99], Lecture 17.2

Roughly speaking, the computation of the Casson invariant λ(Σ) is done by the surgery formula
(2.6) which gives the changes of λ(Σ) while performing a ± 1

n -surgery along a knot k ⊂ Σ ([Sav99],
Th.12.1). Together with the starting value λ(S3) = 0 equation (2.6) determines λ(Σ). This more
formal definition of the Casson invariant does not involve the representation spaces. These come
in by establishing the existence of λ(Σ) and provide the interpretation as an algebraic intersection
number (see Def.2.4.5). The sign ±1 = λ′(k31) in (2.6) depends on the orientations of the manifolds
intersected. As the notation indicates, the difference λ′(k) is a knot invariant and independent from
n.3

To prove the existence of λ(Σ) a “preferred” Heegaard splitting Σ = Hg
1 ∪Hg

2 is used. Within this
splitting the knot k decomposes the boundary surface F g = F ′ ∪k F ′′ ([Sav99], Ch.17.1). A +1-
surgery along k induces a diffeomorphism τ∗ : R̂(F ) → R̂(F ) which describes how the embeddings

2The arguments given in [Sav99], chapter 17.3, seem to be a little sketchy. We therefore refer to [AM90], chapter

V.4, for that matter.
3It should be remarked that the independence from n is necessary to prove property P for k ⊂ S3. For the

computation of λ(Σ) only the case n = 0, i.e. the difference λ(Σ + k)− λ(Σ), is needed (cf. Rem.2.1.4).
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of the representation spaces R̂(Hg
i ) =: R̂i, i = 1, 2, change. Using τ∗ we can write

λ′(k) = −(−1)g

2
#

[
τ∗R̂1 − R̂1 ∩ (τ∗)n+1R̂2

]
.

Due to the special position of k as a separating curve on F , the map τ∗ can be realized by an
isotopy in R̂(F ). Let δ′ denote the cycle which is the boundary of this isotopy minus an open
neighborhood of the reducibles of R1/SO(3). Then a transversality argument shows that we obtain
λ′(k) as an intersection with the cycle δ′

λ′(k) = #(δ′ ∩ (τ∗)n+1R̂2) .

Further let N denote a compact manifold neighborhood of R̂1 ∩ R̂−(F ) ⊂ R̂1 with R̂−(F ) = {ρ :
π1(F ) → SU(2)|ρ(k) = −1}/SO(3) ⊂ R̂(F ). The completion of δ′ − int (N ) along the trace of the
isotopy yields a compact cycle β with

#(β ∩ (τ∗)n+1R̂2) = 0 .

Thus the non trivial contribution to λ′(k) is related to the difference cycle δ = δ′− β and we have:

λ′(k) = #δ ∩ (τ∗)n+1R̂2 .

Now it is possible to collapse δ into a cycle δ0 which entirely lies in R̂−(F ). It follows:

λ′(k) = #δ ∩ (τ∗)n+1R̂2 ⊂ R̂−(F ) . (4.13)

Because the action of τ∗ on R̂−(F ) is trivial the intersection number in (4.13) is independent of n

and the knot invariant λ′(k) is well defined. Moreover, the 2-fold covering SU(2) → SO(3) induces
an even intersection number such that actually λ(Σ) ∈ Z ([AM90], Cor.4.8 and Ch.V.3 (a)). To
complete the existence proof of λ(Σ) the intersection number with the collapsed cycle δ0 ⊂ R̂−(F )
is determined for the trefoil k31 ⊂ S3 ([Sav99], Ch.17.5).
Now we want to show the analogies to the computation of sα(k) within the realms of the discussed
example k1 ⊂ S3. As stated before, the embeddings of the representation spaces of the tori Vi were
given by the curves

ĥ1 = î1(R̂(V1)) = (0, π)× {0} , ĥ2 = î2(R̂(−V2)) = {0} × (0, π) .

After an application of a +1-surgery along V2 we obtained the curve

ĥ+
2 = î+(R̂(−V2)) = {(l2,−l2) , 0 ≤ l2 ≤ π} .

The transition from ĥ2 to ĥ+
2 can be realized by an isotopy on the pillow case. The construction

relies on the fact that the exponential map

exp : su(2) → SU(2)
A 7→ eA

provides a diffeomorphism
exp : Bπ(0)

∼=→ SU(2) \ {−1}
where Bπ(0) denotes the open 3-ball of radius π centered at the origin. As a consequence, the
natural retraction r : Bπ(0) × [0, 1] → Bπ(0) with (A, t) 7→ t · A exponentiates to a retraction of
SU(2) \ {−1}:

r : SU(2) \ {−1} × [0, 1] → SU(2) \ {−1} , (X, t) 7→ Xt .

49



We construct an isotopy by means of this retraction:

H : Rnc(T 2)× [0, 1] → Rnc(T 2) , (L,M, t) 7→ (L,M−t) .

Modulo SO(3)-conjugation this yields the desired isotopy H̃ from ĥ2 to ĥ+
2 on the pillow case:

H̃ : PC × [0, 1] → PC
(λ, µ, t) 7→ (λ,−tµ)

.

ĥ+
2

π

−π

λµ

ĥ2

Figure 4.13: Realizing the Dehn surgery as an isotopy on the pillow case.

