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ABSTRACT

Sensor placement is an important issue in structural health monitoring. The disserta-
tion presents an overview of current research efforts and development in the field of

sensor placement methods in structural health monitoring.

The first part of the dissertation discusses existing influential sensor placement
methods along with our comments. Based on these discussions, the connection be-
tween Modal Kinetic Energy method and the Effective Independence method are re-
vealed. In light of the connection, a fast computation method of the Effective
Independence method based on QR decomposition is proposed and coded in Matlab
as well. In addition, the QR method and the MinMAC algorithm are treated in a simi-
lar manner with disclosure of their relationship with other existing methods. The se-
cond contribution of the dissertation is the extension of the MIinMAC algorithm
through forward- and backward combinational approaches to enhance its ability to

find global optimum sensor combination.

Furthermore, five current evaluation criteria of sensor placement methods are dis-
cussed and a novel criterion with consideration of practical issues in structural health
monitoring is proposed. The proposed criterion strives to achieve the best accuracy
for modal identification to serve for further damage identification and structural health
monitoring. A representative least squares method is thus developed to deal with the

global optimum search of the new objective.

The sensor placement method corresponding to the new criterion takes actual load-
ing conditions of a structure in addition to its eigen dynamic characteristics into con-
sideration, and thus is termed as loading dependent sensor placement method,
which is the main contribution of the dissertation. It includes actual responses in the
design of measuring sensor topology and opens a new horizon in the field of sensor
placement method. With the aid of this new criterion, several existing criteria are
found to be approximately equivalent and are nearly step-by-step approximation of
the new Representative Least Squares criterion. Finally, a truss structure is experi-
mented with various loading conditions and the above proposed ideas and methods

are verified.
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1 Introduction

1.1 Problem and motivation

Structural health monitoring has attracted much attention in both research and devel-
opment in academics and industries in recent years [BALAGEAS et al. 2006; BOHLE
2005; L/ et al. 2004] . This reflects the facts of continuous deterioration conditions of
important civil infrastructures, especially long-span bridges. Among them, many were
built in the fifties with a 40-to-50-year designed life span. The failures and even col-
lapses of these deficient structures stimulate increasing concerns about structural
integrity, durability and reliability, i.e., the health status of an existing older structure,

throughout the world.

Currently, there are no assuring measures for the structural safety. A structure is
tested for deteriorations or damages with local nondestructive evaluation techniques
only after signs that are resulted from fault accumulations are severe and obvious
enough. When the necessity of such tests is finally noticed, damages have already
exacerbated the system’s reliability in many cases and some structures are even on
the verge of collapse. Though routine visual inspection is mandatory for important
structures in some countries, for instance, bridges in the United States scheduled to
be inspected every two years, its effectiveness in finding all the possible defects is
questionable. A recent survey by US Federal Highway Administration [MOORE and
Wiss 2001] revealed that at most 68% of the condition ratings were correct and in-
depth inspections could not find interior deficiencies. For instance, the Minneapolis
bridge (Interstate 35W bridge) broke into sections and collapsed on Aug.1, 2007
even though it had already passed every routine inspection conducted annually since
1993 [WALD and CHANG 2007]. The limitation of visual inspection is thus obvious and

structural health monitoring emerges as a promising approach.

The term ,Structural Health Monitoring“ refers to the use of in-situ, continuous or
regular (routine) measurement with permanently installed sensors and analyses of
key structural and environmental parameters under operating conditions, for the pur-
pose of warning impending abnormal states or accidents at an early stage to avoid
casualties as well as giving maintenance and rehabilitation adviceS[BALAGEAS et al.
2006; L/ et al. 2004]. This tentatively proposed definition of structural health monitor-
ing complements that given by Housner [HOUSNER et al. 1997]. This definition em-
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phasizes the essence of the advance alert ability of structural health monitoring.
Structural health monitoring is based on a basic premise, i.e., structural deterioration
or damage will alter the inherent structural characteristics, mainly stiffness distribu-
tion, and will therefore change the dynamic features of the structure, namely, natural
frequencies, modal damping and mode shapes. Through measuring the changes of
the dynamic features, damage could be identified in four levels, damaged or not,

damage location, severity and remaining service life.

Structural health monitoring is expected to provide vital information for the safe oper-
ation of key civil structures and enables operational cost reduction by performing
prognostic and preventative maintenance, and also shows great potential for disaster
mitigation. In general, a typical structural health monitoring (SHM) system includes
three major components: a sensor system, a data processing system (including data
acquisition, transmission and storage), and a health evaluation system (including di-
agnostic algorithms and information management). The sensors utilized in SHM are
required to monitor not only the structural status, for instance stress, displacement,
acceleration etc., but also influential environmental parameters, such as wind speed,
temperature, humidity, soil condition of its foundation and external loadings, if possi-
ble. A large number of sensors will be involved in a health monitoring system, for in-
stance, there are in total 786 sensors permanently installed in the TsingMa Bridge
[Ko et al. 2003]. The raw data are acquired at a rate of 63.46MB per hour for the
TsingMa and Kap Shui Mun Bridges and 55.87MB per hour for the TingKau Bridge.
The challenging task of data acquisition, transmission and storage in such a large
quantity demands to deploy sensors in a structure as less as possible. This is one

motivation of current dissertation.

Nevertheless, many of the sensors, for instance, the wind speed sensor and the
strain gauges, can be installed at somewhere according to their special characteris-
tics [FARRAR and LIEVEN 2007]. Therefore, the methods of sensor placement in the
research are concerning mainly about how to deploy accelerometers for global struc-
tural health monitoring. Although, there are 33,65 and 72 accelerometers instrument-
ed in the TsingMa Bridge, TingKau Bridge in Hongkong, and the Jiangyin Bridge in
Jiangsu China, respectively, even 116 accelerometers in another Anhui Tongling
Bridge [LIU et al. 2002], the number of accelerometers employed are, in fact, far less

than the enormous candidate positions of the structure [DOEBLING et al. 1996;
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ScHULTE 2006]. In particular, many structures have to be tested under operational
conditions, in which the sensors are not easily amenable to be removed or relocated
since many connection and communication cables were already buried in the (con-
crete) structure. Furthermore, sensor positions determine the quality of modal pa-
rameter identification, and are crucial in the subsequent model updating and damage
quantification. Therefore, how to optimally deploy sensors so that the data acquired
from those locations will result in the best identification of structural characteristics is
a challenging task [STASZEWSKI et al. 2004], which is the central topic to be treated in

the dissertation.

1.2 Problem formulation

We describe first the basic formulations of sensor placement problem in structural
health monitoring to facilitate our mathematical treatments, and then discuss three
aspects associated with the placement problem before outlining the work. The review
of different sensor placement methods and their interconnections are postponed to

Chapter 2 after the problem model and mathematical symbols are established.

1.2.1 Model for sensor placement in structural health monitoring

The sensor placement problem can be investigated from uncoupled modal coordi-
nates of governing structural equations as follows[CLOUGH and PENzIEN 1993; INMAN
2006; L1/ et al. 2007]],

{qz + M;lciqi + M;lKiqi = M;lq)TBou’ (1 1)

y=®0q+¢

where, q. is the " modal coordinate and is also the " element of the modal coordi-

h

nate vector q in the 2" equation, M,, K, and C, are the corresponding ™ modal

mass, stiffness and damping matrix, respectively, ® is the mode shape matrix with

its i column as the ™ mass-normalized mode shape, B, is simply a location matrix

formed by ones (corresponding to actuators) and zeros (no actuators), specifying the

1

positions of the force vector u. The superscripts ~' and ” represent inversion and

transpose of a matrix, respectively. y is a measurement column vector indicating
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which positions of the structure are possibly to be measured, and ¢ is a stationary
Gaussian white noise with zero mean and a variance of lIfoz, describing measure-

ment uncertainties.

It should be noted that Eq.(1.1) is a transformed general equation of motion in struc-

tural dynamics, Mx + Cx + Kx = B, u, with x substituted by ®q (x =dq) and then left

multiplied by ®” to decouple the equation. The damping matrix, C, can be of a gen-

eral Rayleigh damping matrix, C = oM + K [CLOUGH and PENzIEN 1993]. Generaliza-

tion can, of course, be made for structures with general damping distribution. The

knowledge of structural dynamics will be assumed throughout the dissertation.

In fact, y = ®q + ¢, if acceleration is measured in practice. Both measurement equa-

tions (of displacement and acceleration) are, however, identical in mathematical for-
mulation. The displacement measurement equation as shown in Eq.(1.1) is thus
preferred because of notation convenience. Hereinafter, the sensor placement prob-
lem described in Eq.(1.1) is termed Model (1) and will be concentrated. The conclu-

sion thus derived is, of course, applied to acceleration measurement.

1.2.2 Basic sensor placement problems

Sensor placement problem described in Model (1) is, essentially, divided into three
aspects [UbwADIA 1994]: (1) what is the least number of accelerometers required to
be installed in a structure for structural health monitoring? If there are additional sen-
sors, should we install them as redundant sensors or place them in other positions;
(2) where should these accelerometers be installed, including those additional ones if
available? And (3) how could we evaluate the effectiveness of different sensor
placement methods. These three aspects are, indeed, intervening with each other,
and the core problem is the second one, which largely depends, however, on the
third aspects [PICKREL 1999; UDWADIA 1994]. On the other hand, only after the last
two aspects are clearly understood, it is then possible to know exactly the required

number of accelerometers to be installed.

The first problem can be said to be already partially solved. It is known that the mini-

mum number of sensors to be instrumented could not be less than the number of
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mode shapes to be identified, which is determined by the observability of the system.
In other words, the identified mode shapes could not discriminate from each other
when the length of each mode shape is shorter than the dimension of the subspace
spanned by the mode shapes. The identified mode shapes, in such cases, cannot
form the basis of the mode shape subspace, i.e., the identified mode shapes are de-
pendent on each other and one or more of them can be determined by a combination
of others. Moreover, a practical number of sensors, which is limitedly preset before
experiments due to the availability of instruments and facilities, is usually larger than
the minimum number because of the requirement to visualize the to-be-identified
mode shapes[PICKREL 1999], and the demand for model correlation and updat-

ing[CARNE and DOHRMANN 1995].

The second problem, which depends largely, however, on the third aspect, is the es-
sential and amazing one, and is the focus of this work. Without loss of generality, it
is assumed here that the total degrees of freedoms (DOFs) of the structure described
in Model (1) is n, the number of mode shapes used for sensor placement is m, and
the available number of sensors is s (s <n). It is noted that all the n DOFs are explic-
itly accessible in Model (1). If there are certain inaccessible DOFs for a structure,
Eq.(1) can also be finally obtained by static or dynamic model reduction methods, or
even an iterated version of the improved reduction scheme if more accuracy is nec-
essary, to remove those inaccessible DOFs [FRISWELL and MOTTERSHEAD 19995].
Then the sensor placement problem becomes, basically, where to deploy the s avail-
able sensors out of the total n DOFs of a structure for dynamic testing or structural

health monitoring, i.e., which rows of the measurement vector y in Eq.(1) are to be
selected. It is equivalent to select which s out of total n rows from the rectangular

mode shape matrix ® (® € R™™) to form a sub-matrix A (A € R") to meet certain

selection criteria in mathematics.

Therefore, the issue of sensor placement can be basically regarded as an integer
optimization problem. However, this selecting (optimization) problem is a discrete NP
hard combinatory integer problem, which has no deterministic analytical solution up
to now [KORTE and VYGEN 2000]. Moreover, since global optimal search for combina-
tions of different sensor positions is prohibitive, it is not practical because of its com-
putational burden, especially for structures with more than thousands of DOFs and

not considered further in this work. Both account for the endeavors of various sub-
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optimal forward addition or backward deletion algorithms, or a hybrid combination of
them, as well as recent search methods based on artificial intelligence, for instance,
genetic algorithm or simulate annealing, to deal with the prohibitive search range.
Evidently, selection of certain search algorithms depends on chosen evaluation crite-
ria. We will leave the evaluation criteria of sensor placement to Chapter 1 for a de-

tailed discussion.

1.3 Objective and structure of the work

The objective of current work is to deepen the understanding of existing influential
sensor placement methods and their interrelationship and to develop an effective
method to deploy accelerometers suitable for structure health monitoring. Further-
more, we aim to find a sufficient evaluation criterion to judge which topology configu-

ration of accelerometers outperforms than others.

A detailed chapter-by-chapter overview is given in the following (see Figure 1.1).

Chapter 1 introduces the motivation and the necessity of investigating sensor place-
ment methods for structural health monitoring, along with highlighting the own contri-
butions and clarifying the organization of the work. Moreover, a basic mathematical
model for sensor placement method is established, which lays the foundation for fur-

ther discussions in the dissertation.

Chapter 2 reviews existing influential sensor placement methods, namely, Modal Ki-
netic Energy method, the Effective Independence method, QR row decomposition
method and the MinMAC method, efc.. Furthermore, their connections and interrela-
tionship are treated from a mathematical point of view. Specifically, the connection
between Modal Kinetic Energy and the Effective Independence method is revealed
and a fast computational algorithm for the Effective Independence method is devel-

oped.

Chapter 3 extends the traditional MinMAC algorithm into a forward- and backward

combinational approach, which is proposed to overcome the disadvantages of tradi-
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tional MinMAC algorithm and enhances its ability to search for global optimum sen-

sor combinations.

Chapter 1

Model of sensor placement

v

Chapter 2 Chapter 4

Connections of existing methods Evaluation Critera

Chapter §

New sensor placement method

Chapter 3 Chapter 6

Extended MinMAC algorithm Experiment validation

Figure 1.1: Organization of the work. The left part of the chart is concerned with the
sensor placement methods and the right part deals with the evaluation criteria. All

theoretical developments come together in the experiment validation of Chapter 6.

Chapter 4 presents a detailed discussion of five existing influential evaluation criteria
for sensor placement methods. Based on the insights gathered from these discus-
sions, a novel criterion is proposed from the perspective of “almost global unbiased-

ness”.
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Chapter 5 develops a Representative Least Squares method to meet the new criteri-
on proposed in Chapter 4 along with a loading dependent sensor placement method,
specially tailored for structural health monitoring. The theory of representative least
squares method is examined, and compared with classical ordinary least squares
method. Three computational approaches to find the solution for the representative
least squares method are initiated. It is found that two existing influencing criteria can
be regarded as a step-by-step approximation of the new criterion which is an exact

solution.

Chapter 6 utilizes a truss structure to validate the proposed loading dependent sen-
sor placement method in Chapter 5 and its corresponding criterion. Different excita-
tions are applied to the truss and its modal characteristics are identified with different

sensor combinations to compare their accuracy.

Chapter 7 summarizes the conclusions of this work. Additionally, some unsolved
problems and suggestions for future research related to sensor placement methods

are envisaged.
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2 Analysis of Influential Sensor Placement Methods

The problem of sensor placement has attracted increasing attention from various
perspectives, as can be seen from the abundance of literature [KUBRUSLY and
MALEBRANCHE 1985; LI et al. 2008; PAPADOPOULOS and GARCIA 1998], and the refer-
ences therein. In this Chapter, we will review several of the most influential methods
both from historical points of view and from their impacts on practice and the devel-
opment of sensor placement theory. Of course, bias and omissions could not be
avoided for such a daunting task because of personal preference and limitations. For
instance, the damage sensitivity based methods are ignored since they are beyond

the scope of the current topic.

In the issue of sensor placement, the mode shapes of interest play a central role.
Many sensor placement methods can be finally traced back to be certain row combi-
nations of the mode shapes in consideration. The differences between the methods
lie only in their various weights to the mode shapes as illustrated in the next section.
For simplicity of explanation, the original mode shapes, arranged column-wise as a
matrix, are assumed to be real and already orthonormalized with respect to an identi-

ty mass matrix in the following, if not explicitly stated otherwise.

2.1 Review of existing sensor placement methods

The heuristic visual inspection method is the simplest among the sensor placement
methodologies proposed for dynamic testing and perhaps the first method in practical
modal tests before the sensor placement problem is seriously questioned. By this
method, the responses of a structure are first visually inspected, the mode shapes of
interest are examined and the locations with high amplitude of modal responses are
then selected according to the experience of practitioner engineers. This method is
mostly derived from, and dependent on the intuition of practical engineers [COOTE et
al. 2005]. Though practical for some simple structures tested in laboratory, the visual
inspection method encounters great difficulties in large complicated structures in
structural health monitoring since it is not obvious to judge where a structure has

large vibration amplitudes just by visual inspection.
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2.1.1 Modal kinetic energy method

The first rigorous sensor placement strategy is perhaps the modal kinetic energy
(MKE) method, which is an extension of the traditional heuristic visual inspection.
The MKE method examines the mode shapes of significance and selects locations

with high amplitudes of responses as follows

MKE,, = (I)pq;Mpk(Dkq (2.1)

. . . . . th . th

where MKE, is the kinetic energy associated with the p™ dof in the g™ target mode,
@, is the pth coefficient in the corresponding mode shape, M, is the term in the pth
row and k" column of the finite element model (FEM) mass matrix, and ®,, is the k"

coefficient in the g™ FEM target mode shapes [PAPADOPOULOS and GARCIA 1998].
The selected mode shapes are demanded to represent most of the energy contained

in the responses.

The MKE method gives a measure of the dynamic contribution of each FEM physical
dof to each of the target mode shapes, and provides a rough idea where the maxi-
mum responses could be measured. When the mass matrix is an identity equivalent
matrix, the modal kinetic energy indices are, in fact, the squared Frobenius row

norms of the mode shape matrix if we regard each row as a vector.

The reason to adopt MKE resides in that it tells which DOFs may capture most of the
relevant dynamic features of the structure. The MKE helps to select those sensor
positions with possible large amplitudes, and to increase the signal to noise ratio,
which is critical in harsh and noisy circumstances. Many other methods are com-
pared with the MKE to demonstrate their validity and efficiency, and even the Effec-
tive Independence method adopts MKE as its first stage to select candidate sensors

from all candidate DOFs of a structure [KAMMER 1991].

2.1.2 Eigenvector component product and mode shape summation plot

method

Similar to the MKE to compute the squared Frobenius norms of each row of the

mode shape matrix weighted by structural mass distribution, the Eigenvector Com-
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ponent Product (ECP) method computes the absolute products of each row vector
[HEYLEN et al. 1998], whereas the mode shape summation plot method (MSSP) com-
putes their absolute sum. It is noted that the term ‘Eigenvector’ is used here instead
of mode shape due to the conventions. Anyway, they convey the same meaning in

this context.

In ECP, the sensor positions with large ECP index values are selected as candidate

sensor positions [LARSON et al. 1994] as following,

ECP, = lﬂ[|c1>,.k| (2.2)

k=1

where, ECP, is the ECP index for the " sensor position, m denotes the number of

mode shapes of significance and II consecutive element multiplications.

This technique selects sensor positions with larger ECP indices ECP, and has the
advantage to prevent deploying sensors at or near nodes of selected modes. How-

ever, the ECP tends to cluster sensors in a small area, and is not able to capture

global mode shapes with clustered sensors.

By the MSSP [De CLERCK and AVITABLE 1998], the components of a mode shape cor-
responding to a sensor position (a row in the mode shape matrix) are drawn in a
graph and the absolute summation are calculated for each row (candidate sensor
positions). The positions with large MSSP indices are selected as sensor positions as

follows,
MSSP =3 |@,| (2.3)
k=1

where, MSSP is the MSSP index for the /" sensor position.

The MSSP method has the advantage to graphically show the contributions of candi-
date sensor positions to the total responses of a structure, and is easy to compute.
The MSSP can be regarded as the L, norm since the rows of the mode shape matrix
are absolutely summed together [HORN and JOHNSON 1985]. In this respective, the

MKE method in Section 2.1.1 can be considered as the L, norm of the mode shape

matrix.
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Both the ECP and MSSP methods are intuitive and aim to avoid nodal sensor posi-
tions or sensor positions containing insignificant modal kinetic energy. However, ex-
periences show that they could only provide possible good candidate sensor pools,
and could not offer much insight about the best sensor combinations. Consequently,
the ECP and MSSP methods can be employed as a preliminary tool to exclude cer-
tain sensor positions, similar to the function of the MKE in the Effective Independ-

ence method to be discussed in Section 2.1.4

2.1.3 Drive point residue method

The Drive Point Residue (DPR) method is computed as follows [CHUNG and MOORE
1993],

DPR=®R®A' (2.4)

where A is the inverse of the diagonal eigenvalue matrix and ® represents a term-

by-term matrix multiplication.

The DPR, which is equivalent to modal participating factors, is a measure of how
much a particular mode is excited at a particular DOF [LARSON et al. 1994]. For a lin-
ear structure, Betti's law and Maxwell's law states that the response at point p due to
excitation at point q is equal to the response at point g due to the same excitation at
point p. Therefore, candidate sensor positions with large DPR values are anticipated
with large response as well. It is worth to note that the formulation in Eq.(2.4) is used
for modes that are scaled as for displacement over force measurements. When ac-
celerometers are used, the modes should be scaled for acceleration over force

measurements by multiplying the squares of eigen-frequencies, separately.

In order to insure that an excitation location will give uniform participation of as many
target modes as possible, it is desired to find a high average residue for a given
DOF. An averaged DPR was ever used by LMS International [KIENTZY et al. 1989].

It should be noted that there are other variants of derivative methods formed by av-
eraged or weighted MKE, ECP, MSSP and DPR methods. The readers are invited to
consult reference [PAPADOPOULOS and GARCIA 1998] for details.



2 Analysis of Influential Sensor Placement Methods 13

2.1.4 Effective independence method

The Effective Independence (EI) Method is one of the most influential and commonly
used methods, as shown in its highly cited record [KaAMMER 1991]. The El method
quantifies the independence between two or more reduced mode shapes, and has
many attractive properties. In particular, it provides a natural criterion to differentiate
truncated mode shapes for sensor placement, and has been applied to a wide range
of large structural dynamic testing, as also recommend by Ewins [EwinS 2000],
Heylen et.al. [HEYLEN et al. 1998] and Friswell et.al. [FRISWELL and MOTTERSHEAD
1995] for modal testing and modal updating, and already embedded in commercial
software MSC/NASTRAN [PEck and TORRES 2004].

