Citation link:
http://dx.doi.org/10.25819/ubsi/9922
DC Field | Value | Language |
---|---|---|
crisitem.author.orcid | 0000-0002-7444-702X | - |
dc.contributor.author | Küppers, Jan-Philipp | - |
dc.contributor.author | Metzger, Jens | - |
dc.contributor.author | Jensen, Jürgen | - |
dc.contributor.author | Reinicke, Prof. Dr.-Ing. Tamara | - |
dc.date.accessioned | 2021-06-16T11:06:55Z | - |
dc.date.available | 2021-06-16T11:06:55Z | - |
dc.date.issued | 2019 | de |
dc.description | Finanziert aus dem DFG-geförderten Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel | de |
dc.description.abstract | The supply of energy is sustainable only if it is predominantly based on renewable or regenerative energies. For this reason, the use of micro-hydropower plants on rivers and streams is considered recently. This is a particular challenge for the preservation of ecologically permeable streams, so that no dams or similar structures can be considered. While the axial turbine design has prevailed in wind power, there is still no consensus for the generation of energy in free water flow conditions. In this work, an existing prototype of an unusual vertical axis Kirsten–Boeing turbine was investigated. A multivariate optimization process was created, in which all important machine parameters were checked and improved. By using neural networks as a metamodel coupled with flow simulations in ANSYS CFX, a broadly applicable optimization strategy is presented that yielded a blade design that is 36% more efficient than its predecessor in experiments. During the process, it was shown how to set up a complex sliding mesh problem with ANSYS expressions while evaluating a free surface problem. | en |
dc.identifier.doi | http://dx.doi.org/10.25819/ubsi/9922 | - |
dc.identifier.uri | https://dspace.ub.uni-siegen.de/handle/ubsi/1911 | - |
dc.identifier.urn | urn:nbn:de:hbz:467-19114 | - |
dc.language.iso | en | de |
dc.source | Energies ; 12 (9), 1777. - https://doi.org/10.3390/en12091777 | de |
dc.subject.ddc | 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten | de |
dc.subject.other | Kirsten-Boeing | de |
dc.subject.other | Turbine mit vertikaler Achse | de |
dc.subject.other | Tensorflow | de |
dc.subject.other | ANSYS CFX | de |
dc.subject.other | Metamodellierung | de |
dc.subject.other | Kirsten-Boeing | en |
dc.subject.other | Vertical axis turbine | en |
dc.subject.other | Tensorflow | en |
dc.subject.other | ANSYS CFX | en |
dc.subject.other | Metamodeling | en |
dc.subject.other | Neural nets | en |
dc.subject.other | Optimization | de |
dc.subject.swb | Wasserkraftwerk | de |
dc.subject.swb | Turbine | de |
dc.subject.swb | Fließgewässer | de |
dc.subject.swb | Boeing [Markenname] | de |
dc.title | Performance optimization of a Kirsten–Boeing turbine by a metamodel based on neural networks coupled with CFD | en |
dc.type | Article | de |
item.fulltext | With Fulltext | - |
ubsi.publication.affiliation | Department Maschinenbau | de |
ubsi.source.author | MDPI | de |
ubsi.source.doi | 10.3390/en12091777 | - |
ubsi.source.issn | 1996-1073 | - |
ubsi.source.issued | 2019 | de |
ubsi.source.issuenumber | 9 | de |
ubsi.source.link | https://www.mdpi.com/ | de |
ubsi.source.pages | 26 | de |
ubsi.source.place | Basel | de |
ubsi.source.publisher | MDPI | de |
ubsi.source.title | Energies | de |
ubsi.source.volume | 12 | de |
ubsi.subject.ghbs | ZPOM | de |
Appears in Collections: | Geförderte Open-Access-Publikationen |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Performance_optimization.pdf | 12.54 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Page view(s)
425
checked on Dec 1, 2024
Download(s)
82
checked on Dec 1, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.