It follows that, similarly to the case of the Casson invariant, the effect of the Dehn surgery is
determined by the boundary of an isotopy in the representation space of the boundary surface. But
in opposition to the computation of λ(Σ) the changes of sα(k ⊂ Σ) can be completely controlled
by the isotopy H̃. In detail: if an endpoint of p̂α(σ) ⊂ PC, σ̂ = k, is met by H̃ we obtain
∆sα(k ⊂ Σ) = 1, otherwise ∆sα(k ⊂ Σ) = 0.

This focuses the interest on the endpoints of the representation curve of the knot and therefore
on the computation of the abelian limits of the non abelian representations. The computation will
immediately yield that sα(k ⊂ Σ) is a knot invariant. This marks a significant difference to the
Casson invariant where the main interest is the existence proof.

Remark 4.3.1. For an arbitrary knot in a homology 3-sphere a crossing which is to be changed
is isolated in an additional handle. For the pillow case representing longitude and meridian of this
handle we have a similar isotopy (compare Ch.4.4).

4.4 Computation of sα for arbitrary k ⊂ Σ

Let k′c ⊂ Hg+1
1 be a knot in computational position. Then similarly to example k1 ⊂ S3 two strands

of the knot go through one handle (compare Fig.4.5 and Fig.4.2). According to the equations (4.1)
and (4.2) the elements of R̂′α

1 (βc)∩R̂′
2 and R̃′α

1 (βc) t R̂′
2 satisfy the equation

∏g
i=1[Li, Mi] = 1. Fur-

thermore in π1(F g+1) the relation
∏g

i=0[li,mi] = 1 holds. Thus we can restrict our considerations
to submanifolds of R(F g+1) whose matrices representing the additional longitude and meridian
commute, i.e. [L0, M0] = 1. Setting g′ = g + 1 we define a submanifold of R(F g′) by

Vg′ = {(L0,M0, L1,M1, . . . , Lg,Mg) ⊂ SU(2)g′ |
Li,Mj ∈ h∗(Rirr(Hg

2 )), 1 ≤ i, j ≤ g , L0,M0 ∈ Rnc(T 2)} ,
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which respects [L0,M0] = 1. It is because of this relation for the dimension of V̂g′ that

dim V̂g′ = dim(Vg′/SO(3)) = 3g + 4− 3 = 3g′ − 2 .

Lemma 4.4.1. Let V̂g′ be defined as above. Then

〈R̂′α
1 (βc), R̂2〉 bR(F g′ ) = 〈V̂g′ t R̂′α

1 (βc), R̂′
2〉bVg′

.

Proof. Because

dim V̂g′ + dim R̃′α
1 (βc) = 3g′ − 2 + 3g′ − 3 = 6g′ − 5

the isotopy R̂′α
1 (βc) Ã R̃′α

1 (βc) can be extended such that V̂g′ t R̃′α
1 (βc) is a 1-dimensional subman-

ifold of V̂g′ . Let p ∈ R̃′α
1 (βc) t R̂′

2 be a point with intersection number 1 and let

TpR̂(F g′) = TpR̃
′α
1 (βc)⊕ TpR̂

′
2

be satisfied for the oriented tangent vector spaces. Further let U be a vector space with dimU =
3g′ − 4 such that

TpR̂(F g′) = TpV̂g′ ⊕ U

holds for the oriented vector spaces. Orient the 1-dimensional vector space V̂g′ t R̃′α
1 (βc) ⊂ R̃′α

1 (βc)
such that

TpR̃
′α
1 (βc) = TpV̂g′ t R̃′α

1 (βc)⊕ U

is satisfied. It follows

TpR̂(F g′) = TpR̃
′α
1 (βc)⊕TpR̂

′
2 = TpV̂g′ t R̃′α

1 (βc)⊕U⊕TpR̂
′
2 = TpV̂g′ t R̃′α

1 (βc)⊕TpR̂
′
2⊕U = TpV̂g′⊕U

as equation of oriented vector spaces. Note that the third equality holds because (3g′ − 3)
(3g′ − 4) ≡ 0 mod (2). Considering lemma 4.1.3 this proves the statement.

Let p be the projection
p : Vg′ → (L0, M0) .

Because L0 and M0 commute the induced map p̂ projects the equivalence classes of non-abelian
representations onto the pillow case:

p̂ : V̂g′ → PC

Remark 4.4.2. 1. Let r be an element of the reducibles of R(Hg′
1 −k′c). Then by the dimensions

of the tangent spaces the intersection TrVg′ ∩ TrR
′α(βc) is an at least 4-dimensional vector

space. If there is an r with a 4-dimensional Zariski tangent space while keeping L0 (i.e.
tr (L0)) fixed, the image p̂(V̂g′ t R̃′α

1 (βc)) is a curve on the pillow case which starts at the
reducibles of R(Hg′

1 − k′c). Theorem 4.4.10 below tells us that ∆k,k±(e2iα) 6= 0 is a sufficient
condition for the existence of a projection curve. Here we denote the knot which arises from
kc due to the sign of the ±1-surgery by k±. (Note that previously k+ was used for the result
of both cases of surgeries.) To proceed with the argumentation let us assume the existence of
the projection curve for the moment.
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2. The example of the (2, n)-torus knots shows that in the case α = π/2 the projection curve may
run into the cone points of the pillow case (see Fig.4.8). We avoid such problems by restricting
the angles α of the matrices representing the knot meridians to Iπ/2 := (0, π)− {π/2}. Since
∆k⊂Σ(−1) 6= 0 (see [HK98], Rem.4.9), the value of sα(k ⊂ Σ) does not change in a small
neighborhood of α = π/2. Therefore the restriction to Iπ/2 implies no limitation for the
computation of sα(k ⊂ Σ).