The objective of the El is to select measurement positions that make the mode
shapes of interest as linearly independent as possible while containing sufficient in-
formation about the target modal responses in the measurements. The method origi-
nates from estimation theory by sensitivity analysis of the parameters (modal
coordinates) to be estimated, and then it arrives at the maximization of the Fisher
information matrix, for instance, the determinant or the trace. It is reflected in the co-
efficient variance-covariance matrix. Thus, the covariance matrix of the estimate error

of the modal coordinates would be minimized.

From the measurement output expression in Eq.(1.1), the El takes the covariance

matrix of the estimate error for an efficient unbiased estimator as follows,
V(] (1, T
Ellq=aXg-a) [=|| 2| e[| 2] =| —0o'®| =A" 25
CEOCE l(an [ J(aqﬂ |:\P02 } (2.5)

in which A is the Fisher information matrix (FIM), ‘P02 represents the common vari-

ance of the stationary Gaussian measurement white noise ¢ in Eq.(1.1), E denotes
the expected value, and q is the vector of an efficient unbiased estimator of q. It is
noteworthy that in the formulation of Eq.(2.5) the measurements have the noise level.
For a general case of measurements with different noise levels, the variance ‘P02

maybe not a constant matrix, but a diagonal one.
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Maximizing A will result in the best state estimate of q. In practice, the analysis be-

gins by solving the following eigenvalue equation,
lo’®— A1}y =0 (2.6)

where y are the orthogonal eigenvectors. The effective independence coefficients

of the candidate sensors are then computed by the following formation,
E=[oy]e[oyli 1 (2.7)

in which 1 is an n x 1 column vector with all elements of 1. Ep is the El indices,
which evaluate the contribution of a candidate sensor location to the linear inde-

pendence of the modal partitions @ .

The selecting procedure is to sort the elements of the Ep coefficients, and to remove
the smallest one at a time. The Ep coefficients are then updated according to the
reduced modal shape matrix, and the process is repeated iteratively until the number
of remained sensors equals to a preset value. The remaining DOFs serve as the

measurement locations.

Alternatively, the El index can be computed as the diagonal of the following matrix,
E = diag(®[@’®] @) (2.8)

The bracketed term in the right-hand side of the expression,Pztb[tl)TCDTl(I)T, is a
projection matrix formed by the mode shape matrix @ with the idempotent proper-
ties: P> =P, and P’ =P. From these properties, it is easy to show that the Epindices
are in the range between 0 and 1, i.e.,0< E, <1 as shown in Appendix 2A. The Ep

indices or the diagonal terms of the projection matrix P are called as leverage of

each predicted value, y, on its actual measurement, y, in Eq.(1.1) in statistics
[CHATTERJEE 1988; Cook and WEISBERG 1982]. It can clearly be interpreted as the

amount of leverage each row y, has in determining its corresponding regression val-
ue regardless of the actual value of y,, and is solely determined by the row location

®, in the mode shape space spanned by the columns of matrix ®. A large (small)
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value of an Epindex indicates that ®, lies far from (near to) the bulk of other points

in the mode shape matrix @.

There are many variants of the EI method. The so-called energy optimization tech-
nique is derived from MKE and EI by optimizing the kinetic energy matrix measured
by candidate sensor locations [HEO et al. 1997]. In one study [COOTE et al. 2005], it
was shown that the energy optimization technique appears more favorable because
the El results in clustering of sensors and did not reduce the off-diagonal MAC (Mod-
al Assurance Criteria) terms particularly well. Other variants are adding weights for
different mode shapes, for instance, residue weighted, or mass weighted. Among
them, one technique is called EFI-DPR in which the modes in El are weighted by the
corresponding driving-point residues [MEO and ZumpANO 2005]. In this manner, the
EFI-DPR tries to avoid selecting sensor locations with low energy contents with a

consequent possible loss of information, which is one limitation of the EI method.

2.1.5 QR decomposition method

The QR Decomposition (QRD) method proposed by Link et. al. aims to locate a sub-
set of structural DOFs of an analytical model as measurement points such that the
linear independence of the mode shapes to be measured is maximized [SCHEDLINSKI
and LINK 1996]. The underlying idea is that the most linear independent rows of the
modal matrix indicate the DOFs that should be chosen as measurement locations
since they form the smallest possible modal matrix, which provides a MAC matrix
with minimized off-diagonal terms to enhance the ability to distinguish between simi-
lar mode shapes. In computation, the QRD method extracts those rows to form the

effective subset by QR decomposition of a transposed mode shape matrix.

In comparison, the similarity between El and QRD is quite straightforward. The EI
seeks for the most independent rows from the perspective of column independence
whereas the QRD search directly for the most independent rows as many as the

number of mode shapes of interest.

From matrix calculus, we know that the row rank is equal to the column rank of a ma-
trix. When the first m linearly independent rows, whose number equals the column

number of the matrix in our case, are found by QR decomposition, it arrives at a col-
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umn independent sub-matrix as well. Link claimed that m sensors are enough, and
that additional sensors don’t improve the measurement information and may increase
the off-diagonal terms of the MAC matrix since the additional s-m sensors are found
in the vicinity of the first m sensors. The second statement is, of course, true. The
reason is that the row linear independence of the selected modal sub-matrix will not
improve even when more rows (another s-m rows) are added. The additional rows
are definitely linear dependent on the first m rows and thus increase the off-diagonal

terms of the MAC matrix.

2.1.6 MinMAC algorithm

The MinMAC algorithm proposed by Carne and Dohrmann aims to ensure modal cor-
respondence between the mode shapes computed by an FEM and those measured
or identified ones in dynamic testing [CARNE and DOHRMANN 1995]. To achieve this,
both sets of mode shapes have to be differentiated as much as possible. It is equiva-
lent to maximize the angles formed by unit mode shape vectors, or to minimize the
dot product between them, which is the same as the Modal Assurance Criteria (MAC).
Small maximum off-diagonal term indicates less correlation between corresponding
mode shape vectors, and renders the mode shapes discriminable from each other.
This is the reason to minimize the off-diagonal elements of the MAC matrix. Moreo-
ver, Carne and Dohrmann use intuition to determine an initial measurement set of
DOFs that adequately covers the structure and areas of special interest to ensure

modal visualization besides correspondence.

The MinMAC algorithm achieves this objective as follows. First, an intuition sensor
set (much less than the required number of sensors) is selected based on experience
and requirements of structural topology for visualization of mode shapes. Second, it
adds other available candidate sensors one by one, and selects one that minimizes
the maximum off-diagonal element of the MAC matrix at each step. Third, the
MinMAC repeats the second step by adding one sensor at a time until a required

number of sensors are selected.
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2.1.7 SVD-based methods

Similar to the EI method, an SVD-based method directly decompose the mass
weighted information matrix [PARK and Kim 1996]. It complements the El by providing
a guide for an allowable number of degrees to be deleted at each iteration stage,
which renders the selection computation much faster. To some degree, it equals to
maximize the smallest singular value of the fisher information matrix [REYNIER and
ABouU-KANDIL 1999], and called MaxSV in sequels. In their approach, the estimate of
modal coordinates is found in a least-squares sense and a distance associated with
a covariance matrix of the estimated error is minimized. The MaxSV is then related to

minimize the noise effect by the minimization of the distance measure.

Another approach uses a signal subspace correlation (SSC) technique to deploy
sensors [CHERNG 2003]. This technique is based on the analytical formulation of sin-
gular value decomposition (SVD) for a candidate-blocked Hankel matrix formed by
subspace correlation technique. The SSC accounts for factors that contribute to the
estimated results, such as mode shapes, damping ratios, sampling rate and matrix
size (or number of data used). With the aid of SSC, it will be shown that using infor-
mation of mode shapes and that of singular values are equivalent under certain con-

ditions.

As well known in matrix analysis theory, different matrix norms are equivalent in the
sense that one norm can be always bounded in a range by another norm with appro-
priate constant scaling factors [HORN and JOHNSON 1985]. The trace, the determinant
and the maximum singular value are just different norms of a FIM matrix [GoLuB and
VAN LOAN 1996]. (Generally speaking, trace and determinant are not conventional
matrix norms. However, since FIM (Fisher Information Matrix) is a special matrix as
defined by FIM = tr(A" A) = ii“’i/r = ||A||2F its trace can be viewed as a special ma-
i1 o1
trix norm as the square the Frobenius norm). That is to say, different sensor place-
ment methods based on maximization of the trace (MaxTRACE), determinant (El) or
maximum singular value (MaxSV) of the information matrix will yield similar, if not the
same, results for most cases [BASSEVILLE et al. 1987; EMERY and NENAROKOMOV

1998]. There is strong evidence that the three criteria are approximately equivalent
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although there is unfortunately no definite proof of such equivalence up to now
[BiccHI and CANEPA 1994; PAN 2000].

2.1.8 Guyan reduction method

The Guyan reduction sensor placement (GRSP) method selects the master DOFs as
the locations of sensors during the process of Guyan reduction [PENNY et al. 1994]. It
is based on the belief that low ratios of leading diagonal stiffness to mass terms indi-
cate good DOFs to retain in terms of describing the kinetic energy, and that the iner-

tia forces at slave coordinates are negligible compared with the elastic forces.

A maijor disadvantage of the GRSP method is that it strongly depends on the mesh-
ing size of the FEM, and is interested only in the lower modes, which is not always
the case. To overcome the inaccuracy of Guyan reduction in the approximation of
higher modes, sophisticated reduction techniques, for instance, the improved re-
duced system method and the system equivalent reduction expansion process
[O'CALLAHAN et al. 1989; PAPADOPOULOS and GARCIA 1996], can also be employed.
Another similar method along this line is the static flexibility approach [FLANIGAN and
BoTtos 1992]. This method optimizes the static transformation matrix with the as-
sumption that the best master DOFs are those for which the FEM mode shapes can
be represented as a linear combination of static flexibility shapes with minimum er-
rors. By this method, the mode shapes and static flexibility shapes can be alternative-
ly viewed as two different bases for an n-dimensional space. When certain candidate
sensors are eliminated, the space is shortened and the least squares fitting of the
static flexibility shapes to the mode shapes can be regarded as a measure for master

DOFs, which is the idea for the static flexibility approach.

2.1.9 System norm based sensor placement method

The method proposed in [SHIH et al. 1998] combining the controllability and observa-
bility measures is similar to the method of Gawronski [GAWRONSKI 2004]. The system
norm based sensor placement method developed by Gawronski aims to find optimal
sensor locations through balanced representation of the controllability and observa-

bility grammians. It ranks the relative importance of sensor positions according to
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their non-negative contribution to the H, or H_ norms of the structure. This method

is revealed to be a weighted MSSP method, and the weighting coefficients are modal

participation factors [L/ et al. 2006].

2.1.10 Space domain sampling method

The space domain sampling method is proposed by Stubbs [STuBBS and PARK 1996],
and can be regarded as an extension of Shannon’s time-domain sampling theorem in
space domain. It assumes that all considered modes are multiples of a basic funda-
mental frequency and that the sensor positions are determined only by the highest
mode. The space domain sampling method is basically an equidistant sensor distri-
bution technique and picks sensor positions at equidistant points for the half wave-
length of the highest mode of interest. It does not take the characteristics of lower
modes into consideration and the sensor positions determined only by the highest
mode may not capture most of the kinetic energy. Therefore, the nodes of lower
modes are easily included in the measurement set, which render one or several low-
er modes unobservable, or difficult to separate them from noise because of their low
degree of observability. Furthermore, it is well-known that equidistant points could not

yield the best sensor positions [Bos. 2007].

Another line of thinking similar to the space sampling method is to use the roots of
Chebyshev polynomials as sensor positions [PAPE 1994]. The underlying principle is
that a continuous function can be approximated by Chebyshev polynomials more
exactly than other orthonormal polynomials without Gibbs phenomenon, namely the
desirable effect of minimizing the maximum error in interpolation. By placing sensors
at the roots of Chebyshev polynomials, the mode shapes are expected to be approx-
imated by measurements at these positions better than other positions. However,
these roots tend to cluster near the ends of the measurement interval rather than at
the center, where the modal kinetic energy is usually higher than those positions near
constraints. Another interpolation method investigated for sensor placement is to use

spline shape functions [LIMONGELLI 2003].

Both spatial Shannon’s sampling method and the interpolation methods using Che-
byshev polynomials or spline functions regard the sensor placement as sampling

problem in space domain, and aim to observe or to approximate the structural re-
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sponses using the designated sampling points through constructing structural state

with minimum errors.

2.1.11 Information based methods

The information based sensor placement methods are categorized by mutual infor-

mation and information entropy approaches.

The mutual information between two measurements is defined as the 2-base loga-
rithm of their joint probability density divided by both individual probability densities,
and establishes a criterion of their mutual dependence [TRENDAFILOVA et al. 2001].
The idea of mutual information stems from Shannon’s notion of information among
measurements. The mutual information is, in fact, a general correlation function be-
tween two measurements. If two measurements are made at locations with a small
distance, they are nearly similar and mutually dependent, the degree of which can be
measured using averaged mutual information. With the increase of the measurement
distance, two measurements are becoming asymptotically independent and the mu-
tual information is approaching zero. The distance corresponding to the first minimum
of the averaged mutual information is selected as the optimal one. It is considered
that this distance will make the measurements at different points independent in the
sense of information. The sensor placement method based on average mutual infor-
mation concept will give also an equidistant configuration of sensor topology as the
method of spatial Shannon’s sampling theorem discussed in Section 2.1.10. In addi-
tion, the sensor placement method based on average mutual information concept
takes only structural response information as inputs and does not take the individual

feature of a structure, for instance, their analytical mode shapes, into account.

Besides the mutual information concept, information entropy is investigated by Pa-
padimitriou et. al. [PAPADIMITRIOU 2004] as a methodology to deploy sensors. It aims
to design the sensor configuration such that the resulting sensor positions are most
informative about the structural model parameters selected for estimation. The most
informative measured data are the ones that give the least uncertainty in the parame-
ter estimates or, equivalently, the ones that minimize the information entropy, which
quantifies the amount of useful information contained in the measured data. By this

method, the optimal sensor configuration is selected as the one that minimizes the
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information entropy measure since it gives a direct measure of the uncertainty in the

model parameter estimates through the Bayesian perspective.

Another approach similar to the information entropy concept is to minimize the ex-
pected value of the Bayesian loss function [HEREDIA-ZAVONI and ESTEVA 1998;
RoBERT-NicouD et al. 20035]. It was shown in both methods that the information en-
tropy depends on the determinant of the FIM, but not the trace as the El method

does.

2.2 Comments on existing sensor placement methods and their
connections

The methods presented in Section 2.1 are, in fact, interrelated and connected in
many respects. The latent relationship between these methods will be exposed in

this section, which composes one major part of the contribution of the dissertation.

2.2.1 Connection between EI and MKE

Although the theory of both MKE and El methods are quite straightforward and well
developed, and both are widely discussed and applied, the same degree of under-
standing cannot be said to exist. Researchers may notice that El can arrive at similar
results as that of MKE in many circumstances, especially for the first several itera-
tions of the EI and MKE in the cases of structures with homogeneous mass distribu-
tions, and may have a vague feeling that MKE and El have something in common.
Their relationship is, however, not explicitly and mathematically reported, at least to
the knowledge of the author from the literature. From the viewpoint of the author, the
difference and consistency of MKE and El will increase the understanding of both
methods and the role of each candidate sensor position played in El. Furthermore,
their relationship is essential to the basis of theoretical considerations and to the de-
velopment of other effective sensor placement methods. In this section, such latent

connection between the two methods is revealed.
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2.2.1.1. Connection between EI and MKE for cases with identity equiva-

lent mass matrix

For simplicity to expose the relationship between MKE and El, an identity equivalent
mass matrix (i.e., M=al) is assumed at the outset, and then the effects of non-
identity equivalent mass matrix on sensor placement will be discussed. Under the
assumption of an identity equivalent mass matrix and normalized mode shapes with

respect to the mass matrix, the MKE index can be rewritten as the following formula,
MKE = diag(®®") (2.9)

where, operator diag denotes a column vector formed by the diagonal terms of a ma-

trix.

Since the mode shapes are normalized with respect to the mass matrix, the middle
term in the right hand side of Eq.(2.8) is just an identity matrix. Consequently, the El

index in Eq.(2.8) boils down to be the diagonal of the following matrix,
E = diag(®®") (2.10)

From the above Eq.(2.9) and Eq.(2.10), it can be certainly observed that the result of
El in the first computation should be the same as that of the MKE, which is already
shown clearly in the examples of references using El methods[KAMMER and TINKER
2004; Meo and ZumpANO 2005]. The two formations of EI and MKE are identical un-
der this circumstance. It is, therefore, unnecessary to apply MKE first when imple-
menting El as originally proposed by Kramer [KAMMER and YAO 1994]. In the
following iterations, the El indices are weighted by an inversion term of the reduced
Fisher information matrix, but the MKE is not. And this is why El is different from MKE

afterwards.

When the El in the second iteration is considered, we found that the measured sen-
sor output formulated in Eq.(1.1) should be rewritten because a previously assumed
output component is not measured anymore. Without loss of generality, the k" index
of El in Eq.(2.8) in the first iteration is assumed to be the smallest and to be excluded.

Then, the reduced output vector in Eq.(1.1) should be reformulated as follows,

y,=@q, +¢ (2.11)
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where, y, denotes the remaining measurements with the k™ measurement deleted in
y of the Eq.(1.1), and ¢, is the corresponding stationary Gaussian measurement
white noise, and likewise, @, is the same mode shape matrix as @ in Eq.(1.1) only
with the k™ row deleted, q, is a new modal coordinate vector with the same dimen-
sions as that of q in Eq.(1.1). The model described in Eq.(2.11) becomes a reduced

system with only n-1 DOFs since the previous k™ DOF in the original model is reject-
ed. Basically, we can view sensor placement broadly as an issue of system reduc-
tion, and the low-dimensional reduced system defined in Eq.(2.11) is to represent the
original full-scale system in Eq.(1.1) as exactly as possible. The information discard-
ed by excluding n-k sensor positions should be insignificant compared to the k sen-

sors retained as a whole.

In the new reduced system with order of n-1, the mode shape matrix should be

renormalized as the original one. Following the same procedures similar from Eq.(2.5)
to Eq.(2.7) with ortho-normalized mode shapes (®,'®, =1), a formulation with the

same rationale can be easily obtained,
E, = diag(@ [0,/ | @) = diag(@ @) (2.12)

The El index in Eq.(2.12) is degenerated once again in form into the MKE index of
Eq.(2.9) in its 2" iteration. Therefore, the key difference between the El and MKE is
that in the following iterations of El, the reduced mode shape matrix is not renormal-
ized, but the MKE is initially using an already normalized mode shape matrix. A reor-

thonormalized El in its iterations is merely MKE.

To strengthen our arguments further, we consider a special case, in which only one
mode shape is considered to compute for sensor placement by MKE and El, respec-

tively. In this case, the MKE indices are simply the squares of the mode shape com-

ponents corresponding to the sensor positions in Eq.(2.9), i.e. MKE, =¢>i2, and the

El indices (E,, = (Df /(ZCD,.z)) are the squares of the mode shape components only
i=1

divided by a constant (the squared Euclidean norm of the mode shape according to
Eq.(2.8)). The only difference between both indices is a constant coefficient. Their

ranked sequence is the same, no matter how many sensors are to be used.
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We can now consider EI from another viewpoint. The mode shapes used in El, re-
gardless of ortho-normalized or not, can be decomposed using orthogonal-triangular
decomposition (QR) as follows [GoLuB and VAN LOAN 1996],

® = QR (2.13)

where Q is an n x k unitary matrix with the same dimensions as ®, and R is a k x k
upper triangular matrix. Thus, the El index can be also computed using the above

decomposed Q and R matrix by substituting Eq.(2.13) into Eq.(2.8),

E = diag(QR[R’Q"QR| 'R’Q") = diag(QQ") (2.14)

The expression of El in Eq.(2.14) is the same in form as that of MKE in Eq.(2.9). Dur-
ing each iteration of El, it computes “the MKE index” using the reduced ortho-
normalized mode shapes Q instead of ®, retains DOFs with large MKEs, and de-

letes those with small MKEs.

The rationale behind the QR decomposition in Eq.(2.14) is the same as the above
reasoning for the idea of viewing sensor placement as system reduction. QR decom-
position is, in fact, an extension of the Gram-Schmidt orthogonalization applying to
the dependent columns of reduced mode shapes ®,, which is not strictly orthogonal
anymore after a certain row of the previous orthogonal mode shapes is deleted in the
proceeding iteration. Consequently, the QR decomposition in Eq.(2.13) extracts an
orthogonal subspace spanned by the columns of Q. The Q in Eq.(2.13) is an n x k
ortho-normal matrix. This means that the columns of the reduced mode shape matrix
®, resulted from iterations of El will be remapped onto the subspace spanned by the
ortho-normalized columns of Q. And it is exactly these columns of Q that will com-

bine to form the reduced measurement vector y. In dynamic testing, it is also these

columns of Q that are identified as mode shapes of the reduced system being

measured.

As a result, the difference and consistency between MKE and El is clear. El requires
iteration computations, but MKE not. In the following iterations of El, it redistributes
the modal kinetic energy into the retained DOFs and recomputes their MKE index for
the reduced system using re-orthonormalized mode shapes. El can thus be regarded

as an iterated version of MKE with re-orthonormalized mode shapes.
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2.2.1.2. Connection between EI and MKE for cases with non-identity

equivalent mass matrix

For cases of a general mass matrix, namely non-identity equivalent mass matrix (i.e.,
M = ol ), the above reasoning in Section 2.2.1.1 can be generalized. The MKE index

is computed by,
MKE = diag(M®®") = diag(M" *®Dd" M"'?) (2.15)

where, M"?is the square root of the semi-definite mass matrix M. In MKE, each
candidate DOF is weighted by the corresponding component in the mass matrix. For
those DOFs associated with large components in the mass matrix, they are given
more weights in the ranking of their importance for sensor placement. Hence, MKE
reflects the characteristics of mass distribution for a given structure as well. In this
respect, MKE share certain common interests with the GRSP to focus on candidate

sensor positions with comparative large mass concentrations.

