Zitierlink: http://dx.doi.org/10.25819/ubsi/8818
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Kelter_bayest.pdf706.18 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Dokumentart: Article
Titel: bayest: an R-package for effect-size targeted Bayesian two-sample t-tests
AutorInn(en): Kelter, Riko  
Institut: Department Mathematik 
Schlagwörter: Two-sample t-test, Effect size, Treatment effect between two groups, Markov-Chain-Monte-Carlo, Bayesian statistics
DDC-Sachgruppe: 510 Mathematik
GHBS-Notation: TKM
TKWM
TKF
TKKC
Erscheinungsjahr: 2020
Publikationsjahr: 2021
Auch erschienen: Journal of Open Research Software, 8 (1), S.14. - DOI: http://doi.org/10.5334/jors.290
Zusammenfassung: 
Typical situations in research include the comparison of two groups regarding a metric variable, in which case usually the two-sample t-test is applied. While common frequentist two-sample t-tests focus on the difference of means of both groups via a p-value, the quantity of interest in applied research most often is the effect size. Existing Bayesian alternatives of the two-sample t-test replace frequentist significance thresholds like the p-value with the Bayes factor, taking the same testing stance. The R package bayest implements a Markov-Chain-Monte-Carlo algorithm to conduct a Bayesian two-sample t-test which estimates the effect size between two groups, while also providing detailed visualization and analysis of all parameters of interest. Because of its focus on the ease of use and interpretability, clinicians and other users can run this t-test within a few lines of code and find out if differences between two groups are scientifically meaningful, instead of significant.
Beschreibung: 
Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
DOI: http://dx.doi.org/10.25819/ubsi/8818
URN: urn:nbn:de:hbz:467-18511
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/1851
Enthalten in den Sammlungen:Geförderte Open-Access-Publikationen

Diese Ressource ist urheberrechtlich geschützt.

Zur Langanzeige

Seitenansichten

547
checked on 18.01.2025

Download(s)

132
checked on 18.01.2025

Google ScholarTM

Prüfe

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.