Definition 4.4.3. Let p̂α(βc) be the projection p̂(V̂g′ t R̃′α
1 (βc)) and α ∈ (0, π) − {π/2} =: Iπ/2

with ∆k,k±(e2iα) 6= 0 be given. Then p̂(βc) is called the projection curve of the plat βc on the
pillow case. It consists of two branches each of which corresponds to a sheet of the 2-fold covering
SU(2) → SO(3). The branches of the curve

• start at (1
2 arg λα

0 (k, k±),−2α) ∈ limϕ→0 p̂α(βc) and (π − 1
2 arg λα

0 (βc), 2α) ∈ limϕ→0 p̂α(βc)
respectively where (compare Th.4.4.10)

λα
0 (k, k±) =

∆k±⊂Σ(t)− t±∆k⊂Σ(t)
∆k±⊂Σ(t)− t∓∆k⊂Σ(t)

∈ S1 and t = e2iα ,

• run symmetrically with respect to (limϕ→π p̂α(βc), 0) = (π/2, 0) ∈ PC (provided that the same
isotopies are chosen for both branches).

Remark 4.4.4. 1. Because the intersection R̂′α
1 (βc) ∩ R̂2 is transversal at the reducibles no

isotopy is required in a sufficiently small neighborhood of the endpoints of p̂α(βc).

2. Because of the dependence from the isotopy R̂′α
1 (βc) Ã R̃′α

1 (βc), the projection curve itself is
not a knot invariant. It turns out that not even the endpoints of p̂α(βc) (whose neighborhoods
are not affected by the isotopies) are knot invariants. Actually they also depend on the
crossing which is changed (i.e. from the changed knot k±, compare Th.4.4.10). Of course,
theorem 4.4.10 shows that the endpoints are independent of the plat presentation of k′.

From remark 4.2.2 follows immediately that p̂(R̂2) is also a curve on the pillow case. Therefore we
have to compare the algebraic intersection numbers of the representation spaces with that of the
projection curves on the pillow case.

Lemma 4.4.5. Let p̂(V̂g′ t R̃′α
1 (βc)) be a curve on the pillow case. Then

〈V̂g′ t R̃′α
1 (βc), R̂′

2〉bVg′
= 〈p̂(V̂g′ t R̃′α

1 (βc)), p̂(R̂′
2)〉PC .

Proof. Let u ∈ (V̂g′ t R̃′α
1 (βc)) t R̂′

2 with intersection number 1 be given and denote its
image on the pillow case by v = p̂(u). Regarding the normal bundle p̂∗ there exists an oriented
vector space W with dimension dimW = 3g′ − 4 and

TuV̂g′ = p̂∗[TvPC]⊕W .

As an oriented vector space, W also completes the normal bundle of p̂(R̂′
2):

TvR̂
′
2 = p̂∗[Tvp̂(R̂′

2)]⊕W .

It follows

Tu(V̂g′ t R̃′α
1 (βc))⊕ TuR̂′

2 = p̂∗[Tvp̂(V̂g′ t R̃′α
1 (βc))]⊕ p̂∗[Tvp̂(R̂′

2)]⊕W

= p̂∗[Tvp̂(V̂g′ t R̃′α
1 (βc))⊕ Tvp̂(R̂′

2)]⊕W = p̂∗[TvPC]⊕W ,
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+1 : ri = x−1
i (xj ◦ xk)

xi

xk

xj xi

xj

xk

−1 : ri = x−1
i (x−1

j ◦ xk)

Figure 4.14: The Wirtinger relations corresponding to the two kinds of crossings.

where the second equality holds because p̂(V̂g′ t R̃′α
1 (βc)) is assumed to be a curve on the pillow

case. Finally we obtain
TvPC = Tvp̂(V̂g′ t R̃′α

1 (βc))⊕ Tvp̂(R̂′
2)

as an equation of oriented vector spaces which proves the lemma.

To calculate sα(k ⊂ Σ) with the help of the projection curve p̂α(βc) we use the techniques
which were successfully applied in the case of the left handed (2, n)-torus knots. For those we used
a +1-surgery to change a negative crossing (according to the sign of the Wirtinger relation, see
Fig.4.14) into a positive.

The treatment of an arbitrary knot k ⊂ Σ starts with k′c ⊂ Hg′
2 in computational position. Then

we switch a negative (positive) crossing which is isolated in the additional handle by a +1- (−1-)
surgery along this handle. We arrive at the equivalent embedded situation by adding a 2π-left
(2π-right) twist to k (compare Fig.4.6). Therefore we are able to change all crossings of k by means
of ±1-surgery along the additional handle.

From lemma 4.2.1 we deduce that the projection of î±
1
n (R̂′

2) is a curve with slope ∓ 1
n (where

± 1
n now refers to the ± 1

n -surgery along the meridian of the additional handle). In analogy with
remark 4.2.2 we denote these curves by

ĥ
± 1

n
2 := p̂(̂i

± 1
n

2 (R̂′
2)) ⊂ PC with ĥ±2 shorthand for ĥ±1

2 .