On the other hand, the El index is not explicitly related to the mass distribution of a
structure. Once the mass matrix is determined and the mode shapes are obtained,
the sensor placement scheme with ElI does not take uneven mass distribution of a

structure into consideration in its iterations anymore, although the mode shapes are

initially orthonormalized with respect to the mass matrix, ®"Md =1.

An interesting observation can be obtained by comparing Eq.(2.15) with Eq.(2.10) for
the case of non-identity equivalent mass matrix. MKE assigns more weights for the
DOFs with large mass concentration by left multiplying the El indices at the first itera-
tion with the mass matrix. When the mass is only slight unevenly distributed through-
out the whole structure, which is common in engineering practice, the relative
sequence of the MKE indices will agree with that of the El very well. In this sense,
MKE can be regarded as a weighted El without iterations for structures with general

mass distributions.

2.2.1.3. Fast computation of EI through QR downdating

Conventionally, the ElI method is computed through two different approaches, one
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through the eigenvalue decomposition as shown from Eq. (2.5) to Eq.(2.7), and the
other through computing the diagonal terms of the mode shape projection matrix in
Eq.(2.8). The former is annotated hereinafter as Method A, in which the core pro-
cesses are featured by the explicit formation and eigenvalue decomposition of an

FIM, and the later is termed afterwards as Method B.

Method A is convenient to compute with standard eigenvalue decomposition algo-
rithms but requires the explicit formation and eigenvalue decomposition of an FIM,
during which roundoff errors are accumulated through inner products. Furthermore,
the sensitivity of relative errors for the eigenvalue decomposition of the FIM depends
adversely on the square of the condition of the mode shape matrix ® in the method
A. On the other hand, method B through projection matrix approach is, at first glance,
rather simple. However, it suffers from the same roundoff errors’ accumulation dur-
ing the explicit formation of the FIM as the Method A. In addition, the computational
burden of the projection matrix is intense and the roundoff errors are twofold wors-
ened, especially when the rows are far more than the columns of the mode shape
matrix @, i.e., the number of candidate sensor positions n is much larger than the
number of interested mode shapes m with the consideration of iterations in the El in

mind.

Fortunately, the relationship between the El and MKE in Section 2.2.1.1 provides an
efficient and stable means for the computation of the El index through decomposed

orthonormal matrix Q in Eq.(2.14). Since the matrix Q is orthonormal, it can be re-
written as n row vectors, Q =[q/.q.,---,q' 1", with each row vector, g, , of 1xm dimen-
sion. Eq.(2.14) then boils down to the computation of the row norms of ¢/ ,1<k<n,
as follows

E,=diag(QQ") =[q/ - q:.95 -0,.-.q, -, =I|a, N (2.16)

q,

2
LR

9,

2
2°

The above reformulation of Eq.(2.14) into Eq.(2.16) with the QR decomposition ena-

bles a nice way to compute the El indices in the following two steps,

(1) Decompose a (reduced) mode shape matrix ® with the QR decomposition

to obtain an n x m orthonormal matrix Q.

(2) Compute the norms of the row vectors that form Q and get the El indices.
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The remaining procedures, such as to select the sensor positions with the smallest El
index to remove and to iterate until the number of sensors equals to a required value,
are routinely the same. It is worth to note that the upper triangular matrix R is use-
less in the first step and does not need to be stored after the QR decomposition,
which can save computer memory capacity and increase computation efficiency to a
certain degree. This approach is expected to produce more accurate results than
Method A and B since the QR decomposition is a well known stable and precise al-

gorithm in matrix computations [L/ et al. 2009a].

To analyze and compare computational efficiency of the new approach with Method
A and B, the two-step approach to compute the El indices through the QR decompo-
sition in the last paragraph is named Method C. In addition to its accuracy, the Meth-
od C is supposed to compute much faster than the Method A and B. To this end, we

examine the computational efficiency in terms of floating point operations (flops) re-

quired by the three methods. In the Method A, the FIM, 4, = ®"® ", has to be formed

first through matrix multiplication, which needs m“n flops [GoLuB and VAN LoAN 1996].
The eigenvalue decomposition of the FIM involves 8m® flops, and the implementation
of subsequent three times matrix multiplications and additions requires flops in order

of 2mn. Therefore, the total computation flops needed by the Method A is
T,=2m"n+8m’ +2mn (2.17)

Similarly, the Method B can be treated in the same way. Computation of the projec-
tion matrix spanned by the mode shape ® requires 3 times matrix multiplications and
one time matrix inversion. The inversion of the FIM involves 2m® flops besides the
m?n flops to its formation as in Method A. The remaining two times matrix multiplica-
tion requires mn? + m?n flops. Consequently, the computation flops demanded by the
Method B is

T, =2m'n+2m +mn’ (2.18)

It is straightforward to evaluate the computational efficiency for the Method C likewise,

in which only two steps are required and it is unnecessary to form an explicit FIM as

- 2. .
The constant ‘¥,” is dropped here for convenience.
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the Method A and the Method B anymore. The computation of an n by m mode
shape matrix with the skinny QR decomposition involves 2m?(n-m/3) flops in the first
step. Addition of the squared n by m orthonormal matrix Q in the second step re-
quires only 2mn flops, which is negligible compared with the QR decomposition. On

the whole, the computation flops involved in the Method C is
T.=2m’'n—2m’ +2mn (2.19)

It is obvious to conclude by comparing Eq.(2.19) with Eq.(2.18) and Eq.(2.17) that the
computation flops for the proposed Method C is less than that demanded by Method
A and the Method B as long as the candidate DOFs of a structure is more than 2.
The condition of more than 2 candidate DOFs is naturally satisfied since otherwise
there is no need to investigate where to deploy sensors. As a result, Method C is al-
ways superior in computation efficiency than the Method A and B. To demonstrate
how efficient the Method C outperforms Method A and Method B, we compare the
computational burden of the sensor placement problem for a model structure to offer
some insights. The model structure in question has in total 120 candidate DOFs and
30 interested mode shapes, and the available number of sensors are the least 30,
which equals to the mode shape number. The required flops for Method A, Method B
and Method C in one loop of the El are 439200, 702000 and 222600, respectively.
The Method C counts less than half of the flops as does the Method A and almost
one fourth of the flops executed by the Method B. Furthermore, such differences in
the amount of work involved in the three methods discussed above reside in just one
iteration. When the total 90 iterations of the El for the model structure are considered,

the saved computation flops by the Method C is significant.

The reasons why Method C surpass Method A and Method B are that Method C
does not need to explicitly form the FIM as what the Method A and Method B de-
mand and saves the flops required to multiply matrices, but operates directly on the
mode shape matrix ® . Moreover, the formation of the FIM through inner products in
double precision exacerbates the accumulation of roundoff errors and is exposed to
errors due to the amplified numerical rank deficiency. For a typical large structure,
candidate sensor positions counts in order of thousands to tens of thousands. The

amount of work for sensor placement is thus not insignificant, and computation un-
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certainties are of great concern. Hence, Method C is particularly preferable because

of its accuracy and efficiency for such intensive computations.

As shown in Section 2.1.4, the El requires as many as n-s iterations, during which
the core processes, for instance, the eigenvalue decomposition in the Method A, the
inversion of the FIM in the Method B and the QR decomposition of Method C, have to
be computed repetitively. Although Method C secures a better overall computational
efficiency over Method B and Method C, the fundamental QR decomposition process
in Method C still appears too expensive if repeatedly executed for each reduced
mode shape matrix after a row in the previous mode shape matrix is removed during
all iterations of the El, in particular, when huge numbers of candidate sensor posi-
tions for large civil structures are considered. In the following, a downdating algorithm
is embedded to eliminate repeated execution of the QR decomposition on reduced
mode shape matrices, and improve the computational efficiency of Method C to a

greater extent.

In the first iteration of Method C, the QR decomposition can be rewritten as [BJORCK
1996; Yoo and PARK 1996],

B ZT B B pT
® = ((DJ ~QR= {Ql jR (2.20)

where z" e R""and p” e R*" are the first row of ® e R””and Q € R™", respectively.
It is assumed in Eq.(2.20) that the row, p” € R™”, has the least Epindex or the row
norm among all n rows in Q and is to be removed in the subsequent iteration accord-
ing to the EL. If it is not the case, the row with the least Epindex, p” e R"”, can be
exchanged to the top of Q without any difficulty. The QR downdating means to find a
new QR decomposition with Q, in dimension of n-1 by m after a row (a candidate

sensor position) is removed from the previous mode shape matrix @ with dimension

of n by m satisfying the condition,
@ =QR, (2.21)

The QR downdating is, in fact, a rank one modification to the previous QR decompo-
sition and has the advantage to perform as fewer operations and as little storage re-

quirement as possible. On the contrary, recomputing the QR decomposition in every
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iteration of the El is too costly since it requires operations in order of m°n as ex-

pressed in Eq.(2.19).

Recent progress in the field of matrix computation renders such skinny QR downdat-

ing possible as shown by Yoo and Park [Yoo and PARK 1996]. Firstly, a series of
plane rotations, U, operates on the first row of Q, p” e R, to transform it into a unit

row vector that has only one nonzero component in its first position that equals one

oo o b oli)lor) o=
® ) \Q & 0) 0 QAR ) (QR,

where «, a constant, and 4,v € R are the complementary parameter and vectors

as

satisfying the conditions: p’p+a’ =1 and Q| p+ah=0. Consequently, when the first

row of (p

T
a} is transformed to a unit row vector, ¢/ =[1,0,0,---,0]e R*"*" the first
1

T

column will also become ¢, =[1,0,0,---,0]" e R™ since (p Zj is orthogonal, which is

1

the key for the Gram-Schmidt downdating algorithm [DANIEL et al. 1976].

However, the orthogonal factor Q, may lose orthogonality obtained from the Gram-

Schmidt procedure when the condition of ® is large, especially when many iterations
are considered. To overcome this difficulty, the Householder transformations are ap-

plied to recover orthogonality, which utilizes the fact that a full QR decomposition of a

0
matrix AE£ g’”jeR‘”””)”" by the Householder transformations can be completely

determined by the skinny QR decomposition of ® obtained by the Gram-Schmidt
process. Using this relation, the full Gram-Schmidt QR decomposition of a matrix ®

augmented with a square matrix of zero elements on top, can be written as,

SEICI AL
o Q I-QQ'\0,,

Since deleting the first row of ® is equivalent to deleting the (m+1)th row of A, the

downdated new upper triangular factor R, for ®, can be obtained by downdating the
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full QR decomposition of A. This is done by determining a series of Householder

downdating transformations for deleting the first row of ® according to the first row of
[Q,I-QQ'] with the same Gram-Schmidt process as in Eq.(2.22), and we finally ob-
tain the downdated QR decomposition factors, Q, and R,, for @,. This is called the

Householder-Gram-Schmidt Downdating (HGSD) algorithm, referring [YOO and PARK
1996] for more details. The Gram-Schmidt downdating algorithm for the skinny QR
decomposition of ® is mathematically equivalent to downdating the full Householder
QR decomposition of A, and the effect is as if the downdating transformation is com-
puted based on the full QR decomposition with the orthogonal factor computed from

the Householder transformations.

W
(=]

[\]
1
T

n=(Mm+11)/3 >

1]
o
T
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Fig.2-1, Condition of the relation between interested mode shapes (m) and the
least number of candidate sensor positions (n) that QR downdating outperforms
a new QR decomposition.

By replacing the first step of Method C, the QR decomposition, with the QR downdat-
ing Algorithm HGSD, we can further improve the computational efficiency of the El.
Later on such modified Method C is called Method D for the purpose of comparison

and notation convenience. It is not difficult to evaluate the flops involved in the Meth-
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od D. The computation includes the QR downdating Algorithm HGSD and the norms
of the squared orthonormal matrix Q. The former needs approximately 2m’ +10mn
flops and the latter requires the same 2mn flops as Method C. Therefore, the compu-

tation flops involved in the Method D in total is
T, =2m"+12mn (2.24)

The model structure is employed again to illustrate the computational efficiency of
Method D and its comparison with that of the other three methods discussed previ-
ously. The flops required by Method A, B, C and D to compute the sensor placement
for the model structure are 439200, 702000, 222600 and 45000, respectively. The
ratio of computation complexity of the Method A, Method B and Method C to Method
D are 9.7600: 15.6000: 4.9467: 1. It is obvious that the Method D executes almost 9,
14 and 4 times faster than the Method A, Method B and Method C, respectively, and
that the improvement of computational efficiency over the other three methods is

considerable in this case.

Moreover, it can be shown that the Method D outperforms the other three for almost
all cases. Recall that the overall computational complexity of the HGSD is approxi-
mately 2 +10mn and that a brand new QR decomposition starting from scratch de-
mands 2m?(n-m/3) flops. It is trivial to reveal that the exact condition for the QR

downdating by the HGSD outperforming over a new QR decomposition is:

m’ +3m 1 4%
=—(m+8)+—=. The blue solid curve in Fig.2-1 shows the nonlinear
3(m—-5) 3 m—>5

relationship between the number of interested mode shapes (m) and the least num-
ber of candidate sensor positions (n) that the QR downdating outperforms a new QR
decomposition. The curve is clearly divided into three regions. In the fist region for m
ranging from 6 to 9, n is sharply decreasing with the increase of m. To offer some
insights for this tendency, three points are indicated with a red asterisk (m=6), a
green diamond (m=7) and a blue plus (m=8), respectively. The least number of sen-
sor positions for the three cases are 18, 12 and 10, separately. The second region is
flat, in which the least number of sensors stays a constant, 9, regardless of the varia-

tion of min the range of 9 to 15. The third region starts from 15 (m=15) and the curve

follows approximately a linear relationship,n:%(erll), as indicated by the cyan
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dotted line. As we already know that the necessary number of sensor positions at last
equals to the number of interested mode shapes for adequate modal identification.
Consequently, the conditions restrained by the second and third regions in Fig.2-1
are naturally satisfied when the number of interested mode shapes m is greater than
9.

Computation efficiency ratio of QR downdating to QR decomposition

Fig. 2-2, Relative computation efficiency ratios of the QR downdating to a new
QR decomposition.

Furthermore, Fig.2-2 shows the relative computing efficiency ratios of the QR down-
dating to a new QR decomposition. The inclined vertical axis in the horizontal plane
is the number of mode shapes of interest m and the vertical axis in the horizontal
plane indicates the number of candidate sensor positions n. The vertical axis shows
the relative computation efficiency ratios of the QR downdating to a new QR de-
composition. The figure is based on the computation flops required by the QR down-
dating in Eq.(2.24) and that by the QR decomposition in Eq.(2.19). The contours in
the horizontal plane differentiate regions with various computation efficiency ratios. It
is obvious that the QR downdating far outperforms repetitive QR decomposition by a

ratio in an order of tens when there are more than 50 mode shapes and 300 candi-
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date sensor positions. As mentioned earlier, candidate sensor positions counts in
order of thousands to tens of thousands with more than tens of interested mode
shapes for a large structure, and the improvement of the QR downdating over a
completely new QR decomposition is substantial, in particular, when iterations of the

El are considered.

| have coded the Algorithm HGSD in the Matlab [HIGHAM and HIGHAM 2005; MATLAB]
as shown in Appendix 2B. The appended function can be directly copied and pasted
to run, and further tailored to embed in their own programs. (Anyway, we do not
guarantee that the source codes are the most efficient, and it is the users’ obligation

to justify its applications).

2.2.2 Relationship between EI and QRD

The QRD method operates QR decomposition on a transposed mode shape matrix
and finds the most independent rows as described in Section 2.1.5. Since the diago-
nal elements of the upper triangular matrix in QR decomposition is arranged in de-
scending order of their absolute values, the first m linearly independent rows selected
in this way by QRD are also those rows with large row norms. In this sense, the QRD
method in the selection of its first row (first sensor location) during its first run has the
same physical significance as that of El. The other rows selected by QRD and EI dif-

fer since El orthonormalizes the columns whereas QRD on the rows.

As a summary, the QRD method selects sensor positions according to their row
norms and linear independency in the row space, whereas El computes QR decom-
position in the column space of the modal matrix. To be more precisely, the El oper-
ates on the original full modal matrix to search iteratively for a sub-matrix with
columns as independent as possible, whereas the QRD method finds a sub-matrix
from the perspective of row independence for one time. Both the El and QRD will
give quite similar results when the required number of sensors, s, equals to the num-
ber of modes m, i.e. the final modal sub-matrix is square, as shown on the airplane
model to select 29 response locations for 29 modes both by the El and QRD
[PickrEL 1999]. When more sensors are needed, they will give different sensor com-

binations. Moreover, the difference between El and QRD results from the reorthogo-
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nalization of the column space or the row space of the original full modal matrix dur-

ing the El or QRD computation, respectively.

2.2.3 Connection between EI and MinMAC

To discuss the relationship between the El and MinMAC algorithm, we consider first
a special case, in which only two mode shapes are of interest to compute for sensor
placement by the El and MinMAC, respectively. Both mode shapes are assumed to

be already unit orthonormalized. Without loss of generality, they can be written as

A A
@ = L: az] ® cR", where [a,,a,] is the row with the smallest Frobenius norm, i.e.
1 2

a’+a, is minimum among all the rows, and is to be deleted according to the El in

the first iteration. For the reduced mode shapes ® =[A, A,] after one El iteration,

: . A'A, A'A,

we can then compute its MAC matrix as follows, MAC, =| . ;|- The off-
A2 A1 A2 A2

diagonal term of the MAC  matrix is A’A, .  Since

T T T T
A A +a'a A A +a a

O'P=
T T T
ASA +aa ASA,+a,)a,

10
}:{0 1] we know that A"A, =—aa,. By

MinMAC algorithm, a,a, is to be minimized, which is equivalent of the El to minimize

the row Frobenius norm,a,” +a,”. This equivalence of El and MinMAC for the case

with two mode shapes can not simply be generalized to the cases with more than two
mode shapes since the minimization of the multiple of any two variables does not
always lead to the minimization of the sum of their squares. However, it can be tack-
led to a certain degree. Without loss of generality, we compare the /" and k" row

when m mode shapes are involved as follows,

2
] =0, +2 >0, @, ,n=jk (2.25)
p=1 p=l,g=1
p#q

The term in brackets on the left hand side of Eq.(2.25) is the MSSP indices as dis-

cussed in Section 2.1.2, and can be regarded as the Ly norm of the /" or k" row. The

e
p=1

first term on the right in Eq.(2.25) is the /" or k" MKE indices explained in Section
21.1.
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Under the formulation in Eq.(2.25), the El tries to maximize the first term on the right
hand side of Eq.(2.25), whereas the MinMAC aims to minimize the second term. Two
situations are considered. When the Ly norm of the /" row equals to the Ly norm of
the k™ row, maximization of the first term (El indices) will naturally lead to the minimi-
zation of the second term (MinMAC) for the whole scale. The ElI and MinMAC are
equivalent in a global sense under this situation. When the L norms of the /" and k"

rows do not equal, we can assume that ‘cl)jp‘ > ‘d)kp‘,p =12,...m, and more specifically,

‘(I)”‘ > ‘(Djz‘ > > ‘(Djm‘,|c1)k1| >|@,,|>... 2|®,,|. This is, of course, a rare case, but used
here for demonstration purpose. The maximum off-diagonal terms of the MAC matrix

will possibly be determined by ‘(I)ﬂcl)jz‘ for the /™ row, and |<I)k1(I>k2| for the kK™ row, and

it is clear that ‘cbﬂcl)jz‘ > |®@,,®,,|. Then, MinMAC tends to keep the k" row and dis-

card the /" row. On the other side, El will definitely choose the /" row to remove.

We can treat this relationship from a perspective of matrix theory to a lesser effort.
The El tries to maximize the trace of the projection matrix, ® & , according to
Eq.(2.10) with orthonormalized mode shapes during its iterations and it is a well-
known equation in matrix theory that,

tr(® T )=tr(® ®). (2.26)
The bracket term on the right hand side of Eq.(2.26) is just the MAC matrix, whose
off-diagonal terms are to be minimized by the MinMAC algorithm with each mode
shape normalized to unit length. Therefore, the maximization of the diagonal terms of
the projection matrix on the left hand of Eq.(2.6) by the El leads naturally to the min-

imization of the off-diagonal terms of the MAC matrix by the MinMAC algorithm since

H(D (DTHZ = H(DTCD‘L. Therefore, the EI method is equivalent to the MinMAC algorithm in

the global sense, as already observed for the case of two mode shapes.

On the other hand, there are minor differences between the El and MinMAC. The
latter tries to minimize its maximum off-diagonal terms by tracking every off-diagonal
terms of the MAC matrix, whereas the former minimizes all the off-diagonal terms in
the sense of the whole MAC matrix. Namely, the minimization of the off-diagonal
terms by iterative El in the norm sense could not always leads to the decreasing of

the maximum off-diagonal terms defined to be minimized by MinMAC, as shown in
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the GARTEUR SM-AG-19 Testbed model [BALMES 2005]. Secondly, the EI method
includes an implicit step of reorthonormalization during its iterations. This implicit re-
orthonormalization step results in small deviation from the directions of the reduced
mode shapes, while the MinMAC sticks stubbornly to the directions of the reduced
mode shapes. This adds for the differences between the El and MinMAC. Fortunately,
such deviation is usually quite small, otherwise the final reduced mode shapes will
not point to the same directions as that of the original full mode shapes, and renders
the mode shapes indistinguishable. As a result, the El and MinMAC have similar

global trend in their sensor selections with small ripples of difference.

68 111 MODE 8, FREQUENCY = 178.8157 [Hz]
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Fig. 2-3, A ladder structure and its 8th mode shape

2.2.4 Comments on the weighting of the mode shapes in EI

There are investigations in the literature to assign different weights on the mode
shapes to emphasize their relative importance [MEO and ZumpANO 2005], which will

be dealt with in this subsection. The role of weighting in El can be expressed as

® = OW (2.27)
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where Wis a diagonal weight matrix with each diagonal term the relative weight of

corresponding mode shape and ® represents the weighted mode shapes matrix.

Table 2-1, Frequencies of the first 12 bending modes in z direction

Mode No. 1 2 3 4 5 6 7 8 9 10 11 12
Frequencies: (Hz)[178.82|223.84(272.87|333.65344.00[371.19[390.83/460.12|547.58/640.23/941.07|942.47

Following the same rationale in Section 2.2.1.1, the weighted mode shape matrix can

be decomposed using orthogonal-triangular decomposition (QR) as follows

® = QRW = QR (2.28)

Table 2-2, MAC matrix for full sensor set
1 0 ]0.001/0.002{0.0000.000|0.007|0.000|0.003|0.000|0.014|0.000
1 |10.783]|0.000|0.000|0.003|0.000|0.000|0.004 |0.000|0.000|0.007
1.000|0.007|0.073|0.174|0.087|0.000|0.007|0.001|0.002|0.014
1.000|0.012|0.004|{0.057|0.002|0.001|0.018|0.020|0.045
1.000 (|0.473|/0.000{0.000{0.066 {0.019[0.000 |0.000
1.000|0.417|0.001|0.050|0.020|0.008 |0.000
1.000|0.000{0.003|0.000|0.009|0.000
1.000|0.354{0.000|0.000{0.000
Sym. 1.0001/0.531](0.005|0.032
1.000|0.000{0.000
1.000|0.000
1.000

The El indices becomes then

E = diag(QR[R"Q"QR] 'R’Q") = diag(QQ") (2.29)
Therefore, the El indices do not change for the mode shapes with different weights. A
direct consequence is that any attempt to weight the mode shapes through assigning

different weighting factors turns out to be fruitless.
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However, a preferred advantage associated with this property is that El differentiate
each mode shape only by their directions and the coupling of them. As a result, the
El is invariant under different mode shape normalization methods, for instance, nor-
malization with respect to mass or unit length normalization. This is actually a signifi-
cant property of EI and could not be found in other existing sensor placement

methods.

2.3 Comparison of different sensor placement methods on a lad-
der structure

A simulation model of a ladder structure is shown in Fig.2-3. On the left is the FEM
meshing, and the 8th mode (ranking in available 22 modes) is displayed on the right
side. The model is provided by Carne, and unfortunately detailed material properties

and dimensions are unavailable.

We have chosen 12 target modes, which represent first 12 bending modes of the
rails and rungs. The frequencies of the 12 bending modes are shown in Table 2-1.
Only translational modes in z direction are considered in this work to keep this exam-

ple manageable in a small scale.

Table 2-2 shows the MAC matrix for the full sensor set, i.e. all 112 node positions in z
direction. Examining this matrix, one can surprise that several off-diagonal terms are
fairly large. In particular, the element (2,3) is 0.783, and element (9,10) is 0.531. This
is due to the similarity of mode shapes between third and fourth as well as between
tenth and eleventh. In is worth to note that only the mode shape components of
translational DOFs in z direction are considered in this example, and they are thus

not necessary to be orthogonal. The orthogonal property applies to full mode shapes.

We will use the ladder example to compute sensor positions with the methods dis-
cussed in Section 2.1.1. Two cases are considered. In Case 1, total 12 sensor posi-
tions will be selected, which corresponds to the minimum number of sensors. In Case
2, 20 sensor positions are to be chosen. The number of 20 is chosen arbitrarily for
demonstration purpose. One may select 4 end points of the ladder as an intuition set,
35, 77, 78, 120, for the MinMAC algorithm. Table 2-2 shows the comparison results

for two cases. It is clear that no two methods give the same results.
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Table 2-2, Sensor positions obtained by different methods

Case 1 (12 sensors) Case 2 (20 sensors)
VIKE 78,77,120,35,79,119, 76, 36, 80, 8, ., 1,75,10, 6, 37, 27, 28,
118, 9 112
ccp 78,79,120,77,119,80,35,118,76,36,10 | ..., 95, 103, 96, 54, 52, 101,
2,53 60, 37
VISP 78,120,77,79,35,119,76,36,80,118,75, | ..., 8,7,102, 6, 103, 9, 101,
37 10?
..., 56, 57, 52, 21, 58, 51,20,

DPR | 27,26,25,28, 24,29,23,22,30,54,55, 53 59

120,115,101,100,95,94,88,43,
120,115,101,95,88,42,35,34,30,22,18,

El 42,35,34,33,

B 30,26,22,20,18,12,11,6

0RO 78,120,77,35,8,27,56,100,94,22,109,3 | ..., 79, 119, 76, 36, 9, 26,
1 101, 552

120,104,103,102,101,100,99,
120,104,101,100,99,98,96,78,77,35,9,
MinMAC 98,96,78,77,45,

6
44,43,35,30,29,9,6,2
17,18,31,35,36,37,49,63,75,7

6,77,78,
MaxSV 4.9 ,25,26,31,35,76,77,78,79,119,120
79,80,92,103,106,118,119,12
0>
7,8,9,10,11,25,26,27,28,29,35
Max- ,306,
8,9,35,36,76,77,78,79,80,118,119,120
TRACE 76,77,78,79,80,118,119,120

b)

Note: @ ..., means the sensors selected in Case 1 are also included in Case 2.
®) the set of sensor positions are obtained by guided search in 1e6 iterations

and believed to be sub-optimal, but not guaranteed to be global optimal.
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Table 2-2 shows the comparison results for two cases. It is clear that no two methods
give the same results. To demonstrate the discrepencies of these methods, sensor
positions selected by two representative methods, namely MKE and El, are indicated
with blue and red squares in Fig. 2-4, respectively. Sensor positions chosen by other

sensor placement methods in Table 2-2 are not listed here for conciseness.

75
74 17
73 116
72
71 14
70 113
69 112
68 111
67 110
18019 20 21(22)23 24 25 26 27 28 29(30]31 32 33 [34
63 106
62 105
61 104
60 103
s fod
58
57 100
56 99
55 98
54 97
53
52 [3_%]
51 94
50 93
49 92
112 3 4 5 6 7[8]9)10[11)12 13 14 15 16 |17
46 9
: &
44 87
43 X 86
(2 85
41 84
40 83
39 82
38 81
Y z m
(36
M B

Fig. 2-4, Sensor positions chosen by MKE (blue squares) and El (red squares)

for the ladder structure

Appendix 2A.

To compute the EI indices from the projection matrix, the idempotency relation, P> =P, is

required. Consider the diagonal terms of the projection matrix,
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pi=P), =(P-P), =P(i,)-P(,))=D_ p; + p;,
i=1

i#j
Since the first term in the right hand side of the equation is nonnegative, therefore it can be
concluded,

pi— Py =p;(1-p,)20.

Intheend, 0< p, <1.

Appendix 2B.

function [Q2,R2] = QR-HGSD(Q,R); . _ .
% QR-GSD(Q,R) computes the updated Q2 and R2 with a lower dimension
% after the first row in Q is removed. Q2*R2=Q(2:end,:)*R.

[row, col] = size(Q);

unitvector = zeros(row,1); % unit vector, el
unitvector(l) = 1;
enl =  zeros(row+col,1); % unit vector, e(col+1)

enl(col+1) = 1;

unitmatrix = eye(col,col);
R2 = [ R; zeros(l,col)]; % for step 4.

% 1, Computes the alpha and h, which are orthogonal to Q
%(a) computes the first row:
g = unitvector;
fork = 1:col;
g = 2(g"QCK)*Q(k);

end

%(b) determine the Householder vector x for H:x=g+sign(gl)||g||2*el

x = gtsign(g(1))*norm(g,'fro")*unitvector;
%(c) compute the first column:

v = unitvector-2*x*(x."*unitvector)/(x.'*x);
f = enl;

for col:-1:1;

[-unitmatrix(:,col-k+1);Q(:,col-k+1)];

kK =
v = v-Q(K)*(Q(k).*v);
u =
f = f-(f'*u)*u;

%(d) computes the alpha and h
alpha = v(1);

h = v(2:row);

f= f(1:col);
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% 3,Determines an orthogonal matrix U
firstcolum = [f;alpha];
Q2 = [f,alpha;Q(2:end,:),h];

fork = col:-1:1;
twoterms = firstcolum(k:k+1);
[c,s,1] = givens(twoterms(1),twoterms(2));

firstcolum(k:k+1)=r;
Q2(:,[kk+1]) = Q2(:,[kk+1])*[c,-s;s,¢];

% 4, Modify the upper triangular factor
R2([k,k+ 1 ]5:) = [C,S;-S,C] *Rz([k7k+1 ]9)9
end

% Form the final updated QR matrix

Q2(1 D=L Q2(,1)=(1;
= R2(2: col+1 R

if Q2(1,1)*Q(2,1)<0
Q2 =-Q;
R2 =-R2;

end

% The end

function [c,s,r] = givens(a,b)
% GIVENS computes c and s in a Givens rotation
% Given scalars a and b computes ¢ and s in
% a Givens rotation such that
% 0 =-s*a+ c*b, and r =c*a + s*b

ifb==0
c=1.0;s=0.0;r=a;
else if abs(b) > abs(a)

tt = a*atb*b;
s = b/tt; ¢ = altt;
r(1) =c*a+s*b; r(2)= -s*a+ c*b;
else
t = b/a; tt = sqrt(1+t*t);
c = 1/tt; s = t*c;
r(1) =c*a+s*b; r(2)= -s*a+ c*b;
end
end
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3 Extended MinMAC Algorithm

An extension of the MinMAC algorithm to aid sensor placement for modal tests is
discussed in this chapter. The extension is, essentially, a forward-backward combina-
tional MinMAC algorithm. The original MinMAC algorithm proposed by Carne can be
regarded as a forward sequential MinMAC algorithm, which maximizes the discrimi-
nation between mode shapes of interest starting from a small intuition set [CARNE and
DOHRMANN 1995]. The proposed forward-backward combinational MinMAC algorithm
incorporates advantages of both forward addition and backward deletion approaches,
and is more suitable for global optimality searching. Moreover, the extended MinMAC
algorithm is applied to the 1-40 Bridge for sensor placement. Furthermore, the similar-
ities and differences between the MinMAC and the Effective Independence method

are analyzed.

3.1 The MinMAC algorithm and its computation steps

As already discussed in Section 2.1.6, the MinMAC algorithm proposed by Carne
and Dohrmann aims to ensure modal correspondence of two mode shapes. In this
section, the background and objectives of the MinMAC algorithm are first reviewed.

Consequently, it is extended to a back- and forward combinational MinMAC algorithm.

3.1.1 Objective of the MinMAC algorithm

The MinMAC algorithm proposed by Carne and Dohrmann is designed to ensure
modal correspondence between the mode shapes computed by finite element model
and those measured ones from online modal tests in structural health monitoring. To
achieve this objective, both sets of mode shapes have to be differentiated as much
as possible. It is equivalent to maximize the angles formed by the paired mode shape
vectors or to minimize the dot product between them, which is the same as the Modal
Assurance Criteria (MAC). This is the reason to minimize the off-diagonal elements
of the MAC matrix.

Moreover, Carne and Dohrmann use intuition to determine an initial measurement
set of DOFs. The intuition set is expected to adequately cover the structure and are-

as of special interest to ensure modal visualization besides correspondence.
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3.1.2 Computation of the MinMAC algorithm

A small maximum off-diagonal term indicates less correlation between corresponding
mode shape vectors and renders the mode shapes discriminable from each other.
The MinMAC algorithm achieves this objective as follows. First, an intuition sensor
set (much less than the required number of sensors) is selected based on test engi-
neer's experience and requirements of structural topology for visualization of mode
shapes. Secondly, other candidate sensors are included one by one sequentially and
the one that minimizes the maximum off-diagonal element of the MAC matrix at each
step is chosen. Thirdly, the MinMAC repeats the second step by adding one sensor

at a time until a required number of sensors are selected.

3.2 Extension of the MinMAC algorithm

The original MinMAC algorithm can be regarded as a forward sequential addition al-
gorithm, which adds one sensor at each iteration step. However, the non-decreasing
aspect of the MinMAC algorithm, i.e., the maximum off-diagonal term doesn’t de-
crease monotonically with the number of sensors, is often encountered in practice.
To overcome the contra-decreasing problem of the original MinMAC algorithm, a for-

ward-backward combinational extension is developed as follows,

First, an intuition sensor set, U, (including, to say, a number of sensors, sg) is chosen.

Then, one sensor is added to this initial set until a preset number of sensors, which is
somewhat larger than the number of sensors as required, for instance, ten percent
more than required (1.1s), is reached. This is the same forward sequential MinMAC
procedure as originally proposed by Carne. The extension differs from the original
forward approach in the stopping criterion. The extended MinMAC algorithm is con-

tinued to obtain a sensor set, U,, consisting a certain number of sensors (to say, s,

s, <1.1s) larger than the required one (s) where the original MinMAC stops.

Secondly, one sensor at each step is excluded from the sensor set (U, ) until the re-

quired number of sensors (s) is reached. This is the backward sequential MinMAC
approach, the essential extension to the forward one. Therefore, two function curves
are established. One is the curve of the maximum off-diagonal term with respect to

the number of sensors increasing from sy to s obtained in the first stage, and the
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other is the curve of the maximum off-diagonal term with respect to the number of
sensors decreasing from s4 to s found in the second stage. Both curves are com-
pared and the one with a smaller value at the point s is selected. Which curve is to be
selected, depends on the abilities of the forward and backward approaches to mini-
mize the maximum off-diagonal terms of the MAC matrix. In this manner, the maxi-
mum off-diagonal term of the MAC matrix may, in many instances, be further

minimized than the traditional MinMAC algorithm.

Naturally, the forward stopping number of sensors (s1) in the first step can be varied
according to the structure under consideration. The effects of various numbers (s1) of
sensors on the selection set (including s sensors) of the above two step processes
can be compared and the one with the smallest maximum off-diagonal term of the

MAC matrix can be chosen. This can be implemented as the third step, if necessary.

3.3 Application of the extended MinMAC algorithm to the 1-40
bridge

The extended MinMAC algorithm proposed in Section 3.2 is applied to the [-40

Bridge, only the first two steps in Section 3.2 are computed. The third step repeats

the second one and is not demonstrated here.

Damage Introduced N East
Near N, N, _1__Abutment

\

k Shaker
Location

Fig.3-1 Location of shaker and accelerometers of the 1-40 Bridge.
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The 1-40 Bridge was located over the Rio Grande in Albuquerque, New Mexico. It
consists of twin spans made up of a concrete deck supported by two welded-steel
plate girders and three steel stringers. The tested section has three spans. The end
spans are of equal length, approximately 39.9m, and the center span is approximate-
ly 49.4m long. There are 13 accelerometers used along the length of the bridge on
each side, for a total of 26 responses. The shaker consists of a 96.5 kN reaction
mass supported by three air springs resting on top of drums filled with sand. The
shaker was located on the eastern span directly above the south plate girder and
midway between the abutment and first pier. Figure 3-3 shows the shaker and accel-
erometer locations. Full details of the modal testing of this bridge can be found in
Farrar, et al.[FARRAR et al. 1994]. There were in total 26 DOFs (n=26), and six identi-
fied mode shapes (m=6) available. The mode shapes extracted from the case of

“Test t11tr” are used for the computation of extended MinMAC.

0.04 T I I T
—— OQriginal forward MinMAC algorithm
0.037 ——- Extended backward MinMAC approach
[
0.035+ I —
b
P
N
!
0.031 | Itl |
£ P
] I
T b
¢ 0.025F ! l\ =
& |
= o 0.021
5 {
[=]
0 0.02-
P
=
g
s 0.015+
]
o
=
0.01 -
0.005
|
]
0 | \I 1 1 L 1
5 10 15 20 25

Number of sensors (1m)

Fig.3-2 Maximum MAC off-diagonal terms with respect to the number of sensors.

The first step of the extended MinMAC algorithm with s;and sy as 26 and 6 is com-

puted. When the MinMAC algorithm is considered, an intuition sensor set has to be
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designated a priori. For the 1-40 Bridge, the least sensor number is six since there
are six mode shapes of interest. If six sensors are to be included in an intuition sen-
sor set, the six sensor positions maybe, S3, S7, S11, N3, N7, N11, which are all mid-
span positions and supposed to have relative large vibration amplitudes. In addition,
the six positions may also be selected by computing the Modal Kinetic Energy (MKE)
or Effective Independence (El) indices as detailed in Section 2.1. When starting from
this intuition set, one sensor at a time is sequentially added until another 20 sensor
positions are selected. It is expected that the maximum MAC off-diagonal terms will
decrease with more sensors included. This is really the case, a decreasing trend as
shown in the first segment of the blue solid curve in Fig.3-2 until 8 sensors (s = 14)
are added. An interesting phenomenon is observed, however, that the maximum
MAC off-diagonal terms become unexpectedly larger although more sensors are in-
cluded as can be seen obviously in Fig.3-2 for added numbers of sensors, 10, 12,

and 18 (s = 16, 18, and 24), respectively.

To consider the sensor placement problem in a backward way for the MinMAC algo-
rithm, i.e. we expand the original MinMAC algorithm to a backward manner, to re-
move a sensor a time. This is the second step of the extended MinMAC algorithm. All
26 dofs can be regarded as a natural intuition set from a backward deletion viewpoint.
The maximum MAC off-diagonal terms with decreasing number of sensors are de-
picted by the red dashed line in Fig.3-2. It was supposed that the maximum MAC off-
diagonal terms would increase when more sensors are excluded. This is the increas-
ing trend shown in Fig.3-2 when we observe the red dashed curve backwards as a
whole. However, there are clearly ripples for excluded number of sensors 16, 13 and
10 (s = 10, 13, and 16), respectively. The maximum MAC off-diagonal terms become
smaller when more sensors are excluded from the previous measurement set alt-
hough they are expected to become larger in these cases. A similar phenomenon
was also observed in Pickrel [PICKREL 1999], where decreasing a sensor number
leads to smaller MAC off-diagonal terms. In their case, 20 target modes of an air-
plane were selected, and it was shown that the largest off-diagonal MAC term is 0.8
for a set of 249 measured dofs, whereas 0.2 for 202 measured dofs. The reason for
such increasing/decreasing contradiction is that a newly included or excluded sensor
may conflict with other previously selected ones, or even with the original intuition set.
Mathematically speaking, the row vector of the mode shape matrix specified at the

newly included or excluded sensor position has strong linear relationship with other
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row vectors. Namely, this row vector is nearly a linear combination of other row vec-
tors. Such contra- increasing/decreasing trend in the original MinMAC algorithm jus-
tifies the necessity to extend the MinMAC algorithm in the first paragraph of Section
3.2.

To illustrate the advantage of the extended MinMAC algorithm over a number of ap-
proaches, two cases for the 1-40 Bridge are considered. In Case 1, twenty-four ac-
celerometers will be deployed (s = 24) whereas nine in Case 2 (s = 9). It is assumed

that in both cases sq1and spare 26 and 6, respectively.

In Case 1, 24 accelerometers will be used (s = 24). For the forward addition ap-
proach, it means that eighteen additional sensors are to be selected besides the six
sensors included in the intuition set, i.e. only two sensors will not be used. The not-
to-be-used two sensors found by the MinMAC algorithm are S12 and N2. The maxi-
mum MAC off-diagonal value with the 24 sensors is 0.021 corresponding to the peak
of the blue solid line at the abscissa of 24 as shown in Fig.3-2. According to the re-
quirement of the extended MinMAC algorithm, the remaining two sensors are se-
quentially added until all 26 dofs are included, i.e. s1= 26. Then the second step of
the extended MinMAC algorithm is implemented. Starting from the 26 sensors, one
sensor is removed from the group in each iteration. Two sensor positions are to be
excluded sequentially. As a result, the two excluded sensor positions are S1 and N1.
The maximum MAC off-diagonal value with the remaining twenty four sensors is ap-
proximately 0. Apparently, the sensor positions obtained by the backward deletion
approach are preferred ones than the forward addition approach and to be finally
chosen by the extended MinMAC algorithm. This case powerfully demonstrates that
the extended MinMAC algorithm is more suitable to find an optimal maximized MAC
off-diagonal value than the original MinMAC algorithm through combining both for-

ward and backward approaches.

In Case 2, nine sensors (s = 9) are required. Three additional sensors are to be se-
lected besides the six sensors included in the intuition set, S3, S7, S11, N3, N7, and
N11 (so = 6) and they are S1, S13 and N13. The maximum MAC off-diagonal value
with the 9 sensors is 0.005 corresponding to the abscissa of 9 in Fig.3-2. For the
backward deletion approach of the extended MinMAC algorithm, seventeen sensor
positions are to be excluded sequentially. As a result, nine sensors are selected and
they are S2, S3, S7, S18, S11, N3, N7, N8, and N11. The maximum MAC off-
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diagonal value with the 9 sensors is 0.037 by the backward approach, which corre-
sponds to the peak of the red dashed curve at the abscissa of 9 as shown in Fig.3-2.
It is obvious that the maximum MAC off-diagonal value obtained by the backward
deletion approach is nearly 7 times larger than that calculated by the forward addition
MinMAC algorithm. Therefore, the 9 sensor positions obtained by the forward addi-

tion approach is preferred and finally chosen.

In the above two cases, required numbers of sensors are 24 are 9, respectively. In
one case, the forward addition approach is preferred whereas the backward deletion
approach is preferred in the other case. Both cases demonstrate clearly that it is
necessary to combine backward and forward approaches to search for an optimal

maximum MAC off-diagonal value although the application example is rather limited.

There is one note about the influence of the choice of the intuition sensor set, U, on
the final selection of sensor positions. If a newly added sensor conflicts with one or
several of the original intuition set, the intuition set maybe reformed if the exclusion of

certain sensor from the original intuition set U, is not considered to be much detri-
mental to the mode shape visualization. Afterwards, the two steps can be recomput-
ed. Further research is advised on how to select a intuition sensor set, U,, more
appropriately and on the influence of the intuition sensor set, U,, on final selection of

sensor positions.