Then we obtain from the lemmata 4.4.1 and 4.4.5:

Theorem 4.4.6. Let k′c ⊂ Hg′
1 be a knot in computational position and let α ∈ Iπ/2 with

∆k,k±⊂Σ(e2iα) 6= 0 be given. Then there exists a projection curve p̂α(βc) with

sα(k ⊂ Σ) = (−1)g′〈p̂α(βc), ĥ2〉PC .

Because the dimension of the manifold î2(R̂′
2)∩ î±2 (R̂′

2) is 3g′−6 and provided that ∆k,k±⊂Σ(e2iα) 6=
0, we can choose an isotopy R̂′α

1 (βc) Ã R̃′α
1 (βc) where R̃′α

1 (βc) is simultaneously transversal to î2(R̂′
2)

and î±2 (R̂′
2). The discussed example of (2, n)-torus knots shows that the condition ∆k,k±⊂Σ(e2iα) 6= 0

is not necessary.

Corollary 4.4.7. Suppose that the assumptions of theorem 4.4.6 hold. Then there exists a projec-
tion curve p̂α(βc) with

∆sα(k ⊂ Σ) = sα(k± ⊂ Σ)− sα(k ⊂ Σ) = ±(−1)g′〈p̂α(βc), ĥ±2 − ĥ2〉PC
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Proof. Choose an isotopy R̂′α
1 (βc) Ã R̃′α

1 (βc) as above. Using theorem 4.4.6 and regarding
the orientations of the branches of the projection curve we obtain

sα(k ⊂ Σ)− sα(k− ⊂ Σ) = (−1)g′〈p̂α(βc), ĥ−2 − ĥ2〉PC ,

and
sα(k+ ⊂ Σ)− sα(k ⊂ Σ) = (−1)g′〈p̂α(βc), ĥ+

2 − ĥ2〉PC .

The open oriented arcs ĥ±2 and −ĥ2 together with the edge (0, π)×{π} of the pillow case build
the oriented difference cycles

C± := ĥ±2 ∪ −ĥ2 ∪ (0, π)× {π} ⊂ PC .

Therefore we can write
∆sα(k ⊂ Σ) = ±(−1)g′〈p̂α(βc), C±〉PC .

Remark 4.4.8. Let g̃ denote the genus of the Heegaard splitting after stabilizing the original
splitting with genus g. Then we have to switch the orientation of difference cycle (or equivalently
of the projection curve of the knot) if and only if g − g̃ ≡ 1 mod (2) (compare the proof of
Lem.4.1.3).

For the change of the intersection number sα(k ⊂ Σ) we now obtain:

Theorem 4.4.9. Let the projection curve of corollary 4.4.7 and the difference cycles C± as above
be given. Then

∆sα(k ⊂ Σ) = sα(k± ⊂ Σ)− sα(k ⊂ Σ) =

{
∓1, iff p̂α(βc) ends in C±
0, iff p̂α(βc) does not end in C±

.

Proof. Remark 4.4.8 force us to change the orientation of p̂α(k′c) (or alternatively that
of C±) according to (−1)g′ where g′ denotes the genus of the computational Heegaard splitting
chosen. Therefore the differences sα(k± ⊂ Σ) − sα(k ⊂ Σ) are independent of g′. If we fix the
orientations by choosing sπ/2(k3 ⊂ S3) = −1 for the lefthanded trefoil (see equation (4.10)) the
statement follows from corollary 4.4.7.

The endpoints of the projection curve are calculated in the next theorem. At the same time
this will ensure the existence of the projection curve as it was anticipated in definition 4.4.3.

As mentioned in remark 4.4.4 there is no need to isotope in a sufficiently small neighborhood of
the reducibles of π1(H

g′
1 − k′c). Therefore the endpoints of the projection curve and their relation

to ĥ2 provide direct (i.e. independent from the isotopies chosen on compact subsets) information
on the representation space of Σ−k. Anyway the information is sufficient to determine sα(k ⊂ Σ).

Theorem 4.4.10. Let k′c ⊂ Hg′
1 be a knot in computational position and let α ∈ Iπ/2 with

∆k,k±(e2iα) 6= 0 be given. Then the projection p̂α(k′c) := p̂(V̂g′ t R̃′α
1 (βc)) is a curve on the

pillow case. The projection curve has endpoints

lim
ϕ→0

p̂α(βc) = (
1
2

arg λα
0 (k, k±),−2α) ∪ (π − 1

2
arg λα

0 (k, k±), 2α) ⊂ PC ,

where

λα
0 (k, k±) =

∆k±⊂Σ(t)− t±∆k⊂Σ(t)
∆k±⊂Σ(t)− t∓∆k⊂Σ(t)

∈ S1 and t = e2iα .
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Proof. To prove the existence of the projection curve we will calculate the reducible limits
of p̂(V̂g′ t R̃′α

1 (βc)) (cf. Rem.4.4.2). First we discuss the case of +1-surgery from which the results
for the −1-surgery will follow immediately. Without loss of generality we consider the situation of
two strands which perform a 3π-left twist while running through the additional handle after the
+1-surgery was applied. This is already given if the crossing we intend to alter is positive in the
sense above (compare Fig.4.15). Otherwise we establish the situation by a Reidemeister move of
type II.

1 l0

n

2

Figure 4.15: The enumeration of the crossings of k′c in the additional handle.

For the computation we use the regular projection as it is given by the plat presentation of k′+.
The projection should have n crossings. Then we obtain the fundamental group π1(H

g′
1 −k′+) from

the generators and relations as they are given by a Wirtinger presentation (see [BZ85], Ch.3B). We
enumerate the three considered crossings of k′+ as shown in figure 4.15. From the three crossings
we obtain the Wirtinger relations

1 : l−1
0 ◦ x1 = (l−1

o ◦ x2) ◦ xn = l−1
0 x2l0xnl−1

0 x−1
2 l0 ⇔ x1 = x2l0xnl−1

0 x−1
2

2 : l−1
0 ◦ x2 = xn ◦ xn−1 ⇔ x2 = l0xnxn−1x

−1
n l−1

0

n : xn = xn−1 ◦ xn−2 .

By a little abuse of notation let (dλ−1
i ,dL−1

i ) ∈ su(2) = R ⊕ C, 0 ≤ i ≤ g, and (0,dXi) ∈ su(2),
1 ≤ i ≤ n, denote the tangent vectors of the Zariski tangent space at the reducible representation
corresponding to the g + 1 longitudes of Hg′

1 and to the generators of the n meridians respectively.
Note that dM0 = d(X1X2) holds providing that a suitable orientation for k′ is chosen. From the
proof of theorem 3.4.2 follows dLi = d1 = 0 and dλi = 0, 1 ≤ i ≤ g, for the tangent vectors of the
remaining longitudes.
Derived from the conjugated knot meridians by means of Fox calculus the corresponding relations
determining the Zariski tangent space at the reducibles of Rα(Hg′

1 − k′+) keep the decomposition
of su(2) into a real and a complex subspace. Thus we obtain 0 · dλ−1

0 = 0 ∈ R for the real and the
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following matrix equation for the complex part:



t2 − t −λ−1
0 λ−1

0 (1− t) 0 . . . 0 0 0 t

t− 1 0 −λ−1
0 0 . . . 0 0 t 1− t

0 0 0 0 . . . 0 t 1− t −1
0 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
... . . .

...
...

0 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗







dL−1
0

dX1

dX2

dX3
...

dXn




= 0 ∈ C (4.14)

which we abbreviate by Mk+

(
dL−1

0

dX

)
= 0, Mk+ ∈ Cn×n+1. The notation is justified since the

tangent spaces of R(Σ−k+) and R(S3−k′+) are equal at the reducibles. Each conjugating meridian
x±1

i contributes a factor t±1 = e±2iα ∈ S1 which provides a rotation in the tangent plane isomorphic
to C. Further, each appearance of the character L−1

0 in the derived words contributes a factor
denoted by λα

0 (k, k+)−1 ∈ S1 (cf. Rem.2.5.4) where the dependency from k, k+ and α is omitted.
By setting λ−1

0 = 1 and deleting the first column of M(k+) = (c0, c1, . . . , cn), ci ∈ Cn, we obtain
an Alexander matrix Ak′+ of the knot k′+ ⊂ S3, i.e.

Ak′+ = (c1(λ−1
0 = 1), c2(λ−1

0 = 1), c3, . . . , cn) .

By the computational position of the knot we have

c
(1)
1 =




t− 1
0
...
0


 = (t− 1)




1
0
...
0


 =: (t− 1)e1 ∈ Cn−1 ,

where c
(j)
i denotes the column vector ci with the j-th entry deleted. Writing Mk+ as a n-dimensional

vector of its rows ri ∈ Cn+1, Mk+ =
( r1

...
rn

)
, we add −t times r2 to r1:

Cn×n+1 3 M ′
k+

=




0 −λ−1
0 λ−1

0 0 . . . 0 0 −t2 t2

t− 1 0 −λ−1
0 0 . . . 0 0 t 1− t

0 0 0 0 . . . 0 t 1− t −1
0 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
... . . .

...
...

0 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗




.

This simplifies the calculations and of course preserves the solution of (4.14).
Considering the equations for M ′

k+
and because the angle of the conjugating matrix L0 is arbitrary

at the reducibles we obtain

dλ−1
0 ∈ R , dXi = dX ∈ C, 1 ≤ i ≤ n , dL−1

0 = (λ−1
0 − 1)/(t− 1)dX ∈ C .

Thus, taking the SO(3)-quotient and projecting onto the pillow case, the projecting curve of the
reducibles can be identified with [0, π]× {±2α} ⊂ PC.
Because the real part provides no further information we have to solve (4.14) to proceed in the
determination of λ0. If the solution for λ0 is connected uniquely (up to multiplication in C) with
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a dX ∈ Cn, the 2-dimensional complex vector space (and therefore the 4-dimensional real vector
called for in Rem.4.4.2) is spanned by dX and (1, . . . , 1) ∈ Cn.
By SU(2)-conjugation we again choose X1 = (α, cϕex + sϕey) and X2 = (α, ex) for the matrices
representing the knot meridians x1 and x2 of the additional handle. This induces dX1 ∈ R and
dX2 = 0 and we thus have to solve the following systems of equations

Mk+




dL−1
0

dX1

0
dX


 = M ′

k+




dL−1
0

dX1

0
dX


 = 0 , dL−1

0 ∈ C ,dX1 ∈ R , dX ∈ Cn−2 . (4.15)

From Mk+ and M ′
k+

follows the Alexander polynomial of k′+ ⊂ S3 (and therefore of k+ ⊂ Σ) by
taking the determinant of the matrices with the first row as well as the first and third column
deleted:

∆k+(t) = ±ts det(c(1)
1 , c

(1)
3 , . . . , c(1)

n ) =: ±tsÃk′+ .