For the purpose of comparison with the El, the results of the El are given below. In
case 1, the two sensor positions deselected by the El are S1 and N1, which is the
same as that of the extended MinMAC algorithm, but much different from the original
MinMAC algorithm. The 9 sensor positions selected by the El are S3, S7, S11, S12,
S15, N3, N7, N11, and N12 for Case 2.
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4 A New Evaluation Criterion for Sensor Placement
Methods

As shown clearly in Section 2.3 , there are no two methods resulting in the same
sensor placement topologies for the ladder structure and it is premature to conclude
at this stage that one method outperforms others. At least, every method discussed
has its advantages, and disadvantages as the same time. It should be noted that a
good method for sensor placement in a particular application is not necessarily good
for another project. The effectiveness of certain sensor placement method depends
on the evaluation criteria. In this chapter, we use the ladder structure in Section 2.3

to compare different criteria for evaluating sensor placement methods.

4.1 Existing evaluation criteria for sensor placement methods

Conventionally, five evaluation criteria are widely used, namely modal assurance cri-
terion, singular value decomposition, measured energy per mode, Fisher Information
Matrix, and visualization of the mode shape. The presentation of the five criteria fol-
lows mainly from the excellent references [CARNE and DOHRMANN 1995; PENNY et al.
1994]. They will be discussed in details in the following subsections along with our

comments.

4.1.1 Modal assurance criterion

The Modal Assurance Criterion (MAC) [ALLEMANG and BROWN 1982; Ewins 2000] is
the simplest way to pair mode shapes derived from an analytical model with those
obtained experimentally as follows,

o O,

Jjm

C,=
T2, )(®,D,,)

Jm =" jm

(4.1)

where @ is the i mode from experiments and @, , is the k™ mode from an analyti-

cal FEM model. The value of the MAC is between 0 and 1. A value of 1 means that
the compared two or n-dimensional mode shape vectors lie in the same direction and
one is a multiple of the other. This means that the experimental mode shape agrees

with the analytical one exactly.
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The MAC criterion can also be used to discriminate two experimental mode shapes.
Furthermore, it is easy to calculate. Another convenience is that the mass and stiff-
ness matrices of a structure, which are not available in many cases, are not needed

while computing the MAC.

The MAC without mass weighting is, in fact, to compare the direction of two vectors.
When two vectors point into nearly or exactly the same direction, the MAC value (or
the correlation coefficient) equals or approaches to one. The off-diagonal terms of the
MAC matrix provide an indication to which degree the truncated mode shape vectors
are linearly dependent. This is the underlying idea of the MinMAC algorithm designed
specially to accommodate the MAC criterion for sensor placement as discussed in
Section 2.1.6.

Table 4-1, Evaluation of sensor positions by different methods

MAC SVD ratio Average Energy tr(FIM) Visualization

MKE Case 1 0.97742 32058 0.28358 3.4029 5
Case 2 0.92369 311.56 0.38454 4.6145 4

ECP Case 1 0.96805 3320.9 0.27119 3.2543 4
Case 2 0.93809 106.44 0.34185 4.1022 3

MSSP Case 1 0.98899 4.6749e+005 0.28023 3.3627 5
Case 2 0.8327 598.46 0.38188 4.5826 5

DPR Case 1 0.94039 1.1222e+006 0.10656 1.2787 5
Case 2 0.95985 40030 0.16471 1.9765 5

- Case 1 0.82764 25.892 0.13273 1.5928 4
Case 2 0.65058 16.344 0.1958 2.3496 3

QRD Case 1 0.86768 35.314 0.20376 2.4451 1
Case 2 0.86798 40.091 0.33893 4.0672 1

Case 1 0.7499 5623.5 0.21131 2.5357 3

MinMAC

Case 2 0.69534 62.898 0.26777 3.2133 2

Case 1 0.94943 101.61 0.24684 2.9621 2

MaxSV

Case 2 0.9553 33.52 0.33713 4.0456 1

Case 1 0.97742 32058 0.28358 3.4029 3

MaxTRACE

Case 2 0.92618 152.57 0.37251 4.4701 2

The MAC criterion is used to evaluate the performance of the sensor placement
methods discussed in Section 2.3 and the results are presented in Table 4-1. Only

the maximum off-diagonal term of an MAC matrix is listed in the second column of
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the table. It is obvious that the maximum off-diagonal term in Case 1 is larger than
that in Case 2 for most discussed methods, except the DPR, QRD and MaxSV. The
MinMAC algorithm outperforms other under the MAC criteria for almost all cases. The
only exception is that the El has an even slighter maximum off-diagonal term of the
MAC matrix than the MinMAC algorithm.

4.1.2 Criterion of singular value decomposition (SVD) ratio

The singular value decomposition of the mode shape matrix specified at certain de-
grees of freedom provides another means to measure the chosen sensor locations
[FRISWELL and MOTTERSHEAD 1995]. The criterion evaluates the ratio of the largest to

the smallest singular value of the mode shape matrix as following,

SVDratio = 21 (4.2)

m

where o, and o,, are the largest and smallest singular value of the mode shape ma-

trix @, respectively. The smaller the ratio, the better the choice of sensor locations.
The lower limit of the SVD ratio is one in the case that the mode shapes are or-

thonormal, which is an ideal situation.

The SVD ratio criterion can also be termed as condition criterion since the SVD ratio
of a truncated mode shape matrix is nothing else, but its condition number. There are
three reasons to adopt the SVD ratio criterion: namely mode orthogonality, the condi-
tion for mode expansion, and the observability of the modes. In measuring the mode
orthogonality, the MAC and SVD ratio criteria are equivalent to a certain degree.
When the mode shape vectors are orthogonal, the MAC matrix is an identity matrix
and the SVD ratio equals one since all of the singular values of the modal matrix are
equal to one. The requirement to validate measured results with an FE model justi-
fies the use of the SVD ratio as a criterion. The measured or identified mode shape
vector has to be expanded to match the FE mesh coordinates since they doesn’t
usually collocate and the small number of measured DOFs has to be expanded ac-
cording to the FE mesh. The expansion employs the generalized inverse of the trun-
cated mode shape matrix. If the condition number or SVD ratio of the modal matrix is

large, the inaccuracy of such expansion will be large. Therefore, model validation
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demands small SVD ratio of the truncated modal matrix. Furthermore, the observabil-
ity of a structure under consideration is determined by the rank of the observability
matrix if the equation of motion is cast into state space formation [PREuUMONT 2002]. If
the SVD ratio is too large, the numerical rank of the observability matrix will be less
than the theoretical mathematical rank because of computer truncation errors, which

renders the structure unobservable.

The evaluation of the performance of the sensor placement methods discussed in 2.3
using the SVD ratio criterion is shown in the third column of Table 4-1. The EI sur-
passes the other methods for both, Case 1 and Case 2, with smallest SVD ratios.
The QRD ranks the second and the worst is the DPR method with considerable large
SVD ratios. It can be said that the reduced mode shape matrix obtained by the DPR
method is ill-posed. The degree of mode orthogonality is rather low and the modes

can not be discriminated when sensors are deployed under the DPR scheme.

4.1.3 Criterion of measured energy per mode

The kinetic energy of a structure is usually not evenly distributed within the modes of
the structure. Higher modes are normally difficult to excite, especially for a structure
under normal operational condition, since more energy is needed. The measured
modes are then expected to capture a larger part of the total kinetic energy of the
structure and the energy contained in the measured DOFs for each mode should be
a significant portion of that mode for sufficient identification. The criterion of meas-
ured energy per mode shares similar underlying ideas with that of the modal kinetic
energy method with the MKE in Section 2.1.1. Furthermore, the criterion of measured
energy per mode is also a measure of signal to noise ratio, which is a critical consid-

eration, especially in civil engineering where harsh environment noise is pervasive.

In this work, the average percentage energy captured by the measured DOFs with
the sensor placement methods discussed in 2.3 is listed in the fourth column of the
Table 4-1, in which all the modes are normalized to unit length, and the mass matrix
is assumed to be identity equivalent (i.e., M =al). The MKE and MSSP outperform
the other methods for both Case 1 and Case 2. The worst is the DPR method and

the El, ranking second to the last, has only a slighter improvement than the DPR.
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4.1.4 Criterion of the Fisher information matrix

The criterion originates from estimation theory by sensitivity analysis of the parame-
ters to be estimated. The Fisher Information Matrix (FIM) results from minimizing the
covariance matrix of the estimate error for an efficient unbiased estimator from the
perspective of statistics as discussed in Section 2.1.4. The FIM relates also to the
information contained in the measured responses from the viewpoint of information

theory.

In practice, different measures of the FIM are used. Three variants of the FIM are,
the determinant, the trace, as well as the minimum singular value of the FIM, which
are maximized to increase the information or to decrease the uncertainties of the es-
timates. The trace, the determinant and the maximum singular value are just different
norms of a matrix. These three norms measures are equivalent as discussed in Sec-
tion 2.1. That is to say, different sensor placement methods based on maximization
of the trace (MaxTRACE), determinant (El) or maximum singular value (MaxSV) of
the information matrix will yield similar, if not the same, results for most cases
[BASSEVILLE et al. 1987]. There is strong evidence that the three criteria are approxi-
mately equivalent although three is unfortunately no definite prove of such equiva-
lence up to now [PAN 2000]. However, Kammer has shown that the determinant is

much preferable than the other two, as used in the El.

The trace criterion of the FIM evaluating the sensor placement methods discussed in
2.3 is listed in the fifth column of Table 4-1. The DPR ranks the worst. It is surprising
that the El ranks the second to the last under this criteria. The QRD performs better
than the El, but not as good as the MKE and MSSP, not to mention the best one
MaxTRACE.

4.1.5 Criterion of the visualization of the mode shape

Test engineers have to first visualize the mode shape vectors identified from modal
experiments to get a first impression of the overall motion of the structure under con-
sideration, as argued by Carne [CARNE and DOHRMANN 1995] . The identified mode
shapes are then further compared with those computed from an FE model for modal
validation, updating or damage identification. As suggested by Pickrel [PICKREL 1999],

the number of sensors required to visualize the mode shapes is at least five times the
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number of mode shapes in order to provide a crude visual depiction of the shapes
and avoid spatial aliasing. This criterion has no concrete mathematical formulations
as the aforementioned four criteria. It depends on the structure and usually the points
in the frame corner or middle are picked up. The intuition of a test engineer plays an
important role in judging which group of candidate sensor positions is more critical
than others. Furthermore, certain sensor positions have to be included in order to

capture the global mode of a structure.

The visualization criterion has the advantage to effectively avoid the clustering of se-
lecting sensor positions near a special flexible part of a structure or a substructure.
Obviously, whether certain sensor positions belongs to a good visualization group or
not could inevitably be kept from subjective bias. Nevertheless, the visualization crite-

rion permits intuitive means for sensor placement and offers further insights.

The visualization ability of the sensor positions determined by the sensor placement
methods discussed in 2.3 is listed in the last column of Table 4-1. The sensor combi-
nations are ranked from 1 (best) to 5 (worst) according to their distribution in the
structure. Contrary to the criterion of the FIM in Section 4.1.4, the QRD outperforms
the MKE, MSSP and ECP.

4.1.6 Comments on the comparison results of the five criteria on sensor

placement methods

The comparison in Table 4-1 leaves us more questions than to draw a simple con-
clusion. The criterion of SVD ratio shows that El is better than QRD and MinMAC.
Good performance of SVD ratios leads also to better MAC performance, as analyzed
in Section 4.1.2 and argued by Friswell [FRISWELL and MOTTERSHEAD 1995]. Frustrat-
ing is that the visualization criterion contradicts with that of the FIM as illustrated in
Section 4.1.5. Moreover, the criteria of average mode energy per mode and trace of
information matrix produce no better results than other methods. When we compare
the visualization criterion, QRD, MaxSV and MinMAC are better. The broad theoreti-
cal agreement between these methods as discussed in Section 2.2 does not show up
in their practical application as evidently as their discrepancies. Despite the incon-
sistencies, El, QRD, MinMAC and MaxSV may be said to give acceptable results for

sensor placement for the case under consideration.
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Furthermore, two processes and their roles deserve reconsideration in investigation
of sensor placement for dynamic testing. One is the implicit intermediate process of
reorthgonalization of reduced mode shapes in El, and the other is the impact of
renormalization of each mode shape. The former changes the directions of original
mode shapes, whereas the latter redistributes weights between mode shapes of in-

terest.

4.2 Proposal of a new criterion for evaluating the effectiveness of
sensor placement methods in structural health monitoring

As discussed in Section 4.1, the five existing criteria for sensor placement methods
are not consistent with each other very well. Even worse is that one criterion may
contradict with another. What causes such discrepancies? A specific objective de-
pends on its applications. Fairly to say, each criterion has its objective and applica-
tion background as well. A criterion stresses one perspective whereas another pays
more attention to another aspect. Compromises have to be made if one or several of

the criteria is to be used.

Furthermore, the sensor placement methods discussed in Chapter 2 are directly de-
termined by the criteria selected. For instance, the chosen of the criterion of FIM re-
sults straightforwardly in the using of the El method. The sensor placement methods
and their judging criteria are, therefore, inevitably correlated. Consequently, a con-

sistent evaluation criterion has to be established.

4.2.1 The features of SHM in civil engineering

The term SHM was initially proposed in civil engineering with the aim to monitoring
the working status of a structure. As is known, civil engineering structures are de-
signed to withstand many kinds of loadings, for instance of a bridge, the passing ve-
hicles, the passengers, the changing wind, the rain and even slight movement of the
soil foundation, earthquakes, etc. Furthermore, environment temperature inevitably
plays an importance role in SHM by changing the characteristic parameters of the
components of a structure. Due to the manifold impacts of various working loads un-
der changing environment conditions, the responses of a structure are changing with

the time as well. Consequently, the dominant frequency components in the response
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vary with changing working conditions. In order to identify the mode shapes of a
structure within desired accuracy, the responses have to be selected at the positions
containing adequate information about the mode shapes of interest. The idea will be

further developed in details in the following section.

Another feature of civil engineering structures is that the measured responses from
field experiments are corrupted with comparatively large noise. The reasons lie in the
obvious fact that environmental noise is inevitably very large for an operational struc-
ture. Both features have to be included in the consideration of sensor placement cri-
teria for SHM.

4.2.2 A new evaluation criterion of almost global unbiasedness

In this section, we analyze first the mathematical background and the implicit as-
sumptions made in the El method. Then, a representative least squares estimator is
proposed. The aim of the estimator is to achieve the best identification of modal fre-
quencies and mode shapes. The proposed criterion depends on both the characteris-
tics and the actual loading situations of a structure. It selects sensor positions with
the best subspace approximation of the vibration responses from the linear space

spanned by the mode shapes.

Foremost, a deeper understanding of the physical meaning of the El method is bene-
ficial to our further investigations. The El indices, if viewed from statistics, are the

leverages of each predicted value on their actual measurements, namely,
y=Py =0(®'®)'®'y (4.3)
where y is the fitted values corresponding to y and P is the projection matrix as de-

fined in Eq.(2-8). Considering the i term of ¥,

Vi = Zpiij' =PaYi t Zpiij' (4.4)
=

j=1,j#i
where p; is the i component of the projection matrix P.

Eq.(4-4) implies that,
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%=pii and %

=n. 4.5
y, oy, D (%.9)

Therefore, the term p, (the El indices) can be interpreted as the amount of leverage
each value y, has in determining y, regardless of the realized value y, [CHATTERJEE

1988; RA0O and TOUTENBURG 1995]. The second term of Eq.(4-5) may be interpreted,

analogously, as the influence of y; in determining ¥,. Leverage values p; provide a

measure of separateness of data points and its importance in fitting the regression
line and indicate the distance of a data point from the bulk of the whole data [Cook
and WEISBERG 1982]. Large leverage points are located near the edge of a data set
in the sense of the x-coordinate (indices of data sequences) and pull the regression

line near it for the full data set.

In this subsection, the EIl will be viewed from another perspective. The rationale be-
hind the El is that the estimator with the smallest variance gives the best solution
among all the unbiased estimators, as stated by Kammer using the well-known
Cramer-Rao lower bound variance theorem in Eq.(2.5). An underlying implicit prem-
ise for this approach is that all the to-be-compared least squares estimators for dif-
ferent sensor configurations are equally unbiased. The premise is, however, not valid
for sensor placement issues under discussion. The problem will be much clear if we

examine the measurement equation Eq.(1.1) in further details. We assume here that
there are in total 10 response measurements available,y =[y, y, ....y,,]' , which may-
be obtained by a pretest and that six among of the ten will be finally selected to de-
ploy sensors for online measurements in the future. According to the criteria in
Section 4.1 and the sensor placement methods presented in Section 2.1, two differ-
ent groups of sensor positions maybe selected, for instance, group G1 and group G2.
Group G1 may include, for instance, six candidate sensor positions,
Yor =1¥.¥3Y5Y6YsYi0l @and the group G2 includes, yg, =[y,Y; ¥, e s Yol - With the-

se two groups of measurements, the modal coordinates can be estimated using ordi-

nary least squares method (OLS) for both groups as,

41 = (DG1+yG1 (4.6)

Ao, = (I)G2+y62 (4.7)
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where @, and @, are the reduced mode shapes consisting of the rows of the full

mode shapes specified by y;,and y,, .

In addition, the estimate of the modal coordinates with the initial total ten measure-

ments is,
q, = (I)+y (4.8)

It is apparent that the three estimates of the modal coordinates q,, q,, and q, are

unbiased themselves in terms of the group data points by which they are computed.

However, the three estimates q,, q;, and q, are not necessarily guaranteed to

equal each other. Consequently, it is questionable to compare the variances of dif-
ferent least squares estimators without prior consideration of the prerequisite equal

unbiasdness. Nevertheless, the El compares the variances of the q.,and q,, and
will select the one with a smaller variance. When the estimator q,, does not equal to
q., Which occurs in most instances, such comparison of variances of the q,;, and

q., turns out to be meaningless.

When the parameters to be estimated are deterministic, a reasonable approach is to
bound the MSE(Mean Squared Error) achievable within the class of unbiased estima-
tors. Although it is well-known that lower MSE can be obtained by allowing for a bias,

in applications it is typically unclear how to choose an appropriate bias.

The following question arises naturally: why has the El method gained so much influ-
ence in the technical literature, been recommended in the classical monographs by
Ewins [Ewins 2000] and Friswell etc.[FRISWELL and MOTTERSHEAD 1995], and even
embedded in commercial software MSC/NASTRAN [PECk and TORRES 2004] ? One
reason accounting for the popularity of the El is that the El gives the solution of an
iterated version of the straightforward MKE, which is a traditionally heuristic method
used by dynamic experimenter and has the advantage of improving the signal to
noise ratio. Another reason resides in that the El does provide approximately orthog-
onal mode shapes for the reduced system, which is preferred in modal analysis. In
fact, the reduced mode shapes corresponding to the retained sensors need not abso-
lutely necessary to be orthogonal, as is a feature of the full mode shapes of a struc-

ture with respect to the mass matrix. The third reason preferring the El is that it may
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give acceptable results for some testing cases because sensor positions with large
El values (high leverage points) have, in general, large influences on the estimation
of the parameters in the global sense. The last key reason defending for the El is that
when the measurement noises for all sensor positions are of similar magnitudes, the

assumption of unbiasedness is not severely violated.

Although the EI has gained much attention in the technical community and has its
benefits, it cannot guarantee the quality of its selection since the implicit assumptions

are not always valid during its iterations. We continue our analysis further.

Since both q,,and q, are biased estimators of q,, the closeness of the variances of
q., and q, to the Cramer-Rao lower bound is not an adequate means to evaluate

their performance anymore. In fact, unbiased estimators are always sought as a pri-
ority in linear regression over biased ones. The estimate accuracy of q, determines
the linear fitting quality of the equation (1.1) and thus the accuracy of the mode
shapes to be identified. However, an unbiased estimate of q, is unreachable in many
cases, if not totally impossible, to find in sensor placement issues. Among all biased
estimators of q,, the one which is much closer to the unbiased one is consequently
more desirable. Therefore, the objective should be to minimize the Euclidean dis-
tance between the ideal unbiased estimator q, and an almost unbiased one. For this
purpose, a new criterion other than the FIM, namely almost global unbiasedness, is
proposed in the dissertation. Under the term ‘almost global unbiasedness’, we mean
that unbiasedness is of greater priority than variance (dispersion) when sensor
placement is considered and that the objective is to choose a given number of sensor

positions which obtain an almost unbiased coefficient estimator nearest to the unbi-

ased estimator achieved by all candidate sensor positions as follows,
Jgu = (qs _QOLS)T ((is _(iOLS) (4.9)
where J,, is the objective function of the almost global unbiasedness, and q, is the

ordinary least squares estimator with a subset of s components (required s sensor

positions),

G4s = (D,Q,) "Dy, (4.10)
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where the subscript s denotes a set of s components including possible combina-

tions of selecting s out of n rows, and q,, is an OLS estimator with all n compo-

nents,

‘iOLs = (®T®)71®Ty (4.11)

The physical significance of the almost global unbiasedness is clear at this stage with

the objective function J,, measuring the distance between an OLS estimator q,

with all n components and a biased estimator q, with only partially s components.

We call this method Representative Least squares (RLS) method [L/ et al. 2009b].

The proposed RLS method approximates the original least squares estimator with

the whole data set. An RLS estimator q, is the best estimator which achieves the
smallest J,, among all possible combinations including s components drawn from

total n components. The selected data subset is, therefore, required to be repre-
sentative and sufficiently approaching to portrait the scenario defined by the original
full data set. In essence, the criterion of almost global unbiasedness shares many
common aspects as that of the mean-squared error in statistics. The details of the
criterion of almost global unbiasedness and its application in sensor placement are

discussed and solved in the next chapter with the solution of the RLS method.
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S5 Load Dependent Sensor Placement Method Based on
the Representative Least Squares Method

According to the discussions in Section 4.2.2, an unbiased estimator for sensor
placement when all candidate sensor positions are considered is harder or even im-
possible to obtain. Therefore, our objective is alternatively to seek for an almost un-
biased estimator which has the shortest distance to the ideal unbiased estimator
among all biased ones. In this chapter, a novel load dependent sensor placement
method is proposed to achieve this objective. Furthermore, a representative least
squares method is correspondingly developed to deal with related mathematical

computations.

5.1 Proposal of load dependent sensor placement method

Under the term ‘load dependent’, we mean that the proposed sensor placement
method is dependent on actual loading conditions of a structure, and consequently,
on the responses and inherent characteristics of a structure. In other words, the fit-
ting of the multivariate regression in Eq.(4.6) is determined by both the mode shape
matrix and the responses, but not only by the mode shape matrix as conventional
methods conceived. As commented in Section 2.2, existing sensor placement meth-
ods share a common feature, which is that sensor positions are solely determined
provided that the mode shape of a structure is known. No matter what responses the
structure will undergo, the final selected sensor positions are the same and don’t take

actual structural responses into consideration.

Contrast to existing sensor placement methods, the load dependent sensor place-
ment method under discussion allows consideration of the degree to which individual
mode shapes participate in actual structural responses. Its objective function is al-
most global unbiasedness criterion as proposed in Eq.(4.9) in Section 4.2.2. Under
the almost global unbiasedness criterion, we strive to choose a given number of sen-
sor positions that map the mode shapes of interest to the actual structural responses
as closely as possible. In other words, structural responses will fall into the space
spanned by the mode shapes as much as possible. Only in this way, can we fit the
structural responses with the mode shapes, of course a truncated one, as accurately

as possible. This is also the requirement for better modal parameter identification.
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The essential feature of current widely used modal parameter estimation methods,
for instance, the least squares complex exponential, the polyreference time domain,
Ibrahim time domain, eigensystem realization algorithm[JUANG 1994], rational fraction
polynomial, polyreference frequency domain and the complex mode indication func-
tion methods, is to fit the measured structural responses with the to-be-identified
mode shapes as good as possible [ALLEMANG and RESERVED 1999; Ewins 2000]. If
measured structural responses can be regressed by the to-be-identified mode
shapes at certain sensor positions better than other alternatives, these sensor posi-
tion are the best choice since all the modal parameter estimation methods are implic-
itly or explicitly based on the principle of the least squares method in regression no
matter it is in the frequency or the time domain [ALLEMANG and BROWN 1998]. There-
fore, the objective of the proposed load dependent sensor placement method agrees

naturally to the aim of modal parameter estimation methods.

Obviously, the objective of the proposed load dependent sensor placement method
cannot be fully achieved when the theoretical mode shapes, which are used to de-
termine sensor positions a priori, deviate much from that of estimated mode shapes
from actual structural responses. This is a basic assumption for all sensor placement
methods assumed throughout the dissertation. Another implicit assumption is that the
mode shapes participate actively in measured structural responses. In other words,
much of the measured energy of structural responses is contained in the interested
mode shapes. Otherwise, identified mode shapes can not sufficiently reflect structur-
al dynamic features and loss of information will be resulted.

Hence, sensor placement can be cast into a function of both structural characteristics
and of where and how the structure is excited. This is our initial concept to propose
the load dependent sensor placement method. To achieve this goal, the criterion of
almost global unbiasedness is developed and will be solved under the general

framework of the representative least squares method to be developed in the sequel.

5.2 Theory of the representative least squares method

The traditional ordinary least squares method is described first for symbol explana-
tion and to facilitate our development of the representative least squares method.

The mathematical symbols to be used here are different from those in Section 4.2.2
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to accommodate the conventional notations in mathematics, whereas the symbols in

Section 4.2.2 are widely utilized in the field of structural dynamics.

5.2.1 The ordinary least squares method

The mathematical concept of the OLS method dates back to Laplace, Gauss and
Legendre [NIEVERGELT 2000]. The purpose of a least squares model, which is the
cornerstone of the classical linear theory, is to fit equations with independent coeffi-
cients to dependent responses. The classical least squares model can be expressed

in matrix notation as,
y=Xfl+e, (5.1)

where y is an n x 1 vector of observations, X is an n x p design matrix, g isa p x 1

vector of unknown coefficients, and e is an n x 1 vector of unknown observation er-

rors. The observation errors e are assumed to be independent and identically dis-

tributed with zero mean and variance o*[BECK and ARNOLD 1977].

The objective of the classical OLS method is to minimize the summation of the

squared residuals r,, which is the difference between the i”response y, and its es-

timate y,,

Jos(B) =28 =2, =3 = 20, - X, (52)

The OLS estimate of the unknown coefficients g can then be obtained by differenti-
ating the objective function J, () with respect to g and letting it equal to zero as

follows,
Bos =(X"X) "Xy, (5.3)

where the superscript " indicates matrix transposition. We assume that the design
matrix X is of full column rank, i.e. rank(X)= p, and that ﬁms can be solely deter-

mined. For rank deficient design matrix, variable selection and principle component

least squares methods may be applied [JURGEN 2003].
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The OLS estimate ,BOLS is unbiased and can be regarded as the projection of the re-
sponse vector y onto the space spanned by the columns of the design matrix X. Itis
implicitly assumed in OLS that there is only measurement error in the responses y,

and that no error exists in the design matrix X. For cases with errors in both re-

sponses y and the design matrix X, total least squares method or the instrumental

variables method can be employed [NIEVERGELT 2000].

5.2.2 Representative least squares Method

The OLS method is well known to be extremely sensitive to outliers such that even
only one outlier can corrupt the whole estimation [Rousseeuw and LEROY 1987]. Ro-
bust estimation provides an alternative approach to the classical OLS method. The
motivation of robust estimation is to produce estimators that are not unduly affected
by outliers. Many robust estimators have been proposed, among which the least
trimmed sum of squares and the least median of squares estimators are the most
influential. To take the least trimmed sum of squares for example, it attempts to min-
imize a subset of the residuals and regards other cases with larger residues as outli-
ers. The discarded cases are treated as unfaithful measurements or realizations, as

will be vividly demonstrated in Section 5.2.3.

However, in our issue of sensor placement we are aware a priori that all the data
points, which all contribute valuable information to our model, are faithful. The ques-
tion is how to select s cases for a most informative future experiment. This is equally
to say, how to find s cases to obtain the best estimator in regression. Here, by best
we mean ‘an almost unbiased estimator’ which is the nearest to the OLS estimator
with all the cases among all estimators from s cases since a guaranteed unbiased
estimator is unachievable in a global sense. This is the fundamental idea of the pro-

posed Representative Least Squares (RLS) method.

As discussed in Section 4.2.2, the Cramer-Rao lower bound is not an adequate
means to compare and to evaluate the performance of biased estimators. Instead,
mean squared error (MSE) can be employed to measure the differences between
two (unbiased or biased) estimators as the MSE contains all relevant information

about the quality of an arbitrary estimator [RICE 1995],
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MSE(B)=E(B— B)’ =Var(B)+(EB) - )’ (5.4)

Since the closeness of the coefficient estimate to its true value has profound influ-
ences on the selection of the data points to be used, unbiasedness tendency is em-
phasized in the RLS. From this perspective, the RLS is similar to minimize the
second term in the MSE in Eq.(5.4) and has its foundation in statistics. The proposed
RLS method means to select among the collections of all subsets of size s from all
the n cases to approximate the OLS estimator with all the n cases. It equals to mini-

mize the objective function of a scaled distance between partial and full estimates,
Jus (:és) = (ﬂAS - ﬁOLS)TW(ﬁS - :éOLS) (5.9)

where f; is an OLS estimator with a subset of s cases, 8, = (X, X,)"'X,"y, the
subscript s denotes a set of s cases including possible combinations of selecting s
out of n rows, and £, =(X’X)"'X"y is the OLS estimator with all n cases. W is a
weight matrix. If W is an identity matrix I , the objective function in Eq.(5.5) is simp-
ly a Euclidean distance, whereas if W is the inverse of the covariance matrix of
Bo.s (var(B,,)=0*(X"X)™"), the objective function in Eq.(5.5) is a squared Ma-

halanobis distance.

The criterion defined in Eq.(5.5), which is not known in literature, is quite different
from that in Eq.(5.2) and is tentatively termed representative least squares (RLS)
method in the dissertation, which is mentioned in Eq.(4.9) in Section 4.2.2. The defi-
nition of the RLS estimator is due to its representative feature of the whole data set

as an analog to representatives of a population sample.

Obviously, a RLS estimator turns out to be an OLS estimator when the size of the
subset is expanded to the whole data set. As the name ‘representative least squares’
indicates, a subset of cases is supposed to approximately characterize the entire da-
ta set. The selected cases in RLS are not necessarily successive, but they are re-
quired to be representative and sufficiently approaching to portrait the scenarios of

the original whole data set.
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5.2.2.1. Squared Mahalanobis distance in RLS.

As mentioned in the last section, the objective function in Eq.(5.5) is a squared Ma-

halanobis distance when W is the inverse of the covariance matrix of S,

(vm(,BOLS) =0 (X"X)™"). Under this circumstance, the objective function can be rewrit-

ten in another form as follows,

JRLS (ﬁs) = (ﬁs - ﬁ()LS)TXTX(ﬁS - ﬁms) = (Xﬁs - XﬁOLS)T(XﬁS - XﬁOLS)

n 2 n 5
= Z(YS,[ ~Yos) =%
in1

i=l1

(5.6)

h h

where the fiz is the i” residual between the i" response prediction using a partial

estimator 4, and that using the OLS estimate 4, , ¥ =V¥s,~Yous.- The predication

residue f,.z has a similar form as a normal OLS residual in Eq.(5.2) and measures

response forecast difference between the entire data set and a subset with s cases.
In Eq.(5.6), it is worth to note that a constant & is not included in the inverse of the

covariance matrix, W, for simplicity since it does not affect consequent analysis.

The objective function of the RLS in Eq.(5.6) takes a comparative or similar form as
that of the OLS in Eq.(5.2) and has, therefore, the merit of its own despite its applica-
tion in sensor placement. It is a feature of a squared Mahalanobis distance that it
takes into account the correlations of the cases and is scale-invariant, i.e. not de-
pendent on the scale of measurements. Furthermore, it is observed here that the ob-
jective function in Eq.(5.6) with the inverse of the covariance matrix as the weight
minimizes the fitted residuals only at the selected s cases, which can be compared

with the Euclidean distance.

5.2.2.2. Euclidean distance in RLS.

When W is an identity matrix I, the objective function in Eq.(5.5) reduces simply to

a Euclidean distance. In this case, the objective function can be reformulated as fol-

lows,

JRLS (ﬁs) = ('&s - :&()LS)T('&S - ﬁOLS) = Hﬁs - ﬁ()LS 2 (5-7)
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Consequently, the difference between measured responses and their fitted values is,

y—§’=X(ﬁ5 _ﬁOLS) (5.8)

It can be observed that when the objective function in Eq.(5.7) is minimized, the dif-
ference in Eq.(5.8) is minimized as well since the design matrix, X, is a known con-
stant matrix. Moreover, the minimized difference between measured responses and
their fitted values is applied to all measured responses, but not limited to the selected

S cases, as determined in the squared Mahalanobis distance in Section 5.2.2.1.

The implications of such observations are profound. Even only the selected s cases
are chosen in the RLS, all the residuals of the responses are minimized. It seems as
if the other unselected n-s cases are also considered implicitly. Such an advantage is
not foreseen. Therefore, an identity weight matrix in Eq.(5.5) is preferred and will be

used throughout the remainder of the paper if not indicated otherwise.

Table 5-1. Two sets of data for the regressions fitted in Fig.5-1 and Fig.5-2

No. of data point | 1 2 3 4 5 6 7 8 9 10 | 11

Case1&2 | X | 10 8 13 | 9 11 | 14 6 4 12 7 5

Case 1 Y |8.04|6.95|7.58|8.81|8.33|9.96|7.24|4.26 |10.84| 4.82|5.68

Case 2 Y |7.46|6.77|12.74/7.11|7.81|8.84|6.08 | 5.39 | 8.15|6.42 | 5.73

Leverage values | 0.10 [ 0.10 | 0.24|0.09|0.13]0.32|{0.17/10.32|0.17|0.13 | 0.24

5.2.2.3. Discussion of the solutions to the RLS.

An RLS estimator ﬁms can be obtained when the objective function in Eq.(5.5) is

minimized. Consequently, the s cases are thus determined. The RLS estimator is

designed to have least prediction residuals among other alternatives. In cases, it is

possible to have several equivalent optimum solutions of f,,,. Under such circum-

stances, the one with the maximal determinant det(X"X) will be chosen because of

its small variance than others as argued for the Effective Independence method in
Section 2.1.4.
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Furthermore, the number of cases s retained in the RLS is required to be more than
or at least equals to that of the parameters. Otherwise, no unique solution exists. At
the same time, the number of cases s is usually much less than the number of all n

cases, as explained in Section 2.1. In practice, the selection of s cases in the RLS
must guarantee that ﬁRLS is an appropriate approximate of BOLS. Trial and error is

recommended to find a suitable quantity and to avoid loss of much information.

5.2.3 A demonstration example of the mechanisms of the RLS

To illustrate the basic ideas and fundamentals of the proposed RLS in Section 5.2.2,
a simple regression example is employed. Table 5-1 shows the data for drawing
Fig.5-1 and Fig.5-2. The data is borrowed from Example 5.1 in [WEISBERG 1980].
Fig.5-1 is drawn from the data set of Case 1 in Table 5-1, and Fig.5-2 from the data
set of Case 2. The x coordinates for both cases are the same and the difference re-

sides only in the responses y.

Regression plot for normal scattered data
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Fig.5-1 Regression line for normal scattered data
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Fig.5-1 and Fig.5-2 show two different scenarios. In Fig.5-1, all the data are randomly
scattered and can be said to approximate a normal distribution. However, in Fig.5-2,
almost all the data except one (data point 13) are located on a robust regression line
(the red dotted line with s of 13). The regression line of the OLS is the centered line
in Fig.5-2. The robust estimator deviates much from that of the OLS because of their
difference in the judgment of all cases. The OLS used all cases for regression,
whereas the robust estimation used only 13 out of the total 14 points (without data
point 13).

Regression plot for non-normal scattered data
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Fig.5-2 Regression line for non-normal scattered data

Of course, the example is an extreme case, in which the regression parameter is
pathologically affected by the data point 13. Nevertheless, it demonstrates the fun-

damental idea behind the proposed RLS, i.e. to approximate the OLS estimator of
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the whole data set with an almost unbiased estimator with a limited data set that in-

cludes only s data points.

We recur to Fig.5-1 and Fig.5-2 for explaining the representative feature of the RLS
method. If m equals to 2 in the RLS, the selected data points are indicated by circles
in both figures. For Case 1, data points No.2 and No.6 are finally selected and the
regression line fitted by the RLS approximates that by OLS perfectly. For Case 2,
however, data points No.7 and No.11 are selected. This simple regression example
demonstrates the basic ideas behind RLS, i.e., to choose the optimal approximation

of the coefficients estimation provided that the number of data points is limited.

5.3 Computation of the representative least squares method

It is obvious that the RLS estimator is not monotonically non-decreasing with s, and
the RLS fit has to be found by examining all subsets of size s. As also mentioned in

the Introduction, the sensor placement problem is fundamentally a discrete integer

!
optimization problem. The total selection pool includes C’ :# options. When
n—ys).s.

the number of candidate sensors n is very large, the global optimal search for combi-
nations of different sensor positions is prohibitive. To obtain some insights in the pro-
hibitiveness of possible combinations, we take a small example in which n equals
200 and s equals 20. Even in this small example, the total selection alternatives will
reach as great as 1.6136e+027. Therefore, heuristic search is incapable of the inten-

sive computation of the proposed RLS.

In this section, three sub-optimal methods will be investigated to solve the hard opti-
mization problem, namely, genetic algorithm, bidirectional search algorithm and sub-

space approximation method.

5.3.1 Computation of the RLS estimator through genetic algorithm

Genetic algorithms are a particular class of evolutionary algorithms that use tech-
niques inspired by evolutionary biology such as inheritance, mutation, selection, and
crossover [COLEY 1999; GoLDBERG 2002]. A tailored genetic algorithm is implement-

ed as a computer simulation in which the genome evolves toward better solutions.
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The genome or chromosomes are a population of abstract representations of candi-
date solutions to an RLS minimization problem. Each solution is called an individual.
Solutions are represented in binary strings of Os and 1s in our implementation. The
evolution starts from a population of randomly generated individuals and happens in
generations. In each generation, the fitness of each individual in the population is
evaluated. A predefined amount of individuals are stochastically selected according
to a rose wheel from the current population based on their fitness, and are possibly
recombined (crossover) or even mutated to form a new population. The new popula-

tion is then used in the next iteration of the algorithm.

Genetic algorithms, categorized as global search heuristics method, are expected to
find the global optimum solution [GUO et al. 2004; MiTCHELL 1996]. In the following,
we describe briefly the coding, crossover and mutation parts of our algorithm, which
is a modified version of the fortran program in [COoLEY 1999]. Other common parts,

such as initialization, selection, are similar to a common genetic algorithms approach.
Coding part

A binary coding is embedded, and the coding length is n (the number of rows of the
design matrix, or number of candidate sensor positions). If the ith bit of a string is 1,
then the ith row of the design matrix is selected. The number of bits of value 1 in a
string equals to s (the number of rows of the design matrix to be selected). For in-
stance, a string 000010000010 indicates that the fifth and tenth rows are selected,

and that s equals 2, and n equals to 11 respectively.

Parent1 |0|0|{0(0|1]0|0|0|0|1]|0

Parent2 |0|{0|1|({0|0|0(0|1]|0|0]|O0 Parent |0/0|0|0|1(0|0]|0|0|1]0

Offspring1 |{0|({0|0|0(0|0|0O|1]|0|1]|0

Offspring| 0| 0|0|0|0|0|0|1|0]|1]|0

Offspring2 |0 ({0|1]0(1]0|0|0|0|0]|O

Fig.5-3 Sketch of crossover template Fig.5-4 Sketch of mutation scheme
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Crossover part

A crossover template is tailored for the RLS problem. First, two parent strings are
compared and a crossover template is searched, in which both strings have the
same number of 1s. Although the length of a crossover template varies with different
parent combinations, such a template is always guaranteed to be found. The two
parent strings then exchange the selected section of the crossover template, and
give birth to two offsprings. Fig.5-3 illustrates this process. The use of crossover
template assures the consistency of the number of 1s in an offspring string inherited
from parents. In other words, the total number of sensors to be selected would not

unexpectedly increase or decrease.

Table 5-2 Cases selected for RLS estimators using genetic algorithm

Number of cases | Data cases selected by genetic algorithm | Values of the objective function
2 2,6 0.02695
3 1,2,6 0.00279
4 1,2,5,6 0.02872
5 2,5,6,7,8 0.02661
6 3,4,5,6,8,9 0.02005
7 3,4,6,7,8,9,10 0.01360
8 3,4,5,7,8,9,10,11 0.00106
9 2,3,4,5,7,8,9,10,11 0.00010
10 2,3,4,5,6,7,8,9,10,11 0.00019

An epoch approach is embedded in the algorithm [VAN NIMWEGEN et al. 1999]. The
idea is based on the observation of brief bursts of change between epochs in natural
evolution, and innovation is then introduced. In this way, epoch behavior aids to en-
hance genome diversity in a generation and as well to avoid premature. Moreover,
the search speed is improved by using elitism, by which the best member in a gener-

ation is ensured to propagate into the next generation. In this manner, the possibility
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of the algorithm to locate the true global optimum is increased. These genetic algo-

rithm techniques have been coded into a Matlab program.

Table 5-2 shows the computation results using the genetic algorithm described
above. The number of cases regressed for RLS estimators range from 2 to 10 for
Case 1 of Table 5-1. The data cases selected in a smaller data subset does not nec-
essarily be included in a relative larger dataset. For instance, data 2 are chosen for
the number of cases, s of 2, 3, 4, and 5 respectively, but not selected for s of 6. It is
noted that the search result using the genetic algorithm for s of 2 agrees exactly with
that of a traditional combinational search, which is simple for this small-scale problem.
This validates the effectiveness of the techniques used in the coded genetic algo-

rithm program.

I:II:|3 T T T T T T T
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Murmber of cases

Fig.5-5 Values of the RLS objective function for increasing number of cases

The values of the objective function according to Eq.(5.6) are listed in the 3rd column

of Table 5-2, and are also drawn in Fig.5-5. The curve has a decreasing trend with
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the increase of the number of cases s. This is evident since the RLS estimator with
more cases is expected to approximate the OLS estimator with all the cases with
more accuracy [ROUSSEEUW and LEROY 1987]. However, the curve is not monoton-
ically decreasing as stated in the first paragraph of this section. For instance, the
RLS estimator with 3 cases is better than that with neighboring cases. The fluctuation
of objective function may indicate certain potential applications in choosing an opti-
mum number of cases for RLS (or optimum number of sensors in sensor placement

problem), which deserves further research.

5.3.2 Computation of the RLS estimator through subspace approximation

A suboptimal deterministic solution through subspace approximation in finite steps
can be found by taking the weight matrix W in Eq.(5.5) as an identity matrix. In this

case, the objective function then boils down to minimize

2

Jms(ﬁs) :Hﬁs _B()LS (5.9)

The selection of s out of n rows of X is equivalent to multiplying a permutation matrix

P, PcR"™, so that
A
PX:{B] A eR" (5.10)

where A is formed by s rows of X. We wish to find A in a deterministic manner to

minimize the objective function in Eq.(5.9).

If we assume first the nonsingular matrix A is known, then ﬁs can be written as fol-

lows,

By =(ATA) ATy, = A"y, (5.11)

3

where y, is formed by s rows of y specified by the permutation matrix P as A out

of X. Since we have fitted the underlying linear model using all the rows of X, that

is,
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¥ =Xfos = XX X)Xy (5.12)
where y =y +r, y e range(X), and r,, i =1,2,...,n are the fitting errors.

The OLS estimator f,,, is obtained with all the candidate data points. We manage to

compute ﬁom with the submatrix A in the sequel. Eq.(5.12) can be multiplied at both

sides by the permutation matrix P as follows:
Py =PX},, (5.13)

Substituting Eq.(5.10) into Eq.(5.13), one obtains,

RN (514

where y_ is formed by s rows of j specified by the permutation matrix P, and y, is

formed by the other n-s rows of j. Then, we can compute ﬁOLS only by A as follows,
Pos =(ATA) ATy, =AY, (5.15)

Therefore, the objective function in Eq.(5.9) is equivalent to minimize

2 2

2 2

A A 2
:Bs - IBOLS S HA+‘ A’

JRLS(BS) =

I

s

Y. Y,
(5.16)
To simplify our analysis, we assume first that the responses, y, are with identical in-

dependent fitting errors. Then, we will analyze the influence of responses with differ-

ent fitting errors.