The factor ±ts, s ∈ Z, is necessary to obtain a symmetric polynomial. We are forced to delete the
third column by the condition dX2 = 0; the deletion of the first row is done in order to achieve
independence of λ0. Deleting of the rows r2 and r3 together with the columns cn−1 and cn yields

∆k(t) = ∓ts−1 det(c(1,2,3)
1 , c

(1,2,3)
3 , . . . , c

(1,2,3)
n−2 ) =: ∓ts−1 det Ãk′ .

The exponent s− 1 is due to the fact that the projection of k+ possesses two more crossings than
k. The additional sign can be derived by setting t = 1 in the reduced matrices and keeping in mind
that ∆k⊂Σ(1) = 1 holds for the Alexander polynomial. Note that, despite of the relation to the
Alexander polynomials, it is not possible to obtain the Alexander matrix of k′ directly as a reduced
matrix from Mk+ or M ′

k+
.

Setting dX1 = 1 ∈ R the first equation in (4.15) yields:4

λ−1
0 = t2(dXn − dXn−1) .

To solve the equations in (4.15) which will determine dXn−1 and dXn we note that Ãk′+ is invertible
over C if ∆k′+(t) 6= 0 holds. With

M1 := (e1, c
(1)
3 , . . . , c(1)

n ) ∈ Cn−1×n−1 ,

Mi := (c(1)
1 , c

(1)
3 , . . . , c

(1)
i−1, e1, c

(1)
i+1, . . . , c

(1)
n ) ∈ Cn−1×n−1, i = 3, . . . , n ,

we obtain from Cramer’s rule

e1 =
detM1

det Ãk′+

c
(1)
1 +

n∑

i=3

det Mi

det Ãk′+

c
(1)
i . (4.16)

From the second row of (4.15), with dX1 = 1, we have:

(1− t)dL−1
0 = c

{2}
1 +

n∑

i=1

c
{2}
i dXi , (4.17)

4Another choice multiplies a constant factor to all tangent vectors. Therefore the angle of λ0, we are concerned

with, is not affected by this choice.
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where c
{j}
i denotes the j-th component of ci. On the other hand we know from the first row of

(4.16)

1 =
detM1

det Ãk′+

c
{2}
1 +

n∑

i=3

detMi

det Ãk′+

c
{2}
i . (4.18)

Because the solution of (4.16) is unique under the assumption ∆k+(t) 6= 0 we obtain

dL−1
0 =

det Ãk′+
(1− t) det M1

and dXi =
det Ãk′+
detM1

, i = 3, . . . , n , (4.19)

by comparing (4.17) and (4.18). Note that we have 1 − t 6= 0 because of α ∈ (0, π). With
λ0 = t2(dXn − dXn−1) equation (4.19) yields:

λ−1
0 =

t2

det M1
(detMn − detMn−1) . (4.20)

To compute the matrices Mn−1 and Mn we expand them with respect to the first row. For Mn−1

follows

Mn−1 =




0 0 · · · 0 1 1− t

0 0 · · · t 0 −1
0 0
...

...
A′ Ãk′ 0 0




⇒ det Mn−1 = −det Ãk′ = ±ts−1∆k(t) , (4.21)

which is independent from the number of crossings n. The matrix

A′ := (c(1,2,3,4)
1 , c

(1,2,3,4)
3 , . . . , c(1,2,3,4)

n ) ∈ Cn−4×n−4

defined above will be used while computing detMn. Laplace expanding of detMn provides:

det Mn = (t− 1) det Ãk′ − t detA′ , (4.22)

which is again independent of n. To compute detA′ we note that

det Ãk′+ = tdet Mn−1 + (1− t) det Mn = ±ts∆k+(t) ,

which by (4.22) leads to

detA′ =
∓ts−1(−t2 + t− 1)∆k −±ts∆k+

t(1− t)
. (4.23)

Deleting the second row of Ãk′+ instead of the first and defining the matrices

M̃1 := (e1, c
(2)
3 , . . . , c(2)

n ) and M̃i := (c(2)
1 , c

(2)
3 , . . . , c

(2)
i−1, e1, c

(2)
i+1, c

(2)
n ) , i = 3, . . . , n ,

analogously to the Mi above, we obtain

∓ts∆k+(t) = −det M̃1 + t det M̃n .

The factor ∓ts appears because (−1)1+2 = −(−1)2+2 holds and crossing I is positive (as crossing
II). From M̃1 = M1 and M̃n = Mn follows

detM1 = tdet Mn ± ts∆k+ (4.24)

58



and the equations (4.22) and (4.23) imply:

detMn =
±ts(∆k+ −∆k)

1− t
. (4.25)

Further we obtain from (4.21) and (4.25):

det Mn − det Mn−1 =
±ts−1(t∆k+ −∆k)

1− t
. (4.26)

Equation (4.25) together with (4.24) yields

det M1 =
±ts+1(t−1∆k+ −∆k)

1− t

where the assumptions imply detM1 6= 0. Finally the use of equation (4.20) leads to

λ−1
0 =

∆k − t∆k+

∆k − t−1∆k+

. (4.27)

Because the corresponding Alexander matrix for λ0 = 1 is that of k′+ it is more convenient to
interpret k+ as k and k as k− respectively. So formula (4.27) becomes

λ−1
0 (k, k−) =

∆k−(t)− t∆k(t)
∆k−(t)− t−1∆k(t)

. (4.28)

Because λ−1
0 (k, k±) is related to the rotation induced by conjugation with ±L−1

0 , for the λ-values
of the endpoints of the projection curve p̂α(βc) immediately follows

lim
ϕ→0

λ(p̂α(βc)) =
1
2

arg λα
0 (k, k±) ∪ (π − 1

2
arg λα

0 (k, k±)) .

Here the first (the second) term is related to the conjugation with L−1
0 (with −L−1

0 ) and there-
fore yields the value of the endpoint related to {−2α} (to {2α} ⊂ PC resp.). To determine the
corresponding endpoints on the pillow case we have to consider the chosen parameterization. In
the case α > π/2 this may interchange ±2α due to the fundamental action on the pillow case (see
Rem.2.3.5 and Lem.4.4.13). Thus the first part of the statement is proved.

If we add a 2π-right twist to k′c we can establish the same situation as shown in figure 4.15
with the positive crossings substituted by negative ones. Then the calculation is similar to that
for adding a 2π-left twist to the mirror image k′∗c of k′c. This will cause a substitution of k− by k∗+
and t by t−1. Because ∆k∗(t) = ∆k(t−1) = ∆k(t) holds for the Alexander polynomials we obtain
the stated formula for λα

0 (k, k+).

Example 4.4.11. For the left-handed trefoil k = k31 we find k− = k0 and k+ = k51 . The formulas
of theorem 4.4.10 yield

λα
0 (k31 , k0) = −t−3 = λα

0 (k31 , k51) ⇒ lim
ϕ→0

p̂α(σ3
1) =

1
2

arg λα
0 (k31)∪π−1

2
arg λα

0 (k31) =
π

2
−3α∪π

2
+3α .

This result is consistent with theorem 4.2.5 which shows the representation curves having constant
slope 1

n and therefore endpoints being on a strait line with constant slope.
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It should be emphasized that we obtain equal results from computing the endpoints by λ0(k, k+)
and λ0(k, k−). This is the case because both determine the endpoints of the same projection curve
on the pillow case namely p̂α(βc).

Remark 4.4.12. Because ∆k,k±(1) = 1, for the limits α → 0, π we obtain:

lim
α→0,π

λ0(k, k±) = −1 ,

which leads to the common end point of both branches:

lim
α→0,π

p̂α(βc) = lim
α→0,π

(arg(−1)/2, 2α) = lim
α→0,π

(arg(−1)/2,−2α) = (
π

2
, 0) ∈ PC .

For the computation of sα(k ⊂ Σ) we will make use of the following observation.

Lemma 4.4.13. Let t = e2iα, α ∈ Iπ/2, be given. Consider the maps f± : R ∪ {∞} → S1 ⊂ C,
f±(a) = a−t±1

a−t∓1 . Then:

α < π/2 : arg f+(a) ∈
{

(0, 4α) iff a < 0
(4α, 2π) iff a > 0

, arg f−(a) ∈
{

(2π − 4α, 2π) iff a < 0
(0, 2π − 4α) iff a > 0

,

α > π/2 : arg f+(a) ∈
{

(4α− 2π, 2π) iff a < 0
(0, 4α− 2π) iff a > 0

, arg f−(a) ∈
{

(0, 4π − 4α) iff a < 0
(4π − 4α, 2π) iff a > 0

.

Proof. The Moebius transformation f+ maps the real line onto the circle S1 ⊂ C. Because
f+(0) = t2, f+(1) = −t and f+(∞) = 1 the statement follows for f+. Analogous arguments will
prove it for f−.

Corollary 4.4.14. Let k, k± ⊂ Σ with ∆k,k±⊂Σ(t) 6= 0, t = e2iα, α ∈ Iπ/2, and a projection curve
p̂α(βc) which is simultaneously transversal to ĥ2 and ĥ±2 be given. Then

sα(k± ⊂ Σ)− sα(k ⊂ Σ) =

{
∓1 iff ∆k±(t)/∆k(t) < 0
0 iff ∆k±(t)/∆k(t) > 0

Proof. Setting a := ∆k±(t)/∆k(t) theorem 4.4.10 and lemma 4.4.13 yield

p̂α(βc)

{
ends in C± iff ∆k±(t)/∆k(t) < 0
does not end in C± iff ∆k±(t)/∆k(t) > 0

.

Then, considering the fundamental action on the pillow case in the case α > π/2, the statement
follows from theorem 4.4.9.

From the computational algorithm follows immediately

Corollary 4.4.15. Let k be a knot in a homology 3-sphere Σ with trivial Alexander polynomial.
Then limα→0,π sα(k ⊂ Σ) = 2λ(Σ) holds.

Proof. For α in a sufficiently small neighborhood of 0 and π respectively, ∆k⊂Σ(e2iα) > 0
holds for all knots k in Σ. Considering a (finite) unknotting process for k the statement follows
from corollary 4.4.14 and sα(k0 ⊂ Σ) = 2λ(Σ) (see Lem.3.4.8).
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Remark 4.4.16. Because we know that any knot is unknotable (in the sense of Th.3.2.6) sooner
or later a non-trivial Alexander polynomial has to alter when switching several crossings. (If the
Alexander polynomial is constant we have sα(k ⊂ Σ) = 2λ(Σ) for all α which is a trivial case for the
computation.) Let us however assume that ∆k = ∆k± holds, then we have λ0(k, k+) = 1−t

1−t−1 and

λ0(k, k−) = 1−t−1

1−t respectively (see Th.4.4.10). Now from lemma 4.4.13 follows ∆sα(k ⊂ Σ) = 0
for α ∈ (0, π) and sα(k ⊂ Σ) can still be computed.

The recursive formula for the computation of sα(k ⊂ Σ) stated in corollary 4.4.14 is quite
similar to the recursive formula for the equivariant signature σω(k ⊂ Σ).

Lemma 4.4.17. Let k and k± be knots in Σ and ω ∈ S1 with ∆k,k±(ω) 6= 0 be given. Then

σk±(ω)− σk(ω) =

{
∓1 iff ∆k±(ω)/∆k(ω) < 0
0 iff ∆k±(ω)/∆k(ω) > 0

.

Proof. First consider a knot k in S3. Then for the ω-signature, always an even number,

σk(ω) ≡ 0 mod 4 iff ∆k(ω) > 0 and σk(ω) ≡ 2 mod 4 iff ∆k(ω) < 0 (4.29)

holds (see [HK98], p.497). Considering the Seifert matrices of k+, k− and k we obtain:

−2 ≤ σk+(ω)− σk(ω) ≤ 0 and 0 ≤ σk−(ω)− σk(ω) ≤ 2 . (4.30)

Applying the arguments of theorem 2.2.8, the relations (4.29) and (4.30) hold for knots k and k±
in Σ as well. This completes the proof.

Now we are ready to compute the intersection number sα(k ⊂ Σ).

Theorem 4.4.18. Let k ⊂ Σ be a knot and α ∈ (0, π) with ∆k⊂Σ(e2iα) 6= 0 be given. Then

sα(k ⊂ Σ) = 2λ(Σ) +
1
2
σk⊂Σ(e2iα) .

Proof. We first choose a rational α ∈ Iπ/2 to achieve that e2iα = t is a transcendental
number ([Lor96], Ch.17, Th.3). Consider a sequence of crossing changes, which leads from k to a
knot k0 with Alexander polynomial ∆k0(t) = 1, the conditions ∆k,k±(t) 6= 0 of corollary 4.4.14 and
lemma 4.4.17 are satisfied during all steps. Because sα(k ⊂ Σ) and σk⊂Σ(e2iα) are locally constant
and the equation sα(k0 ⊂ Σ) = 2λ(Σ) holds for all α ∈ (0, π) (and the rationals are dense in R) the
statement follows by comparing corollary 4.4.14 and lemma 4.4.17. Finally, since ∆k⊂Σ(−1) 6= 0
holds for all k ⊂ Σ, the result is valid for all α ∈ (0, π) (see Rem.4.4.2).

The result of the computation will establish sα(k ⊂ Σ) as a knot invariant.

Corollary 4.4.19. Suppose that the assumptions of theorem 4.4.18 hold. Then sα(k ⊂ Σ) is an
invariant for knots in homology 3-spheres.

Proof. Because σk⊂Σ(e2iα) is a knot invariant sα(k ⊂ Σ) is independent of the chosen plat
presentation of k′ ⊂ Hg

1 ⊂ S3. All that’s left is to ensure that our computation of sα(k ⊂ Σ) is
independent of the chosen Heegaard splitting. For the Casson invariant this is explicitly shown in
its existence proof (see [Sav99], Ch.16.3). The independence of the contribution obtained from the
knot complement follows from theorem 4.4.9. Hence we are actually free to choose the standard
and therefore as well the computational position for k′ which completes the proof.
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Remark 4.4.20. For the 3-sphere S3 we have λ(S3) = 0 and obtain theorem 1.2 of [HK98] where
sα(k ⊂ S3) = hα(k) (and of course Lin‘s result for the trace free case α = π/2).

4.5 Applications

Theorem 4.4.18 together with lemma 3.4.9 immediately implies a criterion for an abelian represen-
tation ρα to be a limit of an non-abelian representations of π1(Σ− k).

Theorem 4.5.1. Let k ⊂ Σ be a knot in a homology 3-sphere and α ∈ [0, π] such that ∆k⊂Σ(e2iα) =
0. Then the abelian representation ρα is a limit of non-abelian representations of π1(Σ−k) if σk⊂Σ

jumps at e2iα.

Proof. If this is not the case, theorem 4.4.18 provides a contradiction to lemma 3.4.9.

Combining theorem 4.4.18 with the statement above yields the following

Corollary 4.5.2. Let k ⊂ Σ be a knot in a homology 3-sphere. If there exists an α ∈ [0, π] such
that σk⊂Σ(e2iα) 6= 0 then π1(Σ− k) admits a non-abelian SU(2)-representation.

Remark 4.5.3. 1. Note that the assumptions of theorem 4.5.1 and corollary 4.5.2 are satisfied
if e2iα is a root of ∆k⊂Σ(e2iα) with odd degree.

2. Theorem 4.5.1 was independently proved by C. Herald using gauge theory (cf. [Her97]). His
invariant hα(Σ, k) contains the Casson invariant with a factor 4. The additional factor 2
(compared with sα(k ⊂ Σ)) comes from determining the intersection number with the help
of the 2-fold cover of the pillow case (given by the involution of the torus). This yields (cf.
[Sav02], Th.5.17)

h0(Σ, k) = 〈r(Rh(Σ− k)), S0〉PC = 4λ(Σ) = 2 lim
α→0

sα(k ⊂ Σ) .
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