When the fitting errors of all the responses, y, equal with each other, the Frobenius

I

s

norm of the selected s rows of r, 2, can then be simplified by a constant no mat-

ter which combination of rows are selected as long as the number of rows, s, is fixed.

The objective function in Eq.(5.16) can be further simplified to minimize the pseudo

inverse of the selected submatrix,‘A+ 2. Based on the concept of local maximum vol-

ume, which is defined as product of the singular values of a matrix, a deletion
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scheme is adopted to find the required submatrix A [PAN 2000]. To determine if a
submatrix A has a local maximum volume, one only needs to compare its volume
with the volumes of other neighboring submatrices (they differ from A in exactly one
row). An algorithm can then be established to find the suboptimal matrix A, which
has a local maximum volume. Specifically, starting from the original full matrix X, we
delete one row to minimize the Frobenius norm of the pseudo inverse of the candi-
date submatrices (the number of the submatrices equals to the rows of the matrix) at
each step until the required number of rows is reached. The analytical lower bound of
the Frobenius norm of the pseudo inverse of the required submatrix A is given in [DE
HooG and MATTHEIJ 2007]. The search of the submatrix A equals to find a reduced
subspace spanned by the columns of A approximating to the subspace originally

spanned by the columns of X.

Table 5-3 Cases selected for the RLS estimator through subspace approximation

Number of cases Data cases selected by SA Data cases selected by El
2 1,11 1,11
3 1,2,11 1,10,11
4 1,2,3,11 1,2,10,11
5 1,2,3,10,11 1,2,3,10,11
6 1,2,3,4,10,11 1,2,3,9,10,11
7 1,2,3,4,5,10,11 1,2,3,8,9,10,11
8 1,2,3,4,5,9,10,11 1,2,3,4,8,9,10,11
9 1,2,3,4,5,6,9,10,11 1,2,3,4,7,8,9,10,11
10 1,2,3,4,5,6,8,9,10,11 1,2,3,4,5,7,8,9,10,11

The example of Case 1 in Table 5-1 is employed here again for demonstration pur-
poses. Table 5-3 shows the results using the subspace approximation (SA) approach.
The number of cases regressed for RLS estimators range from 2 to 10. The 3™ col-

umn lists also the selection result by the Effective Independence (El) method. It can
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be found that subspace approximation approach selects similar positions as El in

many cases with only slight differences.

The algorithm in the last paragraph can be extended to the case of responses with
different fitting errors, which are more common in engineering practice. Under such
circumstances, the required suboptimal matrix A is not determined only by the Fro-
benius norm of its pseudo inverse, but by the Frobenius norm of its pseudo inverse

multiplied by the norm of the fitting errors of the selected s rows.

For multiple columns of observations or measurements as different time instants, the
linear model in Eq.(5.5) can be extended with multiple regression coefficients corre-

sponding to the set of observations as,

Y =XO+E, (5.17)

where Y is an n x m matrix of observations, X is an n x p design matrix, ® is a p x
m matrix of unknown coefficients at specified time instants, and E is an n x m matrix
of unknown measurement errors. The errors are assumed to be independent and
identically distributed with zero mean and variance & for a single column of obser-

vations, and assumed to be stationary for a single row.

The solution of representative least squares boils down to find an approximation of

® with a submatrix A with a smaller row dimension,

I pis ((:)S) = Hés - (:)OLSuz = ‘Y+X - A+XS(A)H2 (5.18)

We can use the concept of the Gauss-Jordan idea to invert a matrix and get its ap-
proximation. Then, we can arrive at some norm approximation of the column esti-

mates of the coefficients. For multiple responses, y, the fitting errors norm of the

selected s rows can be perhaps approximated by the standard deviation of each row

of the multiple responses, y , which deserves yet further investigations.

5.3.3 Computation of the RLS estimator through backward and forward

combinational approach
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Alternatively, the RLS estimator can be solved through a backward and forward
combinational approach. The hybrid approach, which combines the advantages of
both forward addition and backward deletion approaches, is inspired by the idea in
our solution of the Extended MinMAC algorithm proposed in Chapter 3. It is of inter-
est to note that the RLS estimator is not monotonically increasing or decreasing with
the addition or deletion of an additional point, which is quite similar to the feature of
the MinMAC algorithm. Therefore, we can search from both forward and backward
directions to approximate the global minimization of the objective function defined in
Eq.(5.5) and select the one with a smaller distance. This is the fundamental concept

of the approach.

Similar to that of the extended MinMAC algorithm, the backward approach can be
directly applied to the solution of the RLS to delete one point in a step. The objective
function can then be drawn with respect to the decrease of the number of points used.

Consequently, an optimal point can be located.

However, the forward approach has to be modified to adapt to the characteristics of
the RLS since it is not straightforward and easy enough to find an intuition point set
that can satisfy the objective function in Eq.(5.5). Nevertheless, an initial set with
certain number of points has to be selected for the forward approach. It is known that
the least number of points in the initial set has to be no less than the number of the
columns of the design matrix X since otherwise no unique solution exists for the
RLS estimator. A convenient choice of the least number of an initial point set is to
equal it to the column dimension of the design matrix. The distribution of the chosen
points in the initial point set can be found using the genetic algorithm approach as
outlined in Section 5.3.1. Once the initial point set is chosen, we can then consider
an additional point one by one, and select one that minimizes the objective function
at each step until a required number of points are selected. This is the backward se-
quential approach. A curve describing the minimized objective function in each addi-

tion step is obtained with respect to the increasing of the number of points used.

The third step of the hybrid approach is select one curve that has a smaller objective
function value at the desired number of points. Consequently, the RLS is obtained

and the fitted points are determined as the same time.
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5.3.4 Discussions on the computations of the RLS estimator

Although three approaches have been investigated to find the solution to the RLS
estimate, there is no perfect algorithm to find the global optimum up to date. The last
two methods are suboptimal in the sense that they are approximate and only optimal
in the step the computation is performed. The first genetic computation approach
outperforms the other two. However, it has the disadvantage of complexity and suf-

fers from huge computation burden.

5.4 Discussions on the representative least squares estimator

According to the theory of matrix perturbation analysis, the RLS estimator can be re-
garded as a perturbed OLS estimator after certain rows of the observation vector and
the design matrix are zeroed out. The subsection will concentrate on this aspect and
discuss the contributing factors that influence the RLS estimator. Furthermore, a
simplified approximate to the RLS estimator utilizing the special structure of the RLS

problem is obtained.

5.4.1 Analysis of the RLS estimator with normal equations

For the convenience of subsequent analysis, we employ the normal equation of

Eq.(5.1) for analyzing its sensitivity to perturbations in X and y as follows,
Af=b (5.19)

where A=X"XeR”” and b=X"yeR”. A is nonsingular since X is of full column

rank. A measure of the linear system sensitivity of Eq.(5.19) can be obtained by con-

sidering the parameterized system,

(A +eF)B(e)=b +&f, f(0) = B (5.20)

where FeR”” and f e R”. Since f(¢) is differentiable in a neighborhood of zero

considering that A is nonsingular, the Taylor series expansion for f(¢) has the form

B(e) = p+&B0)+O(?) (5.21)
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where B(0)=A"'(f —Fp)[GoLuB and VAN LoAN 1996]. Using the 2-norm, the follow-

ing relationship can be established,

Be)—pB A fl, >
|8 - 8l, oA, I, 2 <pfja] {||||’AJ|||2+||F||2}+0(8) (5.22)

Substituting the inequality |b||, <||A|| ], into Eq.(5.22), we obtain,

WSHAIHZHA”zﬂd |||| ||||2 +lel |||| ||||2 }+O(82) (5.23)
2 2
The terms in the r.h.s. of Eq.(5.23), |¢] ||||b||||2 and ¢ |||| ||||2 ,

2

A and b respectively. The condition number, ¥(A) | is defined by

K(A) = A7 |A], (5.24)

From Eq.(5.23), it is clear that the relative error in B(&) can be x(A) times the rela-
tive errorin A and b _ In this sense, the condition number quantifies the sensitivity of

the linear equation in Eq.(5.19). It is worth noting that condition number can be de-
fined by other consistent norms, and the condition number of a singular matrix is in-

finity for convention, i.e. k(A) = for a singular A

Since the 2-norm of A is its largest singular value, the condition number of A can be

further rewritten as,

o, (A)

w(A) =[a” Il = oS

(5.25)
where ¢,(A)and ¢ ,(A) are the largest and smallest singular value of A , respective-

ly. When x(A) is large, then A is said to be an ill-conditioned matrix. On the contrary,

matrices with small condition numbers are said to be well-conditioned. The condition

number of A is a squared x(X) since A=X"'XeR"”?",

Recall that the change of f(¢) in Eq.(5.23) comes from two contributions, one is the

change in the design matrix A and the other in the responses b. An interesting but
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very difficult mathematical problem concerns the evaluation of both contributions.
When all the components of the responses, y, lay on the fitting line perfectly, i.e., the
rows other than the first m rows in the design matrix can be expressed as linear
combinations of the first m rows., then the only remaining factor to determine the re-
gression coefficient is xk(A). In general, the variation in the design matrix can be said
to have much more impact on f(e) since the condition number of the design matrix

has an amplification effect on the total changes.

Nevertheless, it should be noted that the above derivation is based on the assump-
tions that the change in A and b are relatively small. In fact, certain rows in A and
b are changed to zeros for sensor placement methods or in RLS method and conse-
quently such small perturbation assumption can’t always hold. Which one contributes
much dominantly to the total relative error than the other is depending on the applica-
tions. Therefore, the result in Eq.(5.23) can only provide us with a rough idea in what

respect we should pay attention to, but not confine us to its quantitative bounds.

5.4.2 Analysis of the RLS estimator through matrix perturbation

Due to the special structure and the feature of the RLS, a very simple RLS estimate
can be obtained through matrix perturbation. In RLS, certain rows of the observations
and the design matrix are to be removed (zeroed). For the convenience of derivation,
we operate directly on Eq.(5.1) and it is assumed that the to be removed r rows is

exchanged to the last rrows in y and X. The perturbations can be written as,
y=y+dy, X=X+0X (5.26)

The perturbed parts can be viewed as a linear row combination of the original matri-

ces,
dy =Sy, 0X=SX (5.27)

Where the selection matrix S is zeros everywhere except the last r rows with -1 as

their diagonals as follows,
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S (5.28)

0 -1

One basic premise is that the perturbed matrices are small and the matrices after
perturbation are of full column rank and not degenerated. Thus, the perturbed RLS

solution to the original OLS one is,

B=p+0B= s (5.29)

We start deriving the expression for the perturbation in the RLS solution, é8. The

perturbed solution, g+ df, satisfies the normal equations

(X +0X) (X+X)(B+f)—(y+0y) =0 (5.30)
Subtracting, X" (Xg —y) =0, and neglecting second-order terms, we get

Of = X" (dy — 6XB) + (X" X) ' 6Xr (5.31)

where, X" =(X’X)"'X" and r=y—Xg. Eq.(5.31) is a general perturbation solution to
the original one, g . For the RLS at hand, by substituting Eq.(5.27) into Eq.(5.31) the

perturbed solution becomes,
P =X"(Sy-SXp)+(X'X)"'X"S'r =2X"Sr=2X"or (5.32)

Where the symmetry feature of the selection matrix, S=S", is exploited, and, ér =Sr,

is the last r rows of the residuals of the original OLS equation.

Eq.(5.32) looks very nice and of great beauty in addition to its simplicity since the
perturbation solution depends only on the inverse of X and perturbed residuals .
However, it is worth noting that the assumptions made during the derivation is that

the perturbed matrices, dy, 6X are relatively small in norm sense compared to their

unperturbed counterparts. Since the whole rows are to be removed in RLS, such as-
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sumptions could not always be valid and only in special cases can Eq.(5.32) be di-

rectly applied.

Nevertheless, a common conclusion can be drawn from the last two subsections.
That is, the condition number of the design matrix has significant or decisive influ-
ences on the RLS estimator. From the definition of the RLS estimator in Eq.(5.5) and
its step-by-step approximation in Eq.(5.32), it is easily observed that the inverse of
the observation matrix has critical influence on the solution. The bounds for the per-
turbed solution depends critically on the condition number of the design matrix. When
the responses are nearly linear to the design matrix, i.e. the responses fall almost in
the subspace spanned by the column of the design matrix, then the fitting residuals
are approximate to equal to each other. Under these circumstances, the RLS estima-
tor is almost completely controlled by the condition number of the observation matrix,

cond(X). Consequently, it is reasonable to use cond(X) as a criterion as a good ap-

proximate of the RLS estimate. In the situations that the responses behave nonline-
arly or the fitting residuals varies significantly, the RLS estimator cannot be simply
substituted by cond(X).

5.4.3 Connection between the criterion of the Effective Independence and

that of the RLS

As analyzed in last two sections, the condition number of the design matrix plays a
critical role in the RLS. In many cases, the RLS estimator could even be simply sub-

stituted by cond(X). In this section, the connection between the criterion used in the

Effective Independence and that of the condition number is discussed in details.

The design matrix can be decomposed by the QR decomposition in Section 2.2.1.3

B ZT B B pT
N -

Since the condition number of a matrix is invariant under orthogonal transformation

as,

[HORN and JoHNSON 1991], we have,
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cond(A) = cond(R) (5.34)

On the other hand, Eq.(5.33) can be alternatively rewritten as,

a7 2R 5.35
-3 _Q[Oj (5.35)

Likewise, the reduced design matrix after a row is deleted can be written as,

') (R
A Z(Azj—Ql(Oj (5.36)

Consequently, the connection between the condition number of A, and that of A
can be obtained when the relationship between R,and R are derived. Multiplying

Eq.(5.35) by its transpose on both sides, it follows that,
ASA =A"TA—z*ZT (5.37)

Substituting the QR decomposition of A in Eq.(5.35) and that of A,in Eq.(5.36), the

relationship between R,and R can be established as,
R/R, =R"R—z*z" (5.38)

Therefore, R, can be regarded as a rank-one modification to R . Since the eigenval-

ues of an upper triangular matrix are its diagonal terms, the condition number of R
is completely controlled by its diagonal components. Moreover, the change of the
diagonal terms of the upper triangular matrix after a row is removed from the design

matrix can be further simplified as,
R, =R, -z (5.39)

By the principle of the El in Section 2.2.1.3, the row with the minimum norm of the

mode shape matrix will be removed in each iteration, i.e., the row to-be-removed has

the minimum norm among all other candidate rows, |z|, is minimized in each step.

Consequently, R, is the minimum perturbation of R among other alternatives, which



5 Load Dependent Sensor Placement Method Based on RLS 87

results in that the change of the condition number of R, from that of R is minimally

changed in each iteration of the EI.

When the solution of the RLS is implemented in a sub-optimal sense, i.e. to seek for
the minimum change of the condition number of the design matrix, the criterion of the
RLS agrees exactly with the Effective Independence method. Furthermore, The RLS
searches the minimum change of its original condition number of the design matrix
with combinational rows in a global sense, whereas the El tracks the minimum
change of the condition number in each of its iterations. Therefore, the RLS can be
regarded as an extension of the El in this sense, which further justifies the proposal

of the RLS as a general criterion for sensor placement in structural health monitoring.

5.5 Load dependent sensor placement method based on the RLS

Based on the insights gathered in the proposed new evaluation criterion in Section
4.2 and the RLS theory developed in Section 5.2, a novel load dependent sensor

placement method is advanced in this section.

5.5.1 Basic concept of the proposed load dependent sensor placement

method

Under the term ‘load dependent’, we mean that the proposed sensor placement
method is dependent on the responses of a structure, and consequently, on the ac-
tual loading situations besides the inherent characteristics of a structure: that is, the
fitting of the multivariate regression equation is determined by both the mode shape
matrix and the responses. As commented in Section 2.2, the existing sensor place-
ment methods share a comment feature, which is that sensor positions are deter-
mined once the mode shape of a structure is given. No matter what responses will
the structure undergo, the finally selected sensor positions are the same and don't

take actual structural responses into consideration.

Contrast to the existing sensor placement methods, the load dependent sensor
placement method under discussion allows the consideration of the degree to which

the mode shapes participate in actual structural responses. Its objective function is



88 5 Load Dependent Sensor Placement Method Based on RLS

the criterion proposed in Eq.(4.9) in Section 4.2.2. Under the almost global unbiased-
ness criterion, we strive to choose a given number of sensor positions that map the
mode shapes of interest to the actual structural responses as closely as possible. In
other words, structural responses will fall into the space spanned by the mode
shapes as much as possible. Only in this way, can we fit the structural responses
with the mode shapes, of course a truncated one, as accurately as possible. This is

also the requirement for better modal parameter identification.

The essential feature of the widely used modal parameter estimation methods, for
instance, the least squares complex exponential, the polyreference time domain, Ib-
rahim time domain, eigensystem realization algorithm[JUANG 1994], rational fraction
polynomial, polyreference frequency domain and the complex mode indication func-
tion methods, is to fit the measured structural responses with the to-be-identified
mode shapes as good as possible [ALLEMANG and RESERVED 1999; Ewins 2000]. If
the measured structural responses can be regressed by the to-be-identified mode
shapes at certain sensor positions better than other alternatives, these sensor posi-
tion are the best choice since all the modal parameter estimation methods are implic-
itly or explicitly based on the principle of the least squares method in regression no
matter it is in the frequency or the time domain [ALLEMANG and BROWN 1998]. There-
fore, the objective of the proposed load dependent sensor placement method agrees

naturally to the aim of modal parameter estimation methods.

Obviously, the objective of the proposed load dependent sensor placement method
can not be fully achieved when the theoretical mode shapes, which are to determine
sensor positions a priori, deviate much from that of estimated mode shapes from ac-
tual structural responses. This is a basic assumption for all sensor placement meth-
ods assumed throughout the dissertation. Another implicit assumption is that the
mode shapes participate actively in the measured structural responses. In other
words, much of the measured energy of the structural responses is contained in the
interested mode shapes. Otherwise, the identified mode shapes can not sufficiently

reflect structural dynamic features and result in loss of information.

Hence, sensor placement can be cast into a function of both structural characteristics
and of where and how the structure is excited. This is the initial concept to propose
the load dependent sensor placement method to achieve better identification of struc-

tural dynamic characteristics.
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5.5.2 Computational considerations of the load dependent sensor place-

ment method

The solution of the proposed load dependent sensor placement method can be

achieved through the three methods as explained in Section 5.3.

Usually, multiple responses at different time instants are measured and will be fitted
such as that in the RLS. Therefore, the RLS objective will be used in the norm sense
of a matrix with each column corresponding to a time instant. The minimum thus
achieved will be regarded as the best sensor positions to identify interested mode

shapes as illustrated in Section 5.3.2.

Another consideration is related to unavailable responses. Structural responses used
in Eq.(5.1) can be gathered by a pretest for an existing structure for health monitoring.
It is, of course, not necessary to measure the responses at all candidate sensor loca-
tions. However, it is recommended to locate the pretest measurements in a spatially
separated manner so that the measured responses can represent more rationally the
behavior of the structure. For a structure to be built, the required measured respons-
es can be approximated through analytical computation by assuming several loading
cases as is normal in the design phase of a structure. If there are empirical meas-
urements about the loadings in site where the structure will be constructed, for ex-
ample for a bridge, the speed and spectrum of the wind, and the estimated traffic

loadings, then the predicted responses will be more reliable.

Load dependent doesn’t necessarily mean that we have to totally change the sensor
positions every time for structural dynamic testings or long-term health monitoring,
which it not only inconvenient but unpractical. What we want to emphasize is that the
sensors should be deployed with the consideration of typical structural loading cases
in order to realize better modal identification. For a structure, it bears, in normal cas-
es, several loading conditions. The combinations of these loading conditions can be
used to find typical structural responses, and thus to locate better sensor positions

with the idea of the proposed load dependent sensor placement method.

5.5.3 Application of load dependent sensor placement method to the 1-40
bridge
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We use again the 1-40 Bridge to illustrate the idea and computation of the loading
dependent sensor placement method. The details of the 1-40 Bridge were already
introduced in Section 3.3 where the responses were assumed to have same ampli-

tudes for all candidate sensor positions.

The actual responses, except the frequency response functions, have not been rec-
orded during the bridge tests. We simulated the responses with the six modes of in-
terest and a mode participation factor. Five percent of Gaussian random noise

multiplied by amplitude of the maximum of the simulated response was added.

Under these circumstances, the sensor positions computed by subspace approxima-
tion of the load dependent sensor placement idea were S7,58,511,S12,N2,N12 (re-
fer to Fig.3-1), which differ apparently much from that given by the EI
(S3,57,S11,N3,N7,N11). The sensor set chosen by this case with a relative small
subset approximate to the original least squares estimator with the whole data set.
These sensors are considered representative and sufficiently approaching to portrait

the scenario defined by the original full data set under such loading conditions.
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6 Experimental Validation

In this Chapter, the load dependent sensor placement method based on the Repre-
sentative Least Squares method proposed in Chapter 5 is to be applied to a truss
structure. The identified mode shapes are employed to verify the effectiveness of the
load dependent sensor placement method through comparing it with other commonly
used sensor placement methods as discussed in Section 2.1 in terms of modal iden-

tification accuracy.

6.1 Model structure

The experimental structure is a space frame truss with 6 bays as shown in Fig.6-1.
The dimension of each bay is 500mm in x direction, 300mm in y direction, and
500mm in z direction. The y and z dimensions are such arranged to allow the y di-
mension relatively weak and to decrease the participation of torsional modes as little
as possible. The total height of the truss is 3 meters and the 6 bays are equally divid-
ed. The truss is pinned firmly at one end on the floor with x direction upward pointed
through a steel base. The bays of the truss are numbered 1 to 6 from the bottom up-
wards. The steel bars used to construct the truss are formed rectangular hollow bars,
[ 20mm x 20 mm x 2mm according to the standards of DIN59410.

Table 6-1. First 14 calculated natural frequencies and modes.

Mode
1 2 3 4 5 6 7
Number
Frequencies
5.482 17.049 17.770 25.939 30.640 42.537 44.982
(Hz)
Ist 2nd o o o
Mode o o ) Ist Bending in | 3nd Bending in ) 4th Bending in
Bending in | Bending in 1st Torsional 2nd Torsional
property Z Y Y
Y Y
Mode
8 9 10 11 12 13 14
Number
Frequencies
53.129 59.283 62.855 70.101 72.287 79.438 82.901
(Hz)
4th 5th Bending in Y Mixed Mixed Mixed Mixed
Mode 3nd o ) ) ) ) )
) Bending in Mixed with little Bending and Bending and Bending and Bending and
property Torsional
Y Torsion Torsional Torsional Torsional Torsional

In order to decrease the natural frequencies of the truss within the measurement
range of our experiment facilities, lumped masses of 2kg are attached at each node,

respectively. In total, 24 masses are used. At a result, fourteen modes fall below 100
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Hetz, among which five are bending modes in the weak y direction as shown in Table
6-1.

Fig.6-1 Truss structure in experiment
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The frequencies listed in Table 6-1 are computed from the FE model as shown in
Fig.6-2. The Young’'s modulus of the bars is 210,000 MPa, the Poisson’s ratio is 0.33
and the density of steel is 7850 kg/m®. There are in total 28 nodes, among which four
nodes are fixed to the floor base as shown in the photograph in Fig.6-1. In Fig.6-2,
the numbers in bracket indicate node numbers. The bars are modeled of space
frame elements to compute the theoretical eigenfrequencies and mode shapes. A
space frame element is a straight bar of uniform cross section which is capable of
resisting axial forces, bending moments about the two principle axes in the plane of
its cross section and twisting moment about its centroidal axis, and a consistent
mass matrix is used [RAO 2005], i.e. the same displacement model is used for the
derivation of both stiffness matrix and mass matrix. Each node has six DOFs and
there are in total 168 DOFs, among them 84 are rotational dofs that are not meas-

ured in the following experiments due to its difficulty [KATTAN 2003].

Fig.6-2 Finite element model of the truss

Fig.6-3 and Fig.6-4 show the first two bending modes in the weak y direction, respec-
tively. It can be easily observed that all bays translate when the truss vibrates in a

certain bending mode. Under such circumstances, the torsional responses are min-
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imized and can, therefore, be neglected. Consequently, one node in a bay can suffi-
ciently indicates the dynamic behaviour of the whole bay. In the subsequent sections,
the truss is then represented by only six nodes, each of which represents a bay

where it locates when presenting mode shapes as shown in Fig.6-5.

MODE 1, FREQUENCY =5.482 [Hz]

Fig.6-3 the 1*' mode of the truss. (1% bending mode in the y direction)

MODE 2, FREQUENCY = 17.0493 [Hz]

Fig.6-4 the 2" mode of the truss. (2™ bending mode in the y direction)
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6.2 Experiment setup

In our laboratory, 12 accelerometers are available. They are 8 PCB ICP accelerome-
ters (Frequency range: 1 ~ 1000 Hz), and 4 HBM B12/200 accelerometers (Frequen-
cy range: 0 ~ 100 Hz). Therefore, the effective measurement range of our
accelerometers is below 100 Hz, which sufficiently covers the first 14 mode shapes

as observed in Table 6-1.

N6 (25.26.27.28)
N5 (21,22.23,24)
N4 (17,18.19.20)
N3 (13.14.15,16)
N2 (9,10,11,12)

N1 (5.6.7.8)

Fig.6-5 Simplified truss representation with each node indicating one bay (numbers in

brackets are corresponding node numbers in Fig.6-2)

The data acquisition system is DIAdem with Spider 8 by HBM. The 12 acceleration
signals as well as two force signals from the shakers are sampled at a rate of 1200
Hz and stored in the computer in .asc format for later processing. All A/D converters
operate synchronized and supply up to 9,600 measurements/s from each channel
with a resolution of 16 bit. Two electromagnetic shakers are fixed horizontally on the
wall of our laboratory in parallel to excite the truss synchronously. To minimize the
torsional responses of the truss, the excitation signals input to the shakers share the
same signal generator. The type of the signal generator is Agilent 3312A, which can
produce signals up to 15MHz with arbitrary waveforms. The generated signals are
then amplified by an amplifier and coupler Kistler Type 5134 and redirected to the

two shakers to excite the truss.
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Moreover, a small crane, which was used to move the two shakers with steel ropes,
was fixed just under the room ceiling as indicated on the top of Fig.6-1. The two
shakers can, therefore, be conveniently lifted up or lowered down by the crane to any
of the six bays in order to excite the truss at different horizontal levels. This experi-
mental arrangement is deliberately designed to test the influence of different excita-
tion positions on the placement of sensors, which is the central concept of Chapter 5,
i.e. sensors placement depends not only on the structure itself, but also on its actual

loading conditions in order to achieve better modal identification accuracy.

Six setups with different shaker positions are tested. In each setup, both shakers are
bolted to two horizontal nodes of a bay in both sides of the truss to excite it transla-
tionally. To take the Setup 2 for example, both shakers are connected to the Bay 2 at
side nodes as shown in Fig.6-1. Similarly, Setup 1 to Setup 6 are tested when the
shakers are located at the Bay 1 to Bay 6 to excite the truss sequentially. In all of the
six setups, the identification accuracy of the frequencies and mode shapes can then
be obtained and is compared among different setups to evaluate which of the combi-

nation of sensor positions are better than others.

6.3 Sensor placement for the truss with traditional methods

As discussed in Section 2.2, the existing sensor placement methods share a com-
mon feature, which is that the sensor positions are solely determined by the structure.
Once a structure model is given, the sensor positions are thus determined as well. To
take the truss structure under experiment for example, the optimal positions to deploy
sensor are consequently determined once a certain sensor placement method is

chosen no matter what responses the structure undergoes.

In this section, the seven influential sensor placement methods detailed in Section
2.1 will be computed to choose sensor positions for the truss. Table 6-2 lists the sev-
en methods and their ranking of the six candidate sensor positions on the truss. In
the table, the bays of the truss are numbered 1 to 6 from the bottom to the top as

shown in Fig.6-4.
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Table 6-2 shows that almost all the seven methods rank the candidate sensor posi-
tions 6, 5 and 1 the most important and the sensor positions 2, 4, and 3 the least im-
portant. For the truss, our final goal is to select five out of the six sensor positions to
deploy sensors. According to the ElI, MKE, MSSP, DPR and QR, the unselected can-
didate sensor positions should be 3, whereas 2 and 4 according to the ECP and

MinMAC, respectively.

Table 6-2. Ranking of six candidate sensor positions with the seven methods.

MKE 6 1 5 2 4 3
MKE Index 1.103 0.92557 0.86855 0.7667 0.70649 0.62966

El 6 1 5 2 4 3

El Index 0.98512 0.92069 0.87701 0.77901 0.74128 0.69688
ECP 6 1 5 4 3 2

ECP Index | 0.016056 0.004868 0.004503 0.002851 0.00166 0.000916
MSSP 6 1 5 4 2 3

MSSPIndex | 2.2759 1.9825 1.9201 1.7322 1.7194 1.6156
DPR 6 1 5 2 4 3

DPR Index 1.103 0.92557 0.86855 0.7667 0.70649 0.62966
QR 6 1 5 2 4 3
MinMAC 5 6 2 1 3 4

6.4 Comparison of the mode shapes identified with all six candi-
date sensor positions with theoretical mode shapes

In this section, the first five mode shapes of the truss are identified with all six sensor
positions with measured acceleration responses. Moreover, the identified mode
shapes are compared with theoretical ones to confirm that the modeling of the truss

is adequate to characterize the actual dynamics of the truss.

The mode shapes in our investigations are identified with the commercial software
ME'scopeVES Version 4.0 accompanied with B&K 3560C. Frequency Response
Functions (FRFs) for each response point were transferred to ME’scope via the Uni-

versal File Format (UFF). The structure was modeled in ME’scope as a wireframe,
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and each transfer FRF of impact point was associated with the appropriate DOF at
each response location. The composite FRF data set for the whole structure was as-
sembled from individual field data sets to highlight all possible global modal frequen-
cies. Five identified mode shapes with all six candidate sensor positions are listed in
Table.6-3.

Table.6-3, Identified mode shapes with all six candidate sensor positions

Mode No. Frequency | Units | Damping (%)
1 5.13 Hz 0.028
2 17.9 Hz 1.51
3 32 Hz 0.156
4 47.7 Hz 0.271
5 63.2 Hz 0.153

Nod
NO ‘ Meas.Type DOFs Units Mode 1 | Mode 2 Mode 3 Mode 4 Mode 5

0.
Residue (m/s"2)/

1 1Y:2Y 0.1348 0.3513 0.5244 | -0.5288 0.4791
mode shape N-sec
Residue (m/s"2)/

2 2Y:2Y 0.2627 0.55 0.3892 0.1159 | -0.5001
mode shape N-sec
Residue (m/s"2)/

3 3Y:2Y 0.3448 0.4766 | -0.2101 0.5176 0.1366
mode shape N-sec
Residue (m/s"2)/

4 4Y:2Y 0.4705 0.1608 | -0.5295 | -0.2557 0.3414
mode shape N-sec
Residue (m/s"2)/

5 5Y:2Y 0.5096 | -0.2317 | -0.1396 | -0.4509 -0.554
mode shape N-sec
Residue (m/s"2)/

6 6Y:2Y 0.5593 -0.517 0.4791 0.4126 0.2797
mode shape N-sec

The theoretical mode shapes computed by the FEM are numerically listed in Table.6-
4 for comparison purpose. Fig.6-6 illustrates experimentally identified mode shapes
as red dashed lines with all six candidate sensor positions. The theoretical mode
shapes computed by the FEM are shown as blue solid lines. The lower-right plot in
Fig.6-6 illustrates relative identification errors of the identified mode shapes com-

pared with theoretical ones. The identification error is summed for all six positions

that define the mode shapes of the truss according to £(%) = ”(DA _(DE%) ” , Where
4lh
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|@,||,is the absolute summation of each mode shape components. The comparison

is conducted in relative difference in amplitude of the mode shapes when both mode
shapes are normalized to unit length. It is obviously observed that the identification
error for the 4™ mode shape is the largest and the 3™ mode is the most accurately

identified mode shape with the smallest identification error.

Table 6-4. Five theoretical mode shapes of the truss
Node No. |Model | Mode 2 | Mode 3 | Mode 4 | Mode 5

1 0.1115 | -0.3285 | 0.5057 | -0.5960 | 0.4408
2 0.2362 | -0.5289 | 0.3973 0.0354 | -0.5216
3 0.3532 | -0.4561 | -0.2254 | 0.4872 0.0939
4 0.4513 | -0.1347 | -0.5365 | -0.2307 | 0.3789
5
6

0.5260 | 0.2702 | -0.1308 | -0.4312 | -0.5620
0.5715 | 0.5597 | 0.4803 | 0.4088 | 0.2557
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Fig.6-6 Mode shape comparison, blue solid line — theoretical; red dashed line — identified.
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Moreover, the MAC matrix is computed as the same time as another alternative
evaluation means. Fig.6-7 shows the MAC values between the identified mode
shapes with all six candidate sensor positions and the theoretical ones in Fig.6-7b
and the plot in Fig.6-7a. The MAC values shows also that the 3" mode shape is most
accurately identified whereas the 4" is comparatively not, which confirms the conclu-

sion drawn from Fig.6-6 once again.

The MAGC matrix

0.9979 0.0001 0.0014 0.0012 0.0000
0.9946 0.0004 0.0004 0.0000

2 o
2o

0.9992 0.0032 0.0013

MAC values

o
(&)

0.9871 0.0014
Sym. 0.9942

Made Murmber: & 1
Mod2 Number : §

Fig.6-7a. MAC plot. Fig.6-7b. MAC values.

Furthermore, all the values of the diagonals of the MAC matrix in Fig.6-7b are ex-
ceeding 0.98. Therefore, the identified mode shapes agree, in general, with the theo-
retical ones perfectly well. It is worth noting that the identified mode shapes in this
section are obtained from measured responses at all the six candidate sensor posi-
tions, which is not the case for the subsequent comparisons anymore and noted here

for distinction.

6.5 Experimental verification of the load dependent sensor
placement method

In this section, the difference between the mode shapes identified with all the six
candidate sensor positions and the mode shapes identified with only certain five can-
didate sensor positions is compared, which is used to verify the theory of the load

dependent sensor placement method proposed in Chapter 5.

In the truss model, we can identify the mode shapes of the truss with six different

setups. Therefore, it is more convenient and vivid to directly compare the accuracy of
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the identified mode shapes instead of the response fitting since mode shapes are the
ultimate goal for evaluating sensor placement in the theory of the load dependent
sensor placement method. In fact, the comparison of mode shapes is equivalent to
comparison of goodness-of-fit of responses in the RLS in the computed cases as
discussed in Section 5.5. In the following, the measured responses in Setup 2 and
Setup 5 are employed to identify the first five mode shapes and the identification ac-

curacy is then compared.

6.5.1 Comparison of the identified mode shapes with five candidate sensor

positions in Setup 2 with theoretical ones

In this subsection, the measured responses of Setup 2 will be used to identify the
mode shapes of the truss. In Setup 2, both shakers excite directly the truss through
the two connection nodes at the Bay 2 and six acceleration responses are recorded.
Furthermore, we will sequentially exclude one measurement at a certain sensor posi-
tion and identify the five mode shapes with the responses at the five remaining sen-
sor positions. The identified mode shapes with five components are then compared
with the theoretical ones that are reduced accordingly. First, Sensor 1 at Bay 1 will be
excluded and then Sensor 2 at Bay 2 until Sensor 6 at Bay 6. These cases are
dubbed as Case 1 to Case 6 and listed in Table 6-5. All the cases are conducted un-
der Setup 2.

Table 6-5. Mode shape identification error in Setup 2

Case Absolute | Relative
Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5
No. Error Error

1 0.0652 0.1631 0.0369 0.1377 0.1351 0.5380 0.2637
0.0611 0.1875 0.0594 0.1520 0.1759 0.6358 0.3067
0.1029 0.1767 0.0488 0.2406 0.1269 0.6959 0.3422
0.1093 0.1515 0.0642 0.2125 0.1475 0.6849 0.3338
0.1076 0.4094 0.0507 0.2371 0.1977 1.0025 0.4912

0.1452 0.1067 | 0.0676 | 0.2438 | 0.1476 0.7110 | 0.3519

SN | B W
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Fig 6-8 illustrates the comparison for all 6 cases. The first five plots in Fig.6-8 illus-
trate the theoretical mode shapes in blue solid lines, whereas the experimentally
identified mode shapes in red dashed lines. From Fig.6-8 (f), it is easily observed that
Mode 4 has a large identification error than the other 4 mode shapes in Case 6. If the
measurement responses at Bay 5 are not used in the identification, Mode 2 deviates

much from its theoretical one in Case 5 as interpreted from Fig.6-8 (e).

The lower-right plot in Fig.6-8 shows relative identification errors (%) of the identified
mode shapes compared with theoretical ones. The absolute identification error for
each mode and each case are numerically listed in Table 6-5. The summations of
absolute and relative identification errors for all 6 cases are listed in last two columns
of Table 6-5, respectively. If one sensor position is absent, for instance, Node 1 ab-
sent in Case1 and the identification error is large, then that sensor position would be
more important. Consequently, the relative importance of all the six candidate sensor

positions is ranked decreasingly as: 5, 6, 3, 4, 2, and 1 according to Table 6-5.

Therefore, the best sensor sequence is 5, 6, 3, 4, 2, and 1 for the loading case of
Setup 2. This sensor sequence differs much from those ranking sequences by the
traditional methods as in Section 6.3, where most of the methods indicate that Node
1 is very important. However, Node 1 ranks the least importance in Setup 2. This
result infers that sensor placement should be dynamic and sensors ought to be de-

ployed according its actual responses.

6.5.2 Comparison of the identified mode shapes with five candidate sensor

positions in Setup 5 with theoretical ones

Similar to Section 6.5.1, we will sequentially exclude one measurement at a certain
sensor position and identify the five mode shapes with the remaining five sensor po-
sitions and compare it with the reduced theoretical mode shape in Setup 5, i.e. the
two shakers are now located at the Bay 5 to excite the truss. First, Sensor 1 at Bay 1
will be excluded and then Sensor 2 at Bay 2 until Sensor 6 at Bay 6, and these cases
are dubbed as Case 1 to Case 6 and listed in Table 6-6. All the cases are conducted

under Setup 5.
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Fig 6-9 illustrates the comparison for all 6 cases. The first five plots in Fig.6-9 illus-
trate the theoretical mode shapes in blue solid lines, whereas the experimentally
identified mode shapes in red dashed lines. Fig.6-9 (c) shows that Mode 2 and Mode
4 will have relatively large identification errors if the measurement responses at Bay
3 are excluded in the identification process. By comparison, the mode shapes identi-
fied in Case 6 deviate much from its theoretical ones than those identified in Case 5

as interpreted from Fig.6-9(e) and Fig.6-9(f).

The lower-right plot in Fig.6-9 shows relative identification errors (%) of the identified
mode shapes compared with theoretical ones. The absolute identification error for
each mode and each case are numerically listed in Table 6-6. The summations of
absolute and relative identification errors for all 6 cases are listed in last two columns
of Table 6-8, respectively. The relative importance of all the six candidate sensor po-
sitions in terms of the identification accuracy for the mode shapes is ranked decreas-

ingly as: 3, 5, 6, 2, 4 and 1 according to Table 6-6.

Table 6-6. Mode shape identification error in Setup 5

Node Absolute | Relative
No. Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 Error Error
1 0.0973 ]0.2293 | 0.0529 |0.1238 | 0.0570 0.5604 | 0.2728
2 0.0954 |0.2749 ]0.0336 |0.1146 |0.1234 0.6417 | 0.3098
3 0.0881 0.2827 ] 0.0468 | 0.2011 0.1203 0.7390 | 0.3624
4 0.0976 | 0.1693 | 0.0545 |0.1850 | 0.1282 0.6346 | 0.3084
5 0.2093 | 0.1719 |0.0442 |0.1709 |0.1203 0.7166 | 0.3527
6 0.1231 0.2017 ]0.0412 |0.1757 |0.1079 0.6496 | 0.3199

The candidate sensor sequence, 3, 5, 6, 2, 4 and 1 in Setup 5, is much different from
that determined in Setup 2, in which the sequence is: 5, 6, 3, 4, 2, and 1. Especially,
the identification error in Setup 2 as in the last section is in reverse order for Case 3
and Case 5 compared to the error in Setup 5. Therefore, we can easily observe that
the relative importance of the six candidate sensor positions are changing with the
loading conditions of the truss structure. The experiments have, therefore, powerfully
verified that loading conditions under various working environment have to be ac-

counted for when the issue of sensor placement is arisen.
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6.5.3 Discussion of experimental results

Since the load dependent sensor placement method deploys sensors taking actual
loading conditions of a structure into consideration, the sensor positions are not sole-
ly determined by the structure itself. For the truss under discussion, it means that the

sensors have to be deployed at various positions for different loading cases.

In our experiments, Setup 2 and Setup 5 are selected as two typical loading condi-
tions of the truss. The load dependent sensor placement method indicates two differ-
ent sensor topologies for the same structure with two loading conditions. On the
other hand, the traditional methods give only one sensor positions’ ranking sequence

no matter what the actual loading conditions of the structure change.

In the comparison of theoretical and experimentally identified mode shapes in Sec-
tion 6.5.1 and Section 6.5.2, only a reduction of 6 to 5 sensors is compared due to
available experiment facilities. The validation experiment is, thus, rather limited. If

more candidate sensor positions are involved, the comparison will be much apparent.

On the other hand, only one load a time is designed in our validation experiments. In
fact, many kinds of loads can act on a structure simultaneously, for instance, a com-
bination of loads may excite the truss at several points. Moreover, their frequency

range and effects deserve further investigations in the frequency domain.

Furthermore, the comparison of mode shapes is measured by their relative difference,
which is an indirect means of the objective function defined in Chapter 5. As is known,
the identification of mode shapes from recorded accelerations is a complicated pro-
cess. Overdetermination and redundancy are common is many mode shape identifi-
cation methods to improve identification accuracy. The direct linear relationship in the
response equations could not be easily observed in the overdetermined mode shape

identification equations as expected.

Nevertheless, what is most important in the investigations is that the essential idea of
‘load dependence’ in the field of sensor placement is established. Sensor positions

should be changed when a structure is subjected to various loading conditions.
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7 Summary and Future Research

The objective of the current work is to deepen the understanding of existing influen-
tial sensor placement methods and their interrelationship and to develop an effective
method to deploy accelerometers suitable for structural health monitoring. Further-
more, we aim to find a sufficient evaluation criterion to judge which topology configu-

ration of sensors outperforms than others.

Three major contributions are made in the dissertation. The connection of the influen-
tial Modal Kinetic Energy method and the Effective Independence method is derived
and a fast algorithm for computing the Effective Independence method is developed.
Furthermore, existing influential sensor placement methods are critically reviewed

and discussed. An extended MinMAC algorithm is also proposed.

Secondly, five influential evaluation criteria for sensor placement are treated from a
mathematical point of view to reveal their connections and interrelationship. Based
on this, an almost unbiasedness criterion is proposed, which is found to be a more
general criterion and can be regarded as step-by-step approximate to the Fisher in-

formation criterion used by the Effective Independence method.

Finally, a loading dependent sensor placement method is specially developed to in-
corporate the influences of the structural characteristics and that of actual loading
conditions with the aid of the proposed representative least squares method. Three
computational approaches to find the solution for the representative least squares
method and also for the loading dependent sensor placement method are examined.
A truss model structure is used to validate the idea and the proposed methods in the

dissertation.

There are two important issues still to be solved in the future. Firstly, the role of the
renormalization and reorthogonalization of the mode shapes deserves further inves-
tigations combined with the concept of reduced-order system. Although the funda-
mental assumption of the mode shape identification methods is the linearity of the
systems and a linear model is assumed, the detailed relationship of the goodness-of-
fit of the linear measurement equation with the accuracy of modal identification is ra-

ther complex. The hidden relationship needs further examination